
Experiments with HPF Compilation for a

Network of Workstations �

Fabien Coelho �coelho�cri�ensmp�fr�

Centre de Recherche en Informatique� �Ecole des mines de Paris�
��� rue Saint�Honor�e� F������ Fontainebleau Cedex� France	

phone 
 ��� � � � �� ��� fax 
 ��� � � � �� ��

Abstract� High Performance Fortran �hpf� is a data�parallel For�
tran for Distributed Memory Multiprocessors	 Hpf provides an interest�
ing programming model but compilers are yet to come	 An early im�
plementation of a prototype hpf optimizing compiler is described	 Ex�
periments of PVM ��based generated code on a network of workstations
are analyzed and discussed	 It is shown that if such systems can provide
very good speedups at low cost� they cannot allow scalable performance
without speci�c communication hardware	 Other early implementations
of hpf compilers from academic and commercial groups are presented
and compared to our work	

Introduction

The most promising parallel machines seem to be the Distributed�Memory Mul�
tiprocessors �DMM�� such as the Intel�s Paragon or the Thinking Machine�s
CM�� They are scalable� 	exible� and o
er good price�performance ratio� How�
ever their e�cient programming using the message�passing paradigm is a com�
plex and error�prone task� which makes coding hard and expensive� To ease the
programmer�s burden� new languages have been designed to provide a uniform
name space to the user� The compiler must handle the communications� and the
machine can be used as a Shared�Memory Multicomputer�

High Performance Fortran �hpf� is a new standard to support data�parallel
programming for DMMs� The hpf forum� composed of vendors� academics and
users� specied hpf ��� in ����� It is intended as a de facto standard� supported by
many companies� The language is based on Fortran �� with additions to specify
the mapping of data onto the processors of a DMM �namely directives align and
distribute�� parallel computations with independent and data�parallel loops
�independent directive and forall instruction�� reductions� plus some other
extensions like new intrinsics to query about the system at run�time� The spec�
ication e
ort has restarted in January ���� to address problems left aside in
���� such as parallel I�O and irregular computations�

Section � gives a brief overview of the implementation and the optimizations
performed by our compiler� Section � describes results of runs of Jacobi iterations
on a network of workstations� and Section � analyzes what can be expected
from this kind of applications on such systems� Section � describes the current
status of other hpf compilers and compares the shortcomings of the di
erent
implementations with respect to our experiments�
� Published in proceedings of HPCN Europe��� �Munich� Germany�



� Compiler implementation

A prototype hpf compiler ��� has been developed within PIPS ���� �Scientic
Programs Interprocedural Parallelizer� at CRI� It is a ������ lines project that
generates SPMD �Single Program Multiple Data� distributed code� Fortran ��
and various hpf constructs such as independent loops� static mapping directives
and reductions are taken as input� The full semantics of the hpf mapping is sup�
ported� e�g� replicated dimensions and arbitrary cyclic distributions are handled�
From this input� a �PMD �� Programs� Multiple Data� see Figure �� Fortran ��
message passing code is generated� The rst program mainly deals with I�O to
be performed by the host processor� and the other is an SPMD code for the
nodes� The code uses a library of PVM ��based ��� run�time support functions�
Thus the compiler output is as portable as PVM� Two les are also generated
to initialize run�time data structures describing the distributed arrays�

The compilation is divided into � phases�
First� the input code is parsed and normalized �e�g� temporaries are inserted

to avoid indirections� � � �� the directives are analyzed and new declarations are
computed for the distributed arrays� These new declarations reduce when pos�
sible the amount of allocated memory on each node�

The second phase generates the run�time resolution code ��� for the host and
nodes as a double rewriting scheme on the abstract syntax tree of the program�
The owner computes rule is used to dene the processor that performs the com�
putations� Accesses to remote data are guarded by tests and communications if
necessary� This rewriting scheme has been formalized� which enabled us to prove
parts of the correctness of the compilation process� For instance� the balance of
communications can easily be proved by checking that each rewriting rule gen�
erates as many sends as receives with complementary guards and destination�

The third phase performs optimizations when necessary conditions are met�
An overlap analysis for multi�block�distributed arrays ��� is implemented� Align�
ment shifts at the template level are used to evaluate the overlap width in each
directions� Guards are generated for non contributing nodes� Messages are vec�
torized by the process� and moved outside of the loop body� Reductions are
compiled through calls to dedicated run�time functions�

� Experiments

Experiments have been performed on an unloaded Ethernet network� with up to
� Sparc Stations �� The application �see Figure � with hpf directives� computes
��� Jacobi iterations on a �d plate� The computation models heat transfers in
an homogeneous square plate when the temperature is controlled on the edges�
This application is fully parallel and few communications are needed� The kernel
comes from ����� with a few I�O and initializations added� The communication
pattern induced by the computation kernel� as well as the di
erent initializations
of some areas within the plate� are representative of stencil computations such
as wave propagation in geophysics� The arrays are aligned and block�block dis�
tributed to minimize the amount of data exchange� Figure � shows extracts from
the generated code for the machine nodes� It is an SPMD code parametrized by



the processor�s identity� Declarations are reduced to what is necessary on one
processor� and extended to store remote data in overlap areas� Run�time sup�
port functions are prexed by hpfc� The north vector initialization introduces
a guard so that only the appropriate processors execute the loop� The local loop
bounds are computed by each processor before the loop� The last part of the
code shows the rst send within the kernel of the computation� Each selected
processor rst computes to which neighbor it has to send the data� then packs
and sends them� The last line is the comment that introduces the corresponding
receive� All codes were compiled with all compilers� optimizations set on�

The measures are given for �� � and � processors� and for plate width of ��
to ����� points �up to ����� points for � processors�� They are based on the best
of at least � runs� Figure � shows the M	op�s achieved by the sequential runs
when the plate width is scaled up� From these measures� ���� M	op�s is taken
as the Sparc � performance on this application� It matches most experimental
points� and cache e
ects explain the other results� This reference is scaled to the
number of processors to provide a realistic peak performance for the network
of workstations used� Other measures are displayed as the percentage of this
peak performance reached by the best run� This metric �e� is called relative

realistic e�ciency� Real speedups were rejected because of the artefacts linked
to cache e
ects� A good speedup may only mean a bad sequential performance
for a given plate width� Moreover sequential experiments were stopped because
of memory limitations on the tested conguration� An absolute measure �e�g�
M	op�s� would not have clearly shown the relative e�ciency achieved� Note
that p�e �p processors� e�ciency e� is a speedup� but not a measured one�

Figures � and � show the experimental data using this metric and theoretical
curves derived from realistic assumptions in the next section� Large computations
lead to up to ������ e�ciency� The complementary part evaluates the loss due
to latencies and communications� These results are used to test the formulas
derived in the next section� These formulas are then used to precisely analyze
the performance which can be expected from such applications run on networks
of workstations when the parameters change�

� Analyses
The theoretical curves �doted lines on Figures � and �� are based on assumptions
about the network bandwidth �� � ��� KB�s through PVM�� the realistic peak
performance of one Sparc � �� � ���� M	op�s� and an o
set ��p� �� to model
the initialization times� It is assumed �a� that 	oats are � bytes long� �b� that
the application is block�block distributed� �c� that communications and compu�
tations do not overlap� and �d� that the communications are sequentialized on
the medium� If p is the number of processors� n the plate width and t the number
of iterations� then the total time complexity �t�n� p� to run the program is�

�t�n� p� �
�n�t

�p
�

��n�
p
p � ��t

�
� �p� � ���

The rst term is the computation time and the second the communication time�
If � � �

�
� the continuous regime relative realistic e�ciency is�



program jacobi

parameter �n�����

real tc�n�n�� ts�n�n�� north�n�

chpf� template t�n�n�

chpf� align tc�i�j�� ts�i�j� with t�i�j�

chpf� align north�i� with t�	�i�

chpf� processors p�
���

chpf� distribute t�block�block� onto p

chpf� independent�i�

do i�	�n

north�i� � 	����

enddo

���

do k�	�time

c kernel of the computation

chpf� independent�j�i�

do j�
�n	

do i�
�n	

ts�i�j� � ��
� �

� �tc�i	�j� � tc�i�	�j�

� � tc�i�j	� � tc�i�j�	��

enddo

enddo

���

Fig� �� Jacobi iterations kernel

program node

include �fpvm��h�

include �parameters�h�

���

real�� north�	�	
���

� ts�	�
���	�	
��� tc���
�	���	
��

call hpfc�init�node

���

if �mypos�	�	��eq�	� then

call hpfc�loop�bounds�i���i���	������

do i�� � i��� i��

north�i��� � 	����

enddo

endif

���

do k � 	� time

c p�	�
�
��� send tc�	�
���	� to �	�

if �mypos�
�	��ge�
� then

call hpfc�cmpneighbour�	�

call hpfc�pack�real��
�tc� ����

call hpfc�sndto�n

endif

���

c p�	�
�	��� receive tc�	�
���	
�� from ��	�

Fig� �� Node code extract

host

nodes

��
��

��

PPPPPP�
�

�
�

�

�

�

�

� �

��

JJ
JJ

Fig� �� Machine model

0.4

0.6

0.8

1

1.2

1.4

1.6

0 200 400 600 800 1000

M
flo

p/
s

matrix size n

measured data
1.45 Mflop/s

Fig� �� Sequential M�op�s

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

ef
fic

ie
nc

y

matrix size n

4 procs
theory

Fig� �� E�ciency with � processors

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

ef
fic

ie
nc

y

matrix size n

8 procs
theory

Fig� �� E�ciency with � processors



e��n� p� � lim
t��

�
�n�t

�p

�
�t�n� p�

�� �

�
� � �

�p�
p
p� ��

n

�
��

���

These functions match very well the experimental points as can be seen on
the Figures� They can be used to see what can be expected from such applica�
tions on networks of workstations� The interesting point is not to scale up the
problem size for better e�ciency� but to analyze what happens when the num�
ber of processors is scaled with a constant problem size� The e�ciency quickly
decreases� The minimal size to get e�ciency e with p processors can be com�
puted ���� An optimal number of processors is also easily derived ���� for which
�	� of the network bandwidth is used�

n �
�

�e

�� e

�
�p�
p
p� �� ��� p �

�
n

��

��

�

���

The � parameter is expected to belong to a large range of values as processor
and network performances change� For a network of RISC ���� on Ethernet�
� � ����� while for SS� � � �� For a realistic application with n � �����
� � ��� gives the optimal number of processors p � �� a ��� speedup and an
overloaded network� This clearly shows that a set of fast workstations linked
by Ethernet is denitely not an underused massively parallel machine� even for
an embarrassingly parallel program like Jacobi iterations� Scaling the problem
size to show better results is a fake� because the convergence speed and other
requirements of the algorithms ���� would dramatically slow down the resolution�

The rst problem is the low bandwidth of the network� especially when com�
pared to processor speed� The local networks should be upgraded as much as
the workstations to get good performance� The second problem is the complexity
in p of the functions since the communications are sequentialized on the medium�
The network is the bottleneck of the system�

� Related work

A lot of work about compilation and prototype compilers for DMMs was pub�
lished during the last few years� The Vienna Fortran Compiling System ���� and
Fortran D ���� are early developments of data�parallel languages on which hpf is
based� The Fortran D prototype allows only one dimension to be distributed� and
no I�O� Adaptor ��� is a pragmatic and e�cient public domain software which
implements some features of hpf and which was initially based on CM�Fortran�
Many vendors have announced commercial compilers� Applied Parallel Research�
Digital Equipment� Pacic�Sierra Research� the Portland group� � �These prod�
ucts are not yet available� or do not yet implement all hpf features� Moreover the
performances of these systems will depend on the implemented optimizations�
and many points are still an open research area� Performance gures for some
of these prototypes are available ��� ��� but comparisons are di�cult because the
applications and the machines are di
erent�

� This �gure is based on the peak performance of a RS ��� running at �	� MHz



Conclusion

Our optimizing compiler supports the full hpf mapping semantics and produces
portable code� Experiments with Jacobi iterations on a network of workstations
were performed with the compiler output� Very good e�ciencies were measured
for large problem sizes� These results have been analyzed and discussed� and it
has been shown that networks of fast workstations cannot provide good perfor�
mance without specic communication hardware�

Some hpf features� such as procedure interfaces and the forall instruction�
are missing� Moreover I�O are not yet e�ciently compiled� Future work will
include a better handling of I�O� experiments using more realistic programs and
real parallel machines �Paragon� CM�� Alpha farm� � ��� as well as implementation
of new optimization techniques ����

References

�	 C	 Ancourt� F	 Coelho� F	 Irigoin� and R	 Keryell	 A Linear Algebra Framework
for Static HPF Code Distribution	 In Workshop on Compilers for Parallel Com�

puters� Delft� Dec	 ����	 Also available as TR EMP A�����CRI	
�	 T	 Brandes	 Adaptor
 A compilation system for data parallel fortran programs	

Technical report� High Performance Computing Center� German National Research
Institute for Computer Science� Aug	 ����	

�	 T	 Brandes	 Results of Adaptor with the Purdue Set	 Internal Report AHR�
�� �� High Performance Computing Center� German National Research Institute
for Computer Science� Aug	 ����	

�	 D	 Callahan and K	 Kennedy	 Compiling programs for distributed�memory multi�
processors	 The Journal of Supercomputing� �
������� ����	

�	 F	 Coelho	 �Etude de la Compilation du high performance fortran	 Master�s thesis�
Universit�e Paris VI� Sept	 ����	 Rapport de DEA Syst�emes Informatiques	 TR
EMP E�����CRI	

	 H	 P	 F	 Forum	 High Performance Fortran Language Speci�cation	 Rice Univer�
sity� Houston� Texas� May ����	 Version ���	

�	 A	 Geist� A	 Beguelin� J	 Dongarra� J	 Weicheng� R	 Manchek� and V	 Sunderam	
PVM � User	s Guide and Reference Manual	 Oak Ridge National Laboratory� Oak
Ridge� Tennessee� May ����	

�	 H	 M	 Gerndt	 Automatic Parallelization for Distributed�Memory Multiprocessing

Systems	 PhD thesis� University of Vienna� ����	
�	 S	 Hiranandani� K	 Kennedy� and C	�W	 Tseng	 Evaluation of compiler optimiza�

tions for Fortran D on MIMD Distributed�Memory machines	 In ACM Interna�

tional Conference on Supercomputing� ����	
��	 F	 Irigoin� P	 Jouvelot� and R	 Triolet	 Semantical interprocedural parallelization


An overview of the PIPS project	 In ACM International Conference on Supercom�

puting� June ����	
��	 J	 Pal Singh� J	 L	 Hennessy� and A	 Gupta	 Scaling parallel programs for multi�

processors
 Methodology and examples	 Computer� pages ������ July ����	
��	 C	�W	 Tseng	 An Optimising Fortran D Compiler for MIMD Distributed Memory

Machines	 PhD thesis� Rice University� Houston� Texas� Jan	 ����	
��	 H	 Zima and B	 M	 Chapman	 Compiling for distributed�memory systems	 Pro�

ceedings of the IEEE� Feb	 ����	


