
E�ect Systems with Subtyping

Yan Mei Tang

Pierre Jouvelot

Centre de Recherche en Informatique

Ecole Des Mines de Paris

E�mail� ftang�jouvelotg�cri�ensmp�fr

Abstract

E�ect systems extend classical type systems with e�ect in�
formation� Just as types describe the possible values of ex�
pressions� e�ects describe their possible evaluation behav�
iors� E�ects� which appear in function types� introduce new
constraints on the typability of expressions� To increase the
�exibility and accuracy of e�ect systems� we present a new
e�ect system based on subtyping� The subtype relation is
induced by a subsumption relation on e�ects� This subtyp�
ing e�ect system avoids merging e�ect information together�
thus collecting more precise e�ect information� We intro�
duce a reconstruction algorithm which for any expression
already typed with classical types� reconstructs its type and
e�ect based on the subtype relation� The reconstruction
algorithm is sound and complete w�r�t� the static semantics�

� Introduction

E�ect systems extend classical type systems with e�ect in�
formation� Just as types describe the possible values of
expressions� e�ects describe their possible evaluation be�
haviors� E�ect systems allow powerful static analysis to
be performed in the presence of higher�order functions� im�
perative constructs and separate compilation� However� ef�
fects� which appear in function types� introduce new con�
straints on the typability of expressions� i�e�� e�ect checking
may force the rejection of programs which would have type�
checked if no e�ects were present�

To increase the �exibility of previous e�ect systems� subef�
fecting has been introduced �Gi�ord�	� Talpin
�� Tang
���
Sube�ecting allows expressions to admit larger e�ects� thus
enabling type misatches due to the introduction of e�ect in�
formation to be eliminated� But� sube�ecting alone forces a
variable to have a unique type in di�erent occurences and
thus merges e�ect information together
 this often limits the
accuracy of the e�ect analysis� Instead of relying on subef�
fecting to eliminate undue type mismatches� we use the no�
tion of e�ect�based subtyping to improve both the �exibility
and accuracy of e�ect systems� while preserving type safety
and reconstruction�

We present a new e�ect system based on subtyping where
the subtype relation is induced by a subsumption rule on ef�
fects� This subtyping e�ect system avoids merging e�ect
information together when forcing two types to be identi�
cal� thus it collects more precise e�ect information� We in�
troduce a sound and complete reconstruction algorithm for
this static semantics� Since type inequalities are only intro�

duced by e�ect subsumption� it is a simple extension of clas�
sical type reconstruction algorithms with e�ect constraints
whose solutions satisfy the subtype relation� To motivate
this new notion� we show how to use e�ect�based subtyping
within the e�ect system for control��ow analysis presented
in �Tang
��� thus improving the accuracy of this control��ow
analysis technique�

In the sequel� we de�ne a type and e�ect static semantics
based on ubtyping �Section ��� present the type and e�ect
reconstruction algorithm and prove it is sound and complete
w�r�t� the static semantics �Section ��� discuss the related
work �Section �� before concluding �Section ��� The proofs
are given in appendix�

� Static Semantics with Subtyping

��� Language

A simple functional language is enough to present our ideas�
although our analysis can be extended to additional lan�
guage constructs� such as constants� imperative operations�
separate compilation �in the vein of �Tang
���� Tang
������
In particular� our analysis can also deal with polymorphism
as presented in �Tang
����� The syntax of expressions is
de�ned as follows�

e ��� x value identi�er
��n �x� e� abstraction
�recn �f x� e� recursive function
�e e�� application

where all lambda expressions� recursive or not� are explicitly
given a name n �from the domain Id of identi�ers� which
is used to uniquely identify them� These names could be
automatically assigned by the reconstruction process�

��� Domains

Classical types specify the data structure of expressions� A
classical type � can either be int� a type variable �� or a
function type � � � � � A classical type environment T is a
�nite map from identi�ers to classical types�

� � CType � int j � j � � � � classical type
T � CTEnv � Id �� � classical environment

E�ect systems extend classical types with e�ect informa�
tion� An type t is either int� a type variable �� or a function



type t�
c
� t with the latent e�ect c� which abstracts the

control��ow behavior of the function body� A type environ�
ment E is a �nite map from identi�ers to types�

t � Type � int j � j t�
c
� t type

E � TEnv � Id �� t type environment

Control��ow e�ects record the function names that are
possibly called during the evaluation of expressions� An ef�
fect c can either be the constant �� denoting the absence of
any function call� an e�ect variable �� a singleton fng where
n is the name of a called function� or a union set of function
names indicated by the in�x union operator ��

c � Control � � j � j fng j c � c� control��ow

��� Subtype and Sube�ect Relations

An e�ect� i�e� a set of function names� can be conservatively
approximated by one of its supersets� The sube�ect relation
is thus the usual set inclusion relation�

The subtype relation � is de�ned via e�ect inclusion
between latent e�ects of function types that have the same
structure� To properly de�ne this notion� we introduce the
Struct function which transforms types to classical types by
erasing latent e�ects�

Struct�int� � int

Struct��� � �

Struct�t�
c
� t� � Struct�t��� Struct�t�

The type structure of t is Struct�t�� Two types t and t� have
the same structure if and only if Struct�t� � Struct�t���

The subtype relation t � t� is de�ned whenever t and
t� have the same structure� Note that the subtype relation
between function types is contravariant�

De�nition � �Subtype�

� � �

int � int

t��
c�� t� � t��

c�� t� � t�� � t�� � t� � t� � c� 	 c�

The function E� generates the set of e�ect inequalities
corresponding to a given type inequality� An e�ect inequal�
ity is a pair �ci� c

�
i� written ci 	 c�i�

E� �� � �� � �
E� �int � int� � �

E� �t��
c�� t� � t��

c�� t�� � fc� 	 c�g�E� �t
�
� � t���

�E� �t� � t��

��� Semantics

The static semantics de�nes the type and control��ow ef�
fect of expressions� It is speci�ed by a set of inference
rules �Plotkin���� Given a type environment E� the inference
rules associate an expression e with its type t and control�
�ow information c� We write �

E 
 e � t� c

The crucial rules are the �abs� and �app� rules for lambda
abstraction and application� In the abstraction case� the
current function name is added to the functions called by

the lambda body
 the resulting set is the latent control��ow
e�ect of the lambda expression� When such a function is
applied� in the �app� rule� this latent control��ow informa�
tion is used to determine the functions possibly called while
evaluating the function body�

�var� � E �x �� t� 
 x � t� �

�abs� �
E �x �� t�� 
 e � t� c

E 
 ��n �x� e� � t�
fng�c
� t� �

�rec� �
E�f �� t� 
 ��n �x� e� � t� �
E 
 �recn �f x� e� � t� �

�app� �
E 
 e � t�

c��

� t� c

E 
 e� � t�� c�

E 
 �e e�� � t� c � c� � c��

�sub� �
E 
 e � t�� c
t� � t

E 
 e � t� c

The novelty here lies in the �sub� rule where we use sub�
typing to allow a larger type t to be used in lieu of t�� This
increases the �exibility of the static semantics by relaxing
the constraint on latent e�ects imposed by the context of an
expression� We show that this new approach performs a bet�
ter analysis than the one previously introduced in �Tang
��
�see an example in Section �� which used the less precise
sube�ecting rule�

�sube�ecting� �
E 
 e � t� c�

c 	 c�

E 
 e � t� c

� Reconstruction with Subtyping

We present a new reconstruction algorithm that reconstructs
types and e�ects of expressions based on the subtype rela�
tion� We describe the basic ideas� present the algorithm and
state its correctness�

��� Basic Idea

The reconstruction of types and e�ects based on subtyping
is a type inequalities solving problem� Since the subtype re�
lation in our system is de�ned by the subsumption relation
on e�ects� type inequalities amount to sets of e�ect inequal�
ities when the structures of the types are known� There�
fore� we de�ne a type and e�ect reconstruction algorithm
S which operates on expressions already typed with classi�
cal types� For any expression� the reconstruction algorithm
S computes a set of type inequalities beside its type and
e�ect� Since classical types specify type structures� solv�
ing type inequalities is reduced to solving the corresponding
e�ect inequalities� Thus reconstruction can be viewed as
an e�ect constraint satisfaction problem� For every expres�
sion that has a type and a control��ow e�ect in the static
semantics� its e�ect constraint set must have at least one
solution� which satis�es the set of type inequalities� The
classical types of expressions are reconstructed by a simple
type reconstruction algorithm �Milner	�� Tofte�	��



��� Algorithm S

Given a type environment E and an expression e assumed
priorly decorated with its classical type �we use a straight�
forward expression annotation mechanism to express this
information in the algorithm�� the reconstruction algorithm
S computes a type t� an e�ect c and an e�ect constraint set
�� We note �

S�E �e� � ht� c��i

The e�ect constraint set is partly built by application of E�
to type inequalities and partly during the reconstruction of
lambda and rec expressions� The function New transforms
a classical type � to a type t by adding fresh latent e�ect
variables to � � Its proper de�nition is�

New�int� � int

New��� � �

New�� � � �� � New�� ��
�
� New��� for fresh �

The inference algorithm S is de�ned as follows�

S�E �x��
let t� � E�x�

t � New�Struct�t���
in ht� ��E� �t� � t�i

S�E � ��n �x � �� e���
let t� � New���

� new
ht� c� �i � S�E�x �� t���e�

in ht�
�
� t� �� � � f� 	 fng � cgi

S�E � �recn �f � � � � � x � � �� e���

let t�
�
� t � New�� � � ��

ht��� c� �i � S�E �f �� t�
�
� t��x �� t���e�

in ht�
�
� t� �� � � E� �t�� � t� � f� 	 fng � cgi

S�E � �e e����

let ht��
c��

� t� c� �i � S�E� e�
ht�� c�� ��i � S�E�e��

in ht� c � c� � c��� � � �� � E� �t� � t���i

Sube�ecting can be easily related to subtyping by notic�
ing that its related reconstruction algorithm �Tang
���� is
similar to S� except that � is replaced by the more restric�
tive �� implemented by uni�cation�

��� Properties of S

The reconstruction algorithm S has the following properties�
easily proved by induction �

Lemma � �Properties of S� For any E � e� if S�E�e� �
ht� c� �i� then �

� t only includes fresh e�ect variables�

� All environment extensions within S refer to types with
only fresh e�ect variables�

The previous lemma implies that the constraint set com�
puted by the reconstruction algorithm S has the following
normal form property�

Lemma � �Normal Constraints� If S�E�e� � ht� c��i�
then � has the normal form f�i 	 ci j i � ���sg�

Proof See the appendix�

��� Constraint Satisfaction

An expression e with its type environment E is type and
e�ect safe if and only if the constraint set � computed by
S�E �e� admits at least one solution� A constraint set that
is in normal form always has solutions� among which we are
interested in the minimal one� The substitutions satisfying
� are called e�ect models�

De�nition � �E�ect Model� A substitution � is an e�ect
model of a constraint set �� noted as � j� �� if and only if

� 	 c � �� �� 	 �c�

The following lemma shows how to satisfy a type inequal�
ity by solving its corresponding e�ect constraint�

Lemma � �Solution of Type Inequality� If t and t� ha�
ve the same structure and satisfy Lemma 	� then

� j� E� �t� � t�� �t
� � �t

Proof By induction of the structure of types�

Theorem � �Satisfaction� Every normal form constraint
set � � f�i 	 ci j i � ���sg admits at least one model�

Proof f�i �� c�i j i � � � � � ng is an e�ect model of �� where
c�i � �n

i��ci n �
n
i���i� where n is the set di�erence operator�

A constraint set may admit more than one e�ect model�
among which we are interested in the minimal one� We de�
�ne a function Min to characterize the minimal e�ect model
of a constraint set �� Note that the solution is independent
of the order of inequalities in � because of the algebraic prop�
erties of �� the function Min recursively computes an e�ect
model by applying each solved inequation to the residual
constraints�

Min��� � Id
Min�f� 	 cg � ��� � let � � Min���� in f� �� �c n �g�

The constraint set of the reconstruction algorithm al�
ways admits a unique minimal model with respect to the
subsumption relation 	 on e�ects�

Theorem � �Minimality� Any constraint set admits a uni�
que minimal e�ect model�

Proof By induction on the constraint set�

��� Correctness

Since the reconstruction algorithm S is de�ned by induction
on the structure of expressions� which are of �nite height� it
always terminates�

The reconstruction algorithm is sound and complete with
respect to the static semantics� The soundness theorem
states that the application of any e�ect model of the re�
constructed type constraint set to the reconstructed type
and e�ect satis�es the static semantics�

Theorem � �Soundness� Given an expression e and its
type environment E � if S�E�e� � ht� c��i� then� for any e�ect
model � of �� one has�

�E 
 e � �t� �c



Proof See the appendix�

The completeness theorem states that the reconstructed
type t and the control��ow e�ect c are minimal with respect
to any type t� and control��ow e�ect c� derivable from the
static semantics� modulo some substitution � that satis�es
the computed constraint set �� The substitution 	� ranges
over the free variables of E �

Theorem 	 �Completeness� If 	�E 
 e � t�� c� then S�E� e�
� ht� c��i and there exists an e�ect model � of �� such that�

	�E � �E and �t � t� and c� 	 �c

Proof See the appendix�

� Related Work

Subtyping �see e�g� �Cardelli���� adds �exibility to type sys�
tems by allowing type coercions to be performed if neces�
sary in the presence of type mismatches� It is often used to
captures aspects of object�oriented programming �Wand�	�
Stansifer���� Subtyping in e�ect systems has been previ�
ously introduced in explicitly typed languages �Gi�ord�	�
Consel
��� There� a subsumption rule similar to the one
presented above was used� but since only type checking was
performed� its treatment was simpler than ours� This paper
shows that type and e�ect reconstruction may be performed
in an implicitly typed language�

Previous implicit e�ect systems �Dornic
�� Talpin
�� Tang
��
have introduced sube�ecting� via the sube�ecting rule �see
Section ��� to increase the �exibility of the static seman�
tics� Sube�ecting allows expressions of same classical types
to also have the same e�ect�including types by allowing such
e�ects to be replaced by larger ones if need be� Subtyping
eliminates this information loss by allowing these expres�
sions to simply obey the subtype relation� We show below
on an example how subtyping can thus be more precise than
sube�ecting�

���nf �f�
�� �f ��na �a� a��la

�f ��nb �b� b��lb��
��ng �g� �g ����lf

There� the function f is bound when performing the call
lf and is applied at la and lb with arguments ��na �a� a�
and ��nb �b� b� respectively� We give� in the following table�
the types of f at these three occurrences �tf � tfa and tfb��
and the types of the arguments �na and �nb �tna and tnb�
For clarity� we use i to indicates the type int�

Subeffecting Subtyping

tf �i
fna�nbg� i�

fng�na�nbg
� i �i

fna�nbg� i�
fng�na�nbg

� i

tfa �i
fna�nbg� i�

fng�na�nbg
� i �i

fnag
� i�

fng �na�nbg
� i

tna i
fna�nbg
� i i

fnag
� i

tfb �i
fna�nbg� i�

fng�na�nbg
� i �i

fnbg� i�
fng �na�nbg

� i

tna i
fna�nbg� i i

fnbg� i

tfa � tf tf � tfa
tfb � tf tf � tfb

Notice that� when using sube�ecting� all occurrences of
f are forced to have the same type while� when using sub�
typing� they only have to obey a subtype relation� leading
to more precise local control��ow information�

� Conclusion

We presented a new e�ect system based on subtyping where
expressions with the same structure obey a subtype relation
de�ned by a subsumption relation on e�ects� This subtype
e�ect system avoids merging e�ect information together�
thus collects more precise e�ect information than e�ect sys�
tems with sube�ecting� We designed a sound and complete
reconstruction algorithm that reconstructs the types and ef�
fects of expressions in the presence of subtyping� and show
that it outperforms previous systems� A natural extension
of this paper is the possibility of combining subtyping and
sube�ecting in a single framework� This has been proved
valuable in �
��

Acknowledgements

We thank Jean�Pierre Talpin for his numerous comments on
this paper�

References

�Cardelli��� Cardelli� L� Structural Subtyping and the No�
tion of Power Type� In ACM Symposium on Principles
of Programming Languages� pages 	��	
� �
���

�Consel
�� Consel� C�� and Jouvelot� P� Separate Polyvari�
ant Binding�Time Analysis� OGI Tech� Rep� CS�E 
��
���� March �

��

�Consel
�� Consel� C�� Jouvelot� P�� and Orbaek� P� Separate
Polyvariant Binding�Time Reconstruction� Technical Re�
port A����� Ecole des Mines de Paris� July �

��

�Dornic
�� Dornic� V� and Jouvelot� P� Polymorphic
Time Systems for Estimating Program Complexity� In
JTASPEFL
�	� Bordeaux� France� �

��

�Gi�ord�	� Gi�ord� D� K�� Jouvelot� P�� Lucassen� J�
M�� and Sheldon� M� A� FX��	 Reference Manual�
MIT�LCS�TR�
��� MIT Laboratory for Computer Sci�
ence� September �
�	�

�Milner	�� Milner� R� A Theory for type polymorphism
in programming� In Journal of Computer and Systems
Sciences� Vol� �	� pages �����	�� �
	��

�Plotkin��� Plotkin� G� A structural approach to opera�
tional semantics� Technical report DAIMI�FN�	�� Aarhus
University� �
���

�Stansifer��� Stansifer� R� Type Inference with Subtypes�
In ACM Symposium on Principles of Programming Lan�
guages� �
���

�Talpin
�� Talpin� J� P�� and Jouvelot� P� Polymorphic
Type� Region and E�ect Inference� In the Journal of
Functional Programming� volume �� number �� Cam�
bridge University Press� �

��



�Tang
�� Tang� Y� M�� and Jouvelot� P� Control�Flow Ef�
fects for Closure Analysis� In Proceedings of the �nd
Workshop on Semantics Analysis� Bigre numbers ������
pages �������� Bordeaux� October �

��

�Tang
���� Tang� Y� M� Syst�emes d�E�et et Interpr�etation
Abstraite pour l�Analyse de Flot de Contr�ole� Doctoral
Dissertation� Ecole des Mines de Paris et Universit�e Paris
VI� March �

��

�Tang
���� Tang� Y� M�� and Jouvelot� P� Separate Ab�
stract Interpretation for Control�Flow Analysis� Interna�
tional Symposium on Theoretical Aspects of Computer
Software� Springer Verlag� LNCS 	�
� Japan� April �

��

�Tofte�	� Tofte� M� Operational semantics and polymorphic
type inference� PhD Thesis� University of Edinburgh�
�
�	�

�Wand�	� Wand� M� Complete type inference for simple
objects� In Proceedings of the �nd IEEE Symposium on
Logic in Computer Science� �
�	� pages �	����

Appendix

Proof of Lemma �

Lemma � �Formal E�ect Constraints� If S�E�e� � ht� c� �i�
then � is of the following form�

f�i 	 ci j i � ���sg

Proof By induction of the structure of expressions�

� Case of x

The hypothesis is
S�E�x� � ht� ��E� �t� � t�i

By the de�nition of S
��� t� � E�x�
��� t � New�Struct�t���

From ���� by Lemma �
��� t� only includes fresh e�ect variables

From ������� by the de�nition of E�
E� �t� � t� satis�es the lemma

� Case of ��n �x� e�

The hypothesis is

S�E� ��n �x � �� e�� � ht�
�
� t� �� � � f� 	 fng � cgi

By the de�nition of S
��� � new
��� ht� c� �i � S�E �x �� t���e�

From ���� by induction
��� � satis�es the lemma

From ������
� � f� 	 fng � cg satis�es the lemma

� Case of �recn �f x� e�

The hypothesis is
S�E � �recn �f � � � � � x � � �� e���

ht�
�
� t� �� � � E� �t�� � t� � f� 	 fng � cgi

By the de�nition of S

��� t�
�
� t � New�� � � ��

��� ht��� c� �i � S�E �f �� t�
�
� t��x �� t���e�

From ���� by the de�nition of New
��� t � New���
��� � new

From ���� by Lemma �
��� t�� only includes fresh e�ect variables

From ���� by induction
��� � satis�es the lemma

From ������� by the de�nition of E�
�	� E� �t�� � t� satis�es the lemma

From ����	����
� � E� �t�� � t� � f� 	 fng � cg satis�es the lemma

� Case of �e e��

The hypothesis is
S�E � �e e��� � ht� c � c� � ��� � �� � E� �t� � t���i

By the de�nition of S

��� ht��
c��

� t� c� �i � S�E �e�
��� ht�� c�� ��i � S�E�e��

From ������� by Lemma �

��� t��
c��

� t only includes fresh e�ect variables
��� t� only includes fresh e�ect variables

From ���
��� t�� only includes fresh e�ect variables

From ������� by induction
��� � and �� satisfy the lemma

From ���������� by the de�nition of E�
� � �� � E� �t� � t��� satis�es the lemma �

Proof of Theorem �

Theorem � �Soundness� Given an expression e and its type
environment E � if S�E�e� � ht� c� �i� then for any e�ect
model � of �� one has �

�E 
 e � �t� �c

Proof By induction on the structure of expressions



� Case of �var�

The hypotheses are
��� S�E �x� � ht� ��E� �t� � t�i
��� � j� E� �t� � t�

From ���� by the de�nition of S
��� t� � E�x�� i�e� �E�x� � �t�

From ���� by �var� rule in the static semantics
��� �E 
 x � �t�� �

From ���� by Lemma �
��� �t� � �t

From ������� by the �sub� rule in the static semantics
�E 
 x � �t� �

� Case of �abs�

The hypotheses are
��� S�E � ��n �x � �� e�� �

ht�
�
� t� �� � � f� 	 fng � cgi

��� � j� � � f� 	 fng � cg
where t� � New��� and � new

From ���� by the de�nition of S
��� ht� c� �i � S�E �x �� t���e�

From ���� by the de�nition of e�ect models
��� � j� �

��� � j� f� 	 fng � cg i�e� �� 	 ��fng � c�

From ������� by induction
��� ��E �x �� t��� 
 e � �t� �c

From ���� by �abs� in the static semantics

�	� �E 
 ��n �x� e� � ��t�
fng�c
� t�� �

From ���� by the de�nition of subtype relation

��� ��t�
fng�c
� t� � ��t�

�
� t�

From �	����� by the �sub� rule in the static semantics

�E 
 ��n �x� e� � ��t�
�
� t���

� Case of �rec�

The hypotheses are
��� S�E � �recn �f � � � � � x � � �� e�� �

ht�
�
� t� �� � � E� �t�� � t� � f� 	 fng � cgi

��� � j� � � E� �t�� � t� � f� 	 fng � cg

where t�
�
� t � New�� � � ��

From ���� by the de�nition of S

��� ht��� c��i � S�E�f �� t�
�
� t��x �� t���

From ���� by the de�nition of e�ect models
��� � j� �

��� � j� E� �t�� � t�
��� � j� f� 	 fng � cg� i�e� �� 	 fng � �c

From ������� by induction

�	� ��E �f �� t�
�
� t��x �� t��� 
 e � �t��� �c

From ���� by Lemma �
��� �t�� � �t

From �	����� by �sub� in the static semantics

�
� ��E �f �� t�
�
� t��x �� t��� 
 e � �t� �c

From �
�� by �abs� in the static semantics

���� ��E��f �� ��t�
�
� t�� 
 ��n �x� e� � ��t�

fng�c
� t�� �

From ���� by the de�nition of subtype relation

���� ��t�
fng�c
� t� � ��t�

�
� t�

From ��������� by the �sub� rule in the static seman�
tics

���� ��E��f �� ��t�
�
� t�� 
 ��n �x� e� � ��t�

�
� t�� �

From ����� by �rec� rule in the static semantics

�E 
 �rec n �f x� e� � ��t�
�
� t�� �

� Case of �app�

The hypotheses are
��� S�E � �e e��� � ht� c � c� � c��� � � �� � E� �t� � t���i
��� � j� � � �� � E� �t� � t���

From ���� by the de�nition of S

��� S�E � e� � ht��
c��

� t� c� �i
��� S�E �e�� � ht�� c�� ��i

From ���� by the de�nition of e�ect models
��� � j� �
��� � j� ��

�	� � j� E� �t� � t���

From ������ and ������� by induction

��� �E 
 e � ��t��
c��

� t�� �c
�
� �E 
 e� � �t�� �c�

From �	�� by Lemma �
���� �t� � �t��

From �
������ by the �sub� rule in the static semantics
���� �E 
 e� � �t��� �c�

From �������� by �app� in the static semantics
�E 
 �e e�� � �t� ��c � c� � c��� �

Proof of Theorem �

Theorem � �Completeness� If 	�E 
 e � t�� c�� then S�E�e� �
ht� c� �i and there exists a e�ect model � of �� such that�



	�E � �E and �t � t� and c� 	 �c

Proof By induction on the structure of expressions

� Case of �var�

The hypothesis is
	�E 
 x � t�� �

By the �var� and �sub� rules in the static semantics
��� t�� � E�x�
��� 	�t

�
� � t�

From ���� by the de�nition of S
S�E�x� � ht� ��E� �t�� � t�i
where t � New�Struct�t����

Since t only includes fresh e�ect variables� we can de�
�ned 	 such that�
��� 	t � t�

We de�ne the e�ect model �� such that �

�v �

�
	v v � fv�t�
	�v otherwise

Note that since t only includes fresh e�ect variables� �
is well de�ned�

From ������� by the de�nition of �
��� �t�� � 	�t

�
� � t�

��� �t � 	t � t�

From ������� by Lemma �
� j� E� �t�� � t�

By the de�nition of �
	�E � �E

From ���
�t � t�

� Case of �abs�

The hypothesis is

	�E 
 ��n �x� e� � t��
c�� t�� �

By the �abs� and �sub� rules in the static semantics

��� 	�E 
 ��n �x� e� � t��
fng�c�
� t�� �

��� t��
fng�c�
� t� � t��

c�� t�

From ���� by �abs� rule in the static semantics
��� �	�E��x �� t��� 
 e � t�� c�

If x has classical type � � let t� � New����
Then there exists a substitution 	� such that�
��� t�� � 	t�

We de�ne a substitution 	��� such that �

	
�
�v �

�
	v v � fv�t��
	�v otherwise

Note that since t� only includes fresh e�ect variables�
	�� is well de�ned�

From ���� by the de�nition of 	��� ��� is equivalent to �
��� 	���E�x �� t��� 
 e � t�� c�

From ���� by induction
��� S�E �x �� t���e� � ht� c� �i
there exists �� such that �
�	� � j� �

��� 	���E�x �� t��� � ��E �x �� t���
�
� �t � t�
���� c� 	 �c

From ������� by the de�nition of 	��
���� 	�E � �E � except on x which doesn�t appear in E
�alpha�renaming�
���� t�� � �t�

From ���� since t� � New���� by the de�nition of S

���� S�E� �n �x � �� e� � ht�
�
� t� �� � � f� 	 fng � cgi

where � new

We de�ne an e�ect substitution �� on fv�E� t�� t� c���
and �� such that �

�
�
v �

�
�v v � fv�E � t�� t� c� ��
c� v � �

Note that since � is fresh� �� is well de�ned�

From �	�� by the de�nition of ��

���� �� j� �

By the de�nition of ��

���� ��� � c�
���� ���fng � c� � fng � �c

From ��������� by the de�nition of ��

��	� fng � c� 	 ���fng � c�

From ���� by the de�nition of the subtype relation
���� t� � t�
��
� t�� � t��
���� c� 	 fng � c�

From ����������	�� by the de�nition of e�ect models
���� �� j� f� 	 fng � cg

From ��������� by the de�nition of e�ect models
�� j� � � f� 	 fng � cg

From ��������� by the de�nition of ��

	�E � ��E



���� t�� � ��t�

From �
�� by the de�nition of ��

���� ��t � t�

From ������������� by the de�nition of subtype rela�
tion

���� ���t�
�
� t� � t��

c�� t�

From ������
�� by the de�nition of subtype relation

���� t��
c�� t� � t��

c�� t�

From ��������

���t�
�
� t� � t��

c�� t�

� Case of �rec�

The hypothesis is

	�E 
 �recn �f x� e� � t��
c�� t�� �

By the �rec� and �sub� rules in the static semantics

��� 	�E 
 �recn �f x� e� � t��
fng�c�
� t�� �

��� t��
fng�c�
� t� � t��

c�� t�

From ���� by the �rec� rule in the static semantics

��� �	�E��f �� t��
fng�c�
� t���x �� t��� 
 e � t�� c�

If f and x have classical types � � � � and � � respec�

tively� let �t�
�
� t� � New�� � � ���

Then� there exists a substitution 	� such that�

��� t��
fng�c�
� t� � 	�t�

�
� t�

We de�ne a substitution on e�ect variables 	��� such
that �

	
�
�v �

�
	v v � fv�t�

�
� t�

	�v otherwise

Note that since t�
�
� t only includes fresh e�ect vari�

ables� 	�� is well de�ned�

From ���� by the de�nition of 	��� ��� is equivalent to �

��� 	���E�f �� t�
�
� t��x �� t��� 
 e � t�� c�

From ���� by induction

��� S�E �f �� t�
�
� t��x �� t���e� � ht��� c� �i

there exists �� such that �
�	� � j� �

��� 	���E�f �� t�
�
� t��x �� t��� �

��E�f �� t�
�
� t��x �� t���

�
� �t�� � t�
���� c� 	 �c

From ���� since t�
�
� t � New�� � � ��� by the de�ni�

tion of S

���� S�E� �recn �f � � � � � x � � �� e�� �

ht�
�
� t� �� � � E� �t�� � t� � f� 	 fng � cgi

From ������� by the de�nition of 	��� except on f and x
which don�t occur in E �alpha�renaming�
	�E � �E

���� t��
fng�c�
� t� � ��t�

�
� t�

���� t� � �t

���� fng � c� � ��

From �
������ by Lemma �
���� � j� E� �t�� � t�

From ��������� by the de�nition of e�ect models
���� � j� f� 	 fng � cg

From �	���������� by the de�nition of e�ect models
� j� � � E� �t�� � t� � f� 	 fng � cg

From �������

��t�
�
� t� � t��

c�� t�

� Case of �app�

The hypotheses is
	�E 
 �e e�� � t�� c� � c�� � c���

By the �app� and �sub� rules in the static semantics
��� 	�E 
 �e e�� � t�� c� � c�� � c���
��� t� � t�

From ���� by the �app� rule in the static semantics

��� 	�E 
 e � t��
c��
�� t�� c�

��� 	�E 
 e� � t��� c
�
�

From ���� by induction

��� S�E �e� � ht��
c��

� t� c� �i
there exists �� such that �
��� � j� �
�	� 	�E � �E

��� ��t��
c��

� t� � t��
c��
�� t�

�
� c� 	 �c

From ���� by induction
���� S�E�e�� � ht�� c�� �i
���� such that �
���� �� j� ��

���� 	�E � ��E
���� ��t� � t��
���� c�� 	 ��c�

From �������� by the de�nition of S
S�E � �e e��� � ht� c � c� � c��� � � �� � E� �t� � t���i

We de�ne a substitution ��� on fv�E� t��
c��

� t� c���� and
fv�E� t�� c�� ���



�
��
v �

�
�v v � fv�E� t��

c��

� t� c� ��
��v v � fv�E� t�� c�� ���

Note that if v � fv�E� t�� c�� ����fv�E � t��
c��

� t� c���� then�
by the de�nition of S� v � fv�E� and thus� by �	������
�v � ��v
 thus ��� is well de�ned�

From �������� by the de�nition of ���

���� ��� j� �

��	� ��� j� ��

From ���� by the de�nition of ���

���� ����t��
c��

� t� � ��t��
c��

� t� � t��
c��
�� t�

From ����� by the de�nition of the subtype relation
��
� ���t � t�
���� t�� � ���t��

���� c��� 	 ���c��

From ����� by the de�nition of ���

���� ���t� � ��t� � t��

From ��������� by Lemma �
���� ��� j� E� �t� � t���

From ������	������ by the de�nition of e�ect models
��� j� � � �� � E� �t� � t���

From ��
����
���t � t�

From �
���������� by the de�nition of ���

c� � c�� � c��� 	 ����c � c� � c��� �


