
Compilation of I/O Communications for HPF(in Frontiers'95 - also report A-264-CRI)Fabien Coelho (coelho@cri.ensmp.fr)Centre de Recherche en Informatique, �Ecole des mines de Paris,35, rue Saint-Honor�e, 77305 Fontainebleau cedex, Francevoice: (+33 1) 64 69 48 52, fax: (+33 1) 64 69 47 09AbstractThe MIMD Distributed Memory architecture is thechoice architecture for massively parallel machines.It insures scalability, but at the expense of program-ming ease. New languages such as HPF were intro-duced to solve this problem: the user advises the com-piler about data distribution and parallel computationsthrough directives. This paper focuses on the compi-lation of I/O communications for HPF. Data must bee�ciently collected to or updated from I/O nodes withvectorized messages, for any possible mapping. Theproblem is solved using standard polyhedron scanningtechniques. The code generation issues to handle thedi�erent cases are addressed. Then the method is im-proved and extended to parallel I/Os. This work sug-gests new HPF directives for parallel I/Os.IntroductionThe supercomputing community is more and moreinterested in massively parallel architectures. Onlythese machines will meet the performances requiredto solve problems such as the Grand Challenges. Thechoice architecture is the mimd Distributed Memoryarchitecture: a set of loosely coupled processors linkedby a network. Such a design insures scalability, at theexpense of programming ease. Since the programmeris not given a global name space, distributed data ad-dressing and low level communications are to be dealtwith explicitely. Non portable codes are produced atgreat expense. This problem must be solved to en-large the potential market for these machines. TheSVM (Shared Virtual Memory) approach [31, 8] putsthe burden on the hardware and operating system,which have to simulate a shared memory. The hpfForum chose to put it on the language and compilertechnology [22], following early academic and commer-cial experiments [25, 14, 38, 40, 11, 12]. The user isgiven a way to advise the compiler about data distri-butions and parallel computations, through a set ofdirectives added to Fortran 90. The Forum did notaddress parallel i/o since no concensus was found.However MPP machines have parallel i/o capabil-ities [10] that have to be used e�ciently to run realapplications [35, 20, 32]. For instance, the TMC'sCM5 or the Intel's Paragon have so called i/o nodesattached to their fast network. They are used in paral-lel by applications requiring high i/o throughput. For

networks of workstations, �les are usually centralizedon a server and accessed through NFS. Such a sys-tem can be seen as a parallel machine using PVM-likelibraries [24]. These systems are often programmedwith a host-node model. To allow nodes to access diskdata, one solution is to provide the machine with par-allel i/o which ensure i/o operation coherency whenmany nodes share the same data.Another solution is to rely on program analyses todetermine the data needed on each node, and to gener-ate the communications from one or several processeswhich directly perform the i/o. This paper presentsa technique for such an approach, which may be ex-tended to parallel i/os as shown in Section 3.2. Itfocuses on the compilation of i/o communications forhpf: data must be collected to or updated from one orseveral i/o nodes, for any possible mapping. An arraymay be mapped onto all processors (i.e. it is shared),or distributed, or even partially replicated onto some,depending on the mapping directives. Vectorized mes-sages must be generated between the nodes that havedata to input or output and the i/o nodes.program trianglereal A(30,30)chpf$ template T(68,30)chpf$ align A(i,j) with T(2*i,j)chpf$ processors P(4,2)chpf$ distribute T(block,cyclic(5)) onto Pread *, mdo 1 j=3, mdo 1 i=3, m-j+11 print *, A(i,j)end Figure 1: Example triangleLet us look at the example in Figure 1: a 2D array Ais mapped onto a 4�2 processor grid P. The i/o state-ment within the loop nest accesses the upper left of Ausing parameter m as shown in Figure 2. Several prob-lems must be solved to compile this program: �rst, theloop nest must be considered as a whole to generatee�cient messages. If the sole print instruction is con-sidered, and since it outputs one array element at a1

1 2 3 4

1

2

1

2

1

2 Figure 2: Accessed area for m = 27time, there is no message vectorization opportunity.Second, the accessed array elements are only knownat runtime (m dependence), so the method must beparametric. Third, the block distribution of the array�rst dimension is not regular, due to the stride 2 align-ment and the odd size of the block: the array blocksize on the processor grid �rst dimension oscillates be-tween 8 and 9 elements. Such issues must be managedby the solution. Finally, the generated code must dealwith the array local addressing scheme chosen on thenodes to reduce the allocated memory in an e�cientway, in order to avoid expensive address computationsat runtime.Section 1 gives the problem a mathematical formu-lation, and solves it using standard polyhedron scan-ning techniques. Section 2 describes the generatedcode to handle the di�erent cases: collect or update ofdistributed or shared arrays. Section 3 discusses pos-sible improvements and extensions of the technique toparallel i/o. This work suggests new hpf directivesto help compile parallel i/o communications.1 Problem expressionFrom an i/o statement, a distributed code must begenerated. The �rst step is to formalize the problemin a mathematical way and to show how this problemis solved. This section addresses this point. The nextstep will be to show how the mathematical resolutionis embodied in a generated program, that is how togenerate code from the mathematical solution. First,the basic analyses used are presented. Second, thecommunications required by an i/o statement are for-mulated in a linear framework. Third, the resolutionscheme is briey outlined.1.1 Analyses and assumptionsA precise description of the elements accessed byan i/o statement is needed. For each statement and

A(�1; �2)-MUST-READ-f�1 + �2 � 1 +m; 3 � �1; 3 � �2gFigure 3: Region for the i/o loop nest�01 = ((2�1 � 1) mod 17)� 2 + 1�02 = 5((�2 � 1)� 10) + (�2 � 1) mod 5 + 1Figure 4: Global A(�1; �2) to local A0(�01; �02)each array accessed within this statement, a set of lin-ear equalities and inequalities describing the region ofaccessed elements can be automatically derived fromthe program [36, 37, 6, 7]. A region is given an ac-tion and an approximation. The action is READ if theelements are read and WRITE if written. The approxi-mation is MUST if all the elements are actually accessedand MAY if only a subset of these elements will prob-ably be accessed. Figure 3 shows the region derivedfrom the i/o loop nest of the running example. The� variables range over the accessed region on each di-mension of the array. The linear inequalities select theupper left of the array, except borders.Moreover the point where to insert the communica-tions to achieve a possible message vectorization mustbe chosen. The running example may have been ex-pressed with the implied-do syntax, however such loopnests can be dealt with. A simple bottom-up algo-rithm starting from the i/o instructions and walkingthrough the abstract syntax tree of the program givesa possible level for the communications. For the run-ning example, the i/o compilation technique will beapplied to the whole loop nest.1.2 Linear formulationThe declarations, the hpf directives and the localaddressing scheme (Figure 4: each node allocates a9 � 15 array A0 to store its local part of distributedarray A, and the displayed formulae allow to switchfrom global to local addresses) are translated into lin-ear constraints, as suggested in [4]. Together withthe region, it gives a fully linear description of thecommunication problem, that is the enumeration ofthe elements to be sent and received. Figure 5 showsthe linear constraints derived for the running example.The � variables (resp. �,) describe the dimensions ofthe array (resp. the template, the processors). The �0variables are used for the array local declaration. The and � variables show the implicit linearity withinthe distribution: the �'s range within blocks, and the's over cycles. �1 is an auxiliary variable.The �rst three inequalities come from the decla-rations. The alignment constraints simply link thearray (�) to the template (�) variables, following thea�ne alignment subscript expressions. The distribu-tion constraints introduce the block variables (�), andthe cyclic distribution on the second dimension re-2

A(�1,�2) 1 � �1 � 30; 1 � �2 � 30T(�1,�2) 1 � �1 � 68; 1 � �2 � 30P(1, 2) 1 � 1 � 4; 1 � 2 � 2region � �1 + �2 � 1 +m;3 � �1; 3 � �2align �1 = 2�1; �2 = �2distribute 8><>: �1 = 17 1 + �1 � 16;0 � �1 � 16�2 = 102 + 5 2 + �2 � 4;0 � �2 � 4A0(�01,�02) (1 � �01 � 9; 1 � �02 � 152�01 = �1 � �1 + 2; 0 � �1 � 1�02 = 52 + �2 + 1Figure 5: Linear constraints for trianglequires a cycle variable () which counts the cycles overthe processors for a given template cell. Each dis-tributed dimension is described by an equation thatlinks the template and the processor dimensions to-gether with the added variables. The local address-ing scheme for the array is also translated into a setof linear constraints on �0 variables. It enables thedirect enumeration of the elements to exchange with-out expensive address computations at runtime. How-ever what is really needed is the ability to switchfrom global to local addresses, so any other address-ing scheme would �t into this technique. Moreoverother addressing schemes [33] may be translated intoa linear framework.1.3 ResolutionThe integer solutions to the previous set of equa-tions must be enumerated to generate the communi-cations. Any polyhedron scanning technique [19, 3, 5,39, 17, 27, 13, 30, 28] can be used. The key issue isthe control of the enumeration order to generate tightbounds and to reduce the control overhead. Here theword polyhedron denotes a set of constraints that de-�nes a subspace of integer points. Di�erent sets ofconstraints may de�ne the same subspace, and someallow loop nests to be generated to scan the points.A scannable polyhedron for a given list of variablesis such that its constraints are ordered in a trian-gular way which suits loop bound generation. Oneloop bound level must only depend on the outer lev-els, hence the triangular structure.The technique used in the implementation is algo-rithm row echelon [5]. It is a two stage algorithm thattakes as input a polyhedron and a list of variables,and generates a scannable polyhedron on these vari-ables, the others being considered as parameters. The�rst stage builds the scannable polyhedron throughsuccessive projections, and the second stage improvesthe quality of the solution by removing redundantconstraints while preserving the triangular structure.This algorithm generates a remainder polyhedron byseparating the constraints that do not involve thescanning variables.

C (m) 5 � mP ((1) 1 � 1 � 4;17 1 � 2m � 12(2) 1 � 2 � 2E 8>>>>>>>><>>>>>>>>: (2) 1 � 22 + 2 � 6(�2) 0 � 102 + 5 2 � �2 � 4;3 � �2(�1) 0 � 17 1 � 2�1 � 16;3 � �1 � 30;�2 �m+ �1 � 1(�01) 17 � 2�01 � 2�1 + 17 1 � 18(�02) �02 = 5 + �2 � 5 2 � 52Figure 6: Scannable polyhedra for triangleFor the running example, this algorithm is appliedtwice. The �rst step addresses the actual element enu-meration for a given processor. The processor identityis considered as a �xed parameter to enumerate the el-ements (E with 2, � and �0 variables). The secondstep is applied on the remainder polyhedron of the�rst. It addresses the processor enumeration (P with variables), to characterize the nodes that have a con-tribution in the i/o statement. The �nal remainderpolyhedron (C) is a condition to detect empty i/os.The resulting polyhedra are shown in Figure 6: eachline gives the variable and the linear constraints thatde�ne its lower and upper bounds. The algorithm in-sures that each variable has a lower and upper boundswhich only depend on the outer variables and the pa-rameters. Unnecessary variables (variables that arenot needed to generate the communications) are elim-inated when possible to simplify the loop nest andspeed up the execution. �, � and � variables are re-moved, but 2 cannot. The order of the variables toenumerate the elements is an important issue which isdiscussed in Section 3.1.2 Code generationIn the previous section, it has been shown how toformalize an hpf i/o statement into a linear frame-work, and how to solve the problem. The resolutionis based on standard polyhedron techniques. Froma set of equalities and inequalities, it allows to buildscannable polyhedra that suit loop bound generation.The method presented on the running example is verygeneral, and any hpf i/o statement may be formalizedand solved as described in Section 1. The only pointwhich is not yet addressed is the replication. In thissection, the polyhedra generated in the very generalcase (replication included) are presented. Then thedi�erent code generation issues are discussed. Firstthe macro code to handle the di�erent cases is out-lined. Second the particular problems linked to the ac-tual generation of the communications are addressed,that is how data is to be collected to or to updatedfrom the host.3

READ e�ect WRITE e�ect(print) (read)shared host: i/o host: i/obroadcastcollect if MAY collectdistributed host: i/o host: i/oupdateFigure 7: Generated code2.1 General case polyhedraIn the general case, replication must be handled.Since several processors share the same view of thedata, the same message will be sent on updates. Forcollects, only one processor will send the needed data.Thus four polyhedra are generated which de�ne con-straints on the variables between parentheses as de-scribed:condition C (parameters): to guard empty i/os.primary owner P1 ('s): one of the owner proces-sors for the array, which is arbitrarily chosen onthe replication dimensions. The hpf replicationsoccur regularily on speci�c dimensions of the pro-cessor grid. One processor is chosen by �xing the variable on these dimensions. This subset de-scribes the peculiar processors that will send dataon collects, if several are able to do it.other owners Pr (also 's): for a given primaryowner in P1, all the processors which share thesame view of the data. This is achieved by relax-ing the previously �xed dimensions. This poly-hedron synthetises the replication information. Ifthere is no replication, then Pr = I, thus thesimpler P notation used in Figure 6 for P1. Thispolyhedron is used to send the message to all theprocessors which wait for the same data.elements E (scanners): a processor identity () be-ing considered as a parameter, it allows to enu-merate the array elements of the i/o statementthat are on this processor. The scanning variablesare the variables introduced by the formalization,except the parameters and the 's.2.2 Generated codeThe target programming model is a host-node ar-chitecture. The host processor runs a speci�c codeand has to perform the i/o, and the nodes executethe computations. However the technique is not re-stricted to such a model, and the host processor couldbe one of the nodes with little adaptation. The gen-erated codes for the distributed and shared arrays areshown in Figure 7. For the shared array case, it isassumed that each processor (host included) has itsown copy of the array, so no communication is needed

HOST:if (� 2 C) { non-empty I/O{ get and unpack the messagesfor p1 2 P1receive from p1{ enumerate the received elementsfor e 2 E(p1)unpack A(global(e))SPMD node: { p is my id{ if non-empty I/O and I am in P1if (� 2 CV p 2 P1){ enumerate the elements to packfor e 2 E(p)pack A0(local(e))send to hostFigure 8: Distributed collectwhen the array is read. When it is written, the mes-sage is sent to all nodes: the accessed elements de�nedby the i/o statement are broadcasted.For the distributed array case, the whole array isallocated on the host, so the addressing on the host isthe same as in the original code. However this copy isnot kept coherent with the values on the nodes. It isused just as a temporary space to hold i/o data. Theonly issue is to move the needed values from the nodesto the host when the array is read, and to update thenodes from the host when the array is written. If theregion's approximation is MAY and the array is de�nedwithin the statement (distributed row and WRITE e�ectcolumn in Figure 7), a collect is performed prior to thei/o and the expected update. The rationale is thatsome of the described elements may not be de�ned bythe statement, while the update generates a full copyof that region. This added collect insures that theelements that are not de�ned by the i/o are updatedwith their original value.2.3 Scanning codeThe next issue is the generation of the collects andupdates, and how the polyhedra are used. For thehost-node model, two codes are generated: one forthe host, and one spmd code for the nodes, parame-terized by the processor identity. The two codes usethe processor polyhedron (P) di�erently. While thehost scans all the nodes described by the polyhedron,the nodes check if they belong to the described setto decide whether they have to communicate with thehost. On the host side, the polyhedron is used to enu-merate the remote nodes, while on the node side itenables an spmd code.The distributed collect code is shown in Figure 8.First, each part checks whether an empty i/o is go-ing to occur. If not, the host enumerates one of theowner of the data to be communicated through the P1polyhedron. The messages are packed and sent fromthe contributing nodes, and symetrically received andunpacked on the host. The local and global functions4

HOST:if (� 2 C) { non-empty I/O{ for each primary ownerfor p1 2 P1{ enumerate the elements to packfor e 2 E(p1)pack A(global(e)){ send the bu�er to all ownersfor p 2 Pr(p1)send to pSPMD node: { p is my id{ if non-empty I/O and I am an ownerif (� 2 CV p 2 P1 � Pr)receive from host{ enumerate the elements to unpackfor e 2 E(p)unpack A0(local(e))Figure 9: Distributed updateused model the addressing scheme for a given point ofthe polyhedron which represents an array element. Forthe running example, it is a mere projection since bothglobal (�) and local (�0) indices are directly generatedby the enumeration process (E). The distributed up-date code is shown in Figure 9. The replication poly-hedron Pr is used to send a copy of the same messageto all the processors that share the same view of thearray.The correctness of the scheme requires that as manymessages are sent as received, and that these mes-sages are packed and unpacked in the same order.The balance of messages comes from the complemen-tary conditions on the host and the nodes: the hostscans the very node set that is used by the nodes todecide whether to communicate or not. The pack-ing/unpacking synchronization is ensured since thesame scanning loop (E) is generated to enumerate therequired elements on both sides. The fact that for thedistributed update case the messages are packed forthe primary owner and unpacked on all the owners isnot a problem: the area to be enumerated is the same,so it cannot depend on the variables of the replica-tion dimensions. Thus the enumeration order is thesame.This technique is implemented in hpfc, a prototypehpf compiler [16, 15]. An excerpt of the automaticallygenerated code for the running example is shown inFigure 10. The integer division with a positive remain-der is used. The array declaration is statically reducedon the nodes. The spmd code is parameterized by theprocessor identity (1; 2) which is instanciated di�er-ently on each node. The inner loop nest to enumeratethe elements is the same in both codes, as needed toensure the packing/unpacking synchronization.3 ExtensionsThe previous sections address the compilation ofhpf i/o communications for a host-node model. From

// HOSTARRAY A(30,30)IF (m � 5) THENDO 1 = 1;min(12+2m17 ; 4)DO 2 = 1; 2CALL pvmfrecv(P(1; 2)...)DO 2 = 2� 22 ; 6� 22DO �2 = max(�4 + 102 + 5 2; 3);5 2 + 102DO �1 = max(17 1�152 ; 3);min(17 12 ; 30;��2 +m+ 1)DO �01 = 18�17 1+2�12 ; 18�17 1+2�12�02 = �2 � 5 2 + 5� 52CALL pvmfunpack(A(�1; �2)...)ENDDOsENDIF// SPMD node, (1; 2) is my id in PARRAY A0(9,15)IF (m � 5 AND 17 1 � 2m+ 12) THENCALL pvmfinitsend(...)DO 2 = 2� 22 ; 6� 22DO �2 = max(�4 + 102 + 5 2; 3);5 2 + 102DO �1 = max(17 1�152 ; 3);min(17 12 ; 30;��2 +m+ 1)DO �01 = 18�17 1+2�12 ; 18�17 1+2�12�02 = �2 � 5 2 + 5� 52CALL pvmfpack(A0(�01; �02)...)ENDDOsCALL pvmfsend(host, ...)ENDIFFigure 10: Collect host/SPMD node codesan i/o statement, it has been shown how to formal-ize and to solve the problem, then how to generatecode from this mathematical solution. In this sec-tion, possible improvements are discussed �rst, thenthe technique is extended to handle parallel i/o com-munications.3.1 ImprovementsThe implementation of the technique in hpfc al-ready includes many basic optimizations. Let us lookat the automatically generated code again. Non nec-essary variables (�; �; �) are removed from the originalsystem through exact integer projections when legal,to reduce the polyhedron dimension. The conditionchecked by the node to decide whether it has to com-municate is simpli�ed: for instance constraints comingfrom the declarations on 's do not need to be checked.Moreover the variables used to scan the accessed ele-ments are ordered so that the accesses are contiguousif possible in the memory, taking into account the rowmajor allocation scheme of Fortran. Thus they are or-dered by dimension �rst, then the cycle before the ar-ray variables: : :However the generated code may stillbe improved.5

21 3 4

1

2

1 2

P

PioFigure 11: 2 i/o processorsPio(io) 1 � io � 2P(1, 2) � 1 = 2 io � 1 + �io;0 � �io � 1Figure 12: Pio to PFirst, Hermite transformations could have beensystematically applied to minimize the polyhedrondimension, as suggested in [4]. The simpli�cationscheme used in the implementation may keep unnec-essary variables in some cases.Second, the generated code would bene�t frommany standard optimizations such as strength reduc-tion, invariant code motion, dag detection and con-stant propagation [1], which are performed by anyclassical compiler at no cost for hpfc. For instance, inFigure 10, a compiler may notice that �01 loop lowerand upper bounds are equal, that �02 computationmaybe moved outside of the �1 loop, or even that �01 and�02 computations are not necessary on the host.Third, improving the analyses used by the tech-nique would help enhance the generated code. For in-stance, the current implementation of the region anal-ysis only computes a polyhedron around the accessedelements. Thus, it fails to detect accesses with a stride,and useless elements may be transmitted. Equalitiesmay be added to the analysis to catch the underly-ing lattice which is lost in such cases. Another issueis to detect more MUST regions in general. Indeed, ifthe region approximation is MAY while all elements areaccessed, then unuseful communications are generatedwhen distributed arrays are de�ned.3.2 Parallel I/OThe technique was presented for a host/node ar-chitecture. It can be extended to parallel i/o. Thebasic idea of the method is to use standard polyhe-dron scanning techniques to generate vectorized mes-sages. A linear description of the problem is needed.The reciprocal would be that if given a linear descrip-tion of a parallel i/o problem, an e�cient vectorizedmessage passing code can be generated. So it is. Letus consider the running example again. Let us now

C (m) 5 � mPio � (io) 1 � io � 2;17 io �m � 16P ((1) 2 io � 1 � 1 � 2 io;17 1 � 2m � 12(2) 1 � 2 � 2E : : :Figure 13: Parallel i/o polyhedra// SPMD I/O node, io is my id in PioIF (m � 5 AND 17 io �m+ 16) THENDO 1 = 2 io � 1;min(12+2m17 ; 2 io)DO 2 = 1; 2// receive from P(1; 2) and unpack...ENDIF// SPMD node, (1; 2) is my id in P// io is my attached I/O nodeIF (m � 5 AND 17 1 � 2m+ 12) THEN// pack and send to Pio(io)...ENDIF Figure 14: Parallel i/o collectassume that instead of a host/node architecture, wehave 2 i/o processors which are regularily attachedto the processor grid as depicted in Figure 11. Thiskind of arrangement is representative of i/o capabil-ities of some real world machines. However, there isno need for i/o nodes to be physically mapped as de-picted. This regular mapping may only be a virtualone [18] which allows to attach groups of processors toi/o nodes.Figure 12 suggests a possible linear formulation ofthe link between the i/o nodes and their attached pro-cessors. io ranges over the i/o nodes. An auxiliarydummy variable (�io) is used to scan the correspond-ing processors. This description looks like the one pre-sented in Figure 5. The same scheme to enumerate theelements of interest (the contributing nodes, namelypolyhedron P) can be applied, with some external pa-rameters (io;m) to be instantiated at runtime on thedi�erent nodes: the algorithm to build the scannablepolyhedra is applied three times instead of two. Theadded level allows the i/o nodes (Pio) to scan theirprocessors (P), as the processors are allowed to scantheir elements (E).The resulting scannable polyhedra are shown inFigure 13. They allow to generate the 2 spmd codes ofFigure 14. One is for the i/o nodes, and the other forthe computation nodes. The inner loops are skipped,since they are the same as in Figure 10. The i/o nodesscan their attached nodes to collect the needed mes-sages, and the computation nodes communicate withtheir attached i/o node instead of the host. To com-6

chpf$ processors P(4,2)chpf$ io_processors Pio(2)chpf$ io_distribute P(block,*) onto PioFigure 15: Suggested syntax for parallel i/oplete the code generation, a new addressing schemeshould be chosen on the i/o nodes, and a parallel �lesystem should be used to respect the distributed datacoherency.This compilation scheme suggests new hpf direc-tives to help compile parallel i/o statements. Indeed,what is needed is a linear link between the i/o nodesand the processing nodes. Moreover every computingnode must be given a corresponding i/o node. Theeasiest way to achieve both linearity and total func-tion is to rely on a distribution-like declaration, thatis to distribute processors onto i/o nodes. A possiblesyntax is shown in Figure 15. It advises the compilerabout the distribution of the i/os onto the i/o nodesof the machine for data-parallel i/o. It is in the spiritof the hint approach that was investigated by the hpfForum [21], that is to give some information to thecompiler. However the record oriented �le organiza-tion de�ned by the Fortran standard, which may alsobe mapped onto i/o nodes, is not directly addressedby this work, but such mappings may also be trans-lated into linear constraints and compiled [4].3.3 Related workOther teams investigate the distributed memorymulticomputers i/o issues, both on the language andruntime support point of view. Most works focus onthe development of runtime libraries to handle paral-lel i/o in a convenient way for users. The suggestedsolutions focus more on general issues than on speci�ctechniques to handle the required communications e�-ciently. They are designed for the spmd programmingmodel, and the allowed data distribution semantics isreduced with respect to the extended data mappingavailable in hpf.In [9], a two-phase access strategy is advocated tohandle parallel i/o e�ciently. One phase performs thei/o, and the other redistribute the data as expectedby the application. The technique presented in thispaper would help the compilation of the communica-tions involved by such a redistribution (between thei/o nodes and the computation nodes). This whateverthe hpf mapping, as part of a dataparallel programto be compiled to a mimd architecture.In [23], the PETSc/Chameleon package is presented.It emphasizes portability and parallel i/o abstraction.[18] suggests to decluster explicitely the �les, thusde�ning logical partitions to be dealt with separately.Their approach is investigated in the context of theVesta �le system. An interface is provided to helpthe user to perform parallel i/o. In [34], the pioussystem is described. It is in the spirit of the client-server paradigm, and a database-like protocol insuresthe coherency of the concurrent accesses.

Moreover polyhedron scanning techniques haveproven to be e�cient and realistic methods for compil-ers to deal with general code transformations [39, 27]as well as distributed code generation [2, 29, 4]. In [2],a dataow analysis is used to determine the communi-cation sets. These sets are presented in a linear frame-work, which includes more parametrization and over-laps. The data mapping onto the processors is a su-perset of the hpf mapping. The local memory alloca-tion scheme is very simplistic (no address translations)and cyclic distributions are handled through processorvirtualization. [29] presents similar techniques in thecontext of the Pandore project, for commutative loopnests. The mapping semantics is a subset of the hpfmapping semantics. The Pandore local memory allo-cation is based on a page-like technique, managed bythe compiler [30]. Both teh local addressing schemeand the cyclic distributions are integrated in [4] tocompile hpf. Moreover equalities are used to improvethe scanning loop nests, and temporary allocation is-sues are discussed.ConclusionExperiments were performed on a network of work-stations and on a CM5 with the PVM3-based gener-ated code for the host-node model. The performancesare as good as what could have been expected on suchsystems. The control overhead to enumerate the re-quired elements is not too high, especially for simpledistributions. For network of workstations, the hostshould be the �le server, otherwise the data must betransfered twice on the network.We have presented a technique based on polyhe-dron scanning methods to compile parallel i/o com-munications for distributed memory multicomputers.This technique for the host-node architecture is im-plemented within hpfc, a prototype hpf compiler de-veloped at CRI. This compiler is part of the PIPSautomatic parallelizer [26]. From Fortran 77 code andstatic hpf mapping directives, it generates portablePVM 3-based code. It implements several optimiza-tions such as message vectorization and overlap analy-sis on top of a runtime resolution compilation. Futurework includes experiments, the implementation of ad-vanced optimizations [4] and tests on real world codes.AcknowledgementsI am thankfull to Corinne Ancourt, B�eatriceCreusillet, Fran�cois Irigoin, Pierre Jouvelot,K�elita Le N�enaon, Alexis Platonoff and XavierRedon for their comments and suggestions.References[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Prin-ciples, Techniques, and Tools. Addison-Wesley PublishingCompany, 1986.[2] S. P. Amarasinghe and M. S. Lam. Communication Op-timization and Code Generation for Distributed MemoryMachines. In ACM SIGPLAN International Conferenceon Programming Language Design and Implementation,June 1993.7

[3] C. Ancourt. G�en�eration automatique de codes de trans-fert pour multiprocesseurs �a m�emoires locales. PhD thesis,Universit�e Paris VI, Mar. 1991.[4] C. Ancourt, F. Coelho, F. Irigoin, and R. Keryell. A Lin-ear Algebra Framework for Static HPF Code Distribution.In Workshop on Compilers for Parallel Computers, Delft,Dec. 1993. Also available as TR EMP A/250/CRI.[5] C. Ancourt and F. Irigoin. Scanning polyhedra with DOloops. In Symposium on Principles and Practice of ParallelProgramming, Apr. 1991.[6] B. Apvrille. Calcul de r�egions de tableaux exactes. In Ren-contres Francophones du Parall�elisme, pages 65{68, June1994.[7] B. Apvrille-Creusillet. R�egions exactes et privatisation detableaux. Master's thesis, Universit�e Paris VI, Sept. 1994.[8] F. Bodin, L. Kervella, and T. Priol. Fortran-S: A FortranInterface for Shared Virtual Memory Architectures. In Su-percomputing, Nov. 1993.[9] R. Bordawekar, J. M. del Rosario, and A. Choudhary. De-sign and Evaluation of Primitives for Parallel I/O. In Su-percomputing, pages 452{461, Nov. 1993.[10] R. R. Bordawekar, A. N. Choudhary, and J. M. del Rosario.An experimental performance evaluation of touchstonedelta concurrent �le system. In ACM International Con-ference on Supercomputing, pages 367{376, July 1993.[11] T. Brandes. E�cient data parallel programming withoutexplicit message passing for distributed memory multipro-cessors. Internal Report AHR-92 4, High PerformanceComputing Center, German National Research Institutefor Computer Science, Sept. 1992.[12] T. Brandes. Evaluation of high performance fortran onsome real applications. In High-Performance Computingand Networking, Springer-Verlag LNCS 797, pages 417{422, Apr. 1994.[13] Z. Chamski. Fast and e�cient generation of loop bounds.Research Report 2095, INRIA, Oct. 1993.[14] M. Chen and J. Cowie. Prototyping Fortran-90 compilersfor Massively Parallel Machines. ACM SIGPLAN Notices,pages 94{105, June 1992.[15] F. Coelho. �Etude de la Compilation du high perfor-mance fortran. Master's thesis, Universit�e Paris VI, Sept.1993. Rapport de DEA Syst�emes Informatiques. TR EMPE/178/CRI.[16] F. Coelho. Experiments with HPF compilation for a net-work of workstations. In High-Performance Computingand Networking, Springer-Verlag LNCS 797, pages 423{428, Apr. 1994. Also available as TR EMP A/257/CRI.[17] J.-F. Collard, P. Feautrier, and T. Risset. Constructionof DO loops from Systems of A�ne Constraints. LIPRR93 15, ENS-Lyon, May 1993.[18] P. F. Corbett, D. G. Feitelson, J.-P. Prost, and S. John-son Baylor. Parallel Access to Files in the Vesta File Sys-tem. In Supercomputing, pages 472{481, Nov. 1993.[19] P. Feautrier. Parametric integer programming. RAIRORecherche Op�erationnelle, 22:243{268, Sept. 1988.[20] S. A. Fineberg. Implementing the NHT-1 ApplicationI/O Benchmark. ACM SIGARCH Computer ArchitectureNewsletter, 21(5):23{30, Dec. 1993.[21] H. P. F. Forum. High Performance Fortran Journal ofDevelopment. Rice University, Houston, Texas, May 1993.

[22] H. P. F. Forum. High Performance Fortran Language Spec-i�cation. Rice University, Houston, Texas, May 1993. Ver-sion 1.0.[23] N. Galbreath, W. Gropp, and D. Levine. Application-Driven Parallel I/O. In Supercomputing, pages 462{471,Nov. 1993.[24] A. Geist, A. Beguelin, J. Dongarra, J. Weicheng,R. Manchek, and V. Sunderam. PVM 3 User's Guide andReference Manual. Oak Ridge National Laboratory, OakRidge, Tennessee, May 1993.[25] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compil-ing Fortran D for MIMD Distributed-Memory machines.Communications of the ACM, 35(8):66{80, Aug. 1992.[26] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical in-terprocedural parallelization: An overview of the PIPSproject. In ACM International Conference on Supercom-puting, June 1991.[27] W. Kelly and W. Pugh. A framework for unifying re-ordering transformations. UMIACS-TR-93 134, Institutefor Advanced Computer Studies, University of Maryland,Apr. 1993.[28] M. Le Fur. Scanning Parametrized Polyhedron usingFourier-Motzkin Elimination. Publication interne 858,IRISA, Sept. 1994.[29] M. Le Fur, J.-L. Pazat, and F. Andr�e. Commutative loopnests distribution. In Workshop on Compilers for ParallelComputers, Delft, pages 345{350, Dec. 1993. extendedversion in IRISA TR 757, Sept. 93.[30] H. Le Verge, V. Van Dongen, and D. K. Wilde. Loop nestsynthesis unsing the polyhedral library. Publication interne830, IRISA, May 1994.[31] K. Li. Shared Virtual Memory on Loosely Coupled Multi-processors. PhD thesis, Yale University, Sept. 1986.[32] Z. Lin and S. Zhou. Parallelizing I/O Intensive Appli-cations for a Workstation Cluster: a Case Study. ACMSIGARCH Computer Architecture Newsletter, 21(5):15{22, Dec. 1993.[33] Y. Mah�eo and J.-L. Pazat. Distributed array managementfor HPF compilers. Publication interne 787, IRISA, Dec.1993.[34] S. A. Moyer and V. S. Sunderam. PIOUS: A ScalableParallel I/O System for Distributed Computing Environ-ments. In Scalable High Performance Computing Confer-ence, pages 71{78, 1994.[35] B. K. Pasquale andG. C. Polyzos. A Static Analysis of I/OCharacteristics of Scienti�c Applications in a ProductionWorkload. In Supercomputing, pages 388{397, Nov. 1993.[36] R. Triolet. Contribution �a la parall�elisation automatiquede programmes Fortran comportant des appels de proc�e-dures. PhD thesis, Universit�e Paris VI, 1984.[37] R. Triolet, P. Feautrier, and F. Irigoin. Direct paralleliza-tion of call statements. In Proceedings of the ACM Sym-posium on Compiler Construction, 1986.[38] C.-W. Tseng. An Optimising Fortran D Compiler forMIMD Distributed Memory Machines. PhD thesis, RiceUniversity, Houston, Texas, Jan. 1993.[39] M. J. Wolf and M. S. Lam. A loop transformation theoryand an algorithm to maximize parallelism. IEEE Transac-tions on Parallel and Distributed Systems, 2(4):452{471,Oct. 1991.[40] H. Zima and B. M. Chapman. Compiling for distributed-memory systems. Proceedings of the IEEE, Feb. 1993.8

