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Abstract

The MIMD Distributed Memory architecture is the
chotce architecture for massively parallel machines.
It insures scalability, but at the expense of program-
ming ecase. New languages such as HPF were intro-
duced to solve this problem: the user advises the com-
piler about data distribution and parallel computations
through directives. This paper focuses on the compi-
lation of I/O communications for HPF. Dala must be
efficiently collected 1o or updated from I/0 nodes with
vectorized messages, for any possible mapping. The
problem 1s solved using standard polyhedron scanning
techniques. The code generation issues to handle the
different cases are addressed. Then the method is im-
proved and extended to parallel I/Os. This work sug-
gests new HPF directives for parallel 1/0s.

Introduction

The supercomputing community is more and more
interested in massively parallel architectures. Only
these machines will meet the performances required
to solve problems such as the Grand Challenges. The
choice architecture is the MiMD Distributed Memory
architecture: a set of loosely coupled processors linked
by a network. Such a design insures scalability, at the
expense of programming ease. Since the programmer
is not given a global name space, distributed data ad-
dressing and low level communications are to be dealt
with explicitely. Non portable codes are produced at
great expense. This problem must be solved to en-
large the potential market for these machines. The
SVM (Shared Virtual Memory) approach [31, 8] puts
the burden on the hardware and operating system,
which have to simulate a shared memory. The HPF
Forum chose to put it on the language and compiler
technology [22], following early academic and commer-
cial experiments [25, 14, 38, 40, 11, 12]. The user is
given a way to advise the compiler about data distri-
butions and parallel computations, through a set of
directives added to Fortran 90. The Forum did not
address parallel 1/0 since no concensus was found.

However MPP machines have parallel 1/0 capabil-
ities [10] that have to be used efficiently to run real
applications [35, 20, 32]. For instance, the TMC’s
CMS5 or the Intel’s Paragon have so called 1/0 nodes
attached to their fast network. They are used in paral-
lel by applications requiring high 1/0 throughput. For

networks of workstations, files are usually centralized
on a server and accessed through NFS. Such a sys-
tem can be seen as a parallel machine using PVM-like
libraries [24]. These systems are often programmed
with a host-node model. To allow nodes to access disk
data, one solution is to provide the machine with par-
allel 1/0 which ensure 1/0 operation coherency when
many nodes share the same data.

Another solution is to rely on program analyses to
determine the data needed on each node, and to gener-
ate the communications from one or several processes
which directly perform the 1/0. This paper presents
a technique for such an approach, which may be ex-
tended to parallel 1/0s as shown in Section 3.2. Tt
focuses on the compilation of 1/0 communications for
HPF: data must be collected to or updated from one or
several 1/0 nodes, for any possible mapping. An array
may be mapped onto all processors (i.e. it is shared),
or distributed, or even partially replicated onto some,
depending on the mapping directives. Vectorized mes-
sages must be generated between the nodes that have
data to input or output and the 1/0 nodes.

program triangle
real A(30,30)

chpf$ template T(68,30)

chpf$ align A(i,j) with T(2*i,j)

chpt$ processors P(4,2)

chpf$ distribute T(block,cyclic(5)) onto P
read *, m

do 1 j=3, m
do 1 i=3, m-j+1
1 print *, A(i,j)
end

Figure 1: Example triangle

Let us look at the example in Figure 1: a 2D array A
is mapped onto a 4 x 2 processor grid P. The 1/0 state-
ment within the loop nest accesses the upper left of A
using parameter m as shown in Figure 2. Several prob-
lems must be solved to compile this program: first, the
loop nest must be considered as a whole to generate
efficient messages. If the sole print instruction is con-
sidered, and since it outputs one array element at a



Figure 2: Accessed area for m = 27

time, there is no message vectorization opportunity.
Second, the accessed array elements are only known
at runtime (m dependence), so the method must be
parametric. Third, the block distribution of the array
first dimension is not regular, due to the stride 2 align-
ment and the odd size of the block: the array block
size on the processor grid first dimension oscillates be-
tween 8 and 9 elements. Such issues must be managed
by the solution. Finally, the generated code must deal
with the array local addressing scheme chosen on the
nodes to reduce the allocated memory in an efficient
way, in order to avoid expensive address computations
at runtime.

Section 1 gives the problem a mathematical formu-
lation, and solves 1t using standard polyhedron scan-
ning techniques. Section 2 describes the generated
code to handle the different cases: collect or update of
distributed or shared arrays. Section 3 discusses pos-
sible improvements and extensions of the technique to
parallel 1/0. This work suggests new HPF directives
to help compile parallel 1/0 communications.

1 Problem expression

From an 1/0 statement, a distributed code must be
generated. The first step is to formalize the problem
in a mathematical way and to show how this problem
is solved. This section addresses this point. The next
step will be to show how the mathematical resolution
is embodied in a generated program, that is how to
generate code from the mathematical solution. First,
the basic analyses used are presented. Second, the
communications required by an 1/0 statement are for-
mulated in a linear framework. Third, the resolution
scheme 1s briefly outlined.

1.1 Analyses and assumptions

A precise description of the elements accessed by
an 1/0 statement is needed. For each statement and
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Figure 3: Region for the 1/0 loop nest
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Figure 4: Global A(ay, a9) to local &' (af, o)

each array accessed within this statement, a set of lin-
ear equalities and inequalities describing the region of
accessed elements can be automatically derived from
the program [36, 37, 6, 7]. A region is given an ac-
tion and an approximation. The action is READ if the
elements are read and WRITE if written. The approxi-
mation is MUST if all the elements are actually accessed
and MAY if only a subset of these elements will prob-
ably be accessed. Figure 3 shows the region derived
from the 1/0 loop nest of the running example. The
« variables range over the accessed region on each di-
mension of the array. The linear inequalities select the
upper left of the array, except borders.

Moreover the point where to insert the communica-
tions to achieve a possible message vectorization must
be chosen. The running example may have been ex-
pressed with the implied-do syntax, however such loop
nests can be dealt with. A simple bottom-up algo-
rithm starting from the 1/0 instructions and walking
through the abstract syntax tree of the program gives
a possible level for the communications. For the run-
ning example, the 1/0 compilation technique will be
applied to the whole loop nest.

1.2 Linear formulation

The declarations, the HPF directives and the local
addressing scheme (Figure 4: each node allocates a
9 x 15 array A’ to store its local part of distributed
array A, and the displayed formulae allow to switch
from global to local addresses) are translated into lin-
ear constraints, as suggested in [4]. Together with
the region, 1t gives a fully linear description of the
communication problem, that is the enumeration of
the elements to be sent and received. Figure 5 shows
the linear constraints derived for the running example.
The « variables (resp. 8, 1) describe the dimensions of
the array (resp. the template, the processors). The o
variables are used for the array local declaration. The
v and é variables show the implicit linearity within
the distribution: the é’s range within blocks, and the
7’s over cycles. 71 is an auxiliary variable.

The first three inequalities come from the decla-
rations. The alignment constraints simply link the
array (o) to the template () variables, following the
affine alignment subscript expressions. The distribu-
tion constraints introduce the block variables (§), and
the cyclic distribution on the second dimension re-
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Figure 5: Linear constraints for triangle

quires a cycle variable () which counts the cycles over
the processors for a given template cell. Each dis-
tributed dimension is described by an equation that
links the template and the processor dimensions to-
gether with the added variables. The local address-
ing scheme for the array is also translated into a set
of linear constraints on o’ variables. It enables the
direct enumeration of the elements to exchange with-
out expensive address computations at runtime. How-
ever what is really needed is the ability to switch
from global to local addresses, so any other address-
ing scheme would fit into this technique. Moreover
other addressing schemes [33] may be translated into
a linear framework.

1.3 Resolution

The integer solutions to the previous set of equa-
tions must be enumerated to generate the communi-
cations. Any polyhedron scanning technique [19, 3, 5,
39, 17, 27, 13, 30, 28] can be used. The key issue is
the control of the enumeration order to generate tight
bounds and to reduce the control overhead. Here the
word polyhedron denotes a set of constraints that de-
fines a subspace of integer points. Different sets of
constraints may define the same subspace, and some
allow loop nests to be generated to scan the points.
A scannable polyhedron for a given list of variables
is such that its constraints are ordered in a trian-
gular way which suits loop bound generation. One
loop bound level must only depend on the outer lev-
els, hence the triangular structure.

The technique used in the implementation is algo-
rithm row_echelon [5]. Tt is a two stage algorithm that
takes as input a polyhedron and a list of variables,
and generates a scannable polyhedron on these vari-
ables, the others being considered as parameters. The
first stage builds the scannable polyhedron through
successive projections, and the second stage improves
the quality of the solution by removing redundant
constraints while preserving the triangular structure.
This algorithm generates a remainder polyhedron by
separating the constraints that do not involve the
scanning variables.
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Figure 6: Scannable polyhedra for triangle

For the running example, this algorithm is applied
twice. The first step addresses the actual element enu-
meration for a given processor. The processor identity
is considered as a fixed parameter to enumerate the el-
ements (€ with 72, o and «' variables). The second
step 1s applied on the remainder polyhedron of the
first. Tt addresses the processor enumeration (P with
t variables), to characterize the nodes that have a con-
tribution in the 1/0 statement. The final remainder
polyhedron (C) is a condition to detect empty 1/0s.
The resulting polyhedra are shown in Figure 6: each
line gives the variable and the linear constraints that
define its lower and upper bounds. The algorithm in-
sures that each variable has a lower and upper bounds
which only depend on the outer variables and the pa-
rameters. Unnecessary variables (variables that are
not needed to generate the communications) are elim-
inated when possible to simplify the loop nest and
speed up the execution. #, é and n variables are re-
moved, but v, cannot. The order of the variables to
enumerate the elements is an important issue which is
discussed in Section 3.1.

2 Code generation

In the previous section, it has been shown how to
formalize an HPF 1/0 statement into a linear frame-
work, and how to solve the problem. The resolution
is based on standard polyhedron techniques. From
a set of equalities and inequalities, it allows to build
scannable polyhedra that suit loop bound generation.
The method presented on the running example is very
general, and any HPF 1/0 statement may be formalized
and solved as described in Section 1. The only point
which is not yet addressed is the replication. In this
section, the polyhedra generated in the very general
case (replication included) are presented. Then the
different code generation issues are discussed. First
the macro code to handle the different cases i1s out-
lined. Second the particular problems linked to the ac-
tual generation of the communications are addressed,
that 1s how data is to be collected to or to updated
from the host.



READ effect | WRITE effect
(print) (read)
shared host: 1/0 host: 1/0
broadcast
collect if MAY collect
distributed | host: 1/0 host: 1/0
update

Figure 7: Generated code

2.1 General case polyhedra

In the general case, replication must be handled.
Since several processors share the same view of the
data, the same message will be sent on updates. For
collects, only one processor will send the needed data.
Thus four polyhedra are generated which define con-
straints on the variables between parentheses as de-
scribed:

condition C (parameters): to guard empty 1/0s.

primary owner P; (¢’s): one of the owner proces-
sors for the array, which is arbitrarily chosen on
the replication dimensions. The HPF replications
occur regularily on specific dimensions of the pro-
cessor grid. One processor is chosen by fixing the
1 variable on these dimensions. This subset de-
scribes the peculiar processors that will send data
on collects, if several are able to do 1t.

other owners P, (also ¢’s): for a given primary
owner in Py, all the processors which share the
same view of the data. This is achieved by relax-
ing the previously fixed dimensions. This poly-
hedron synthetises the replication information. If
there is no replication, then P, = I, thus the
simpler P notation used in Figure 6 for P;. This
polyhedron is used to send the message to all the
processors which wait for the same data.

elements £ (scanners): a processor identity (¢) be-
ing considered as a parameter, 1t allows to enu-
merate the array elements of the 1/0 statement
that are on this processor. The scanning variables
are the variables introduced by the formalization,
except the parameters and the ’s.

2.2 Generated code

The target programming model is a host-node ar-
chitecture. The host processor runs a specific code
and has to perform the 1/0, and the nodes execute
the computations. However the technique is not re-
stricted to such a model, and the host processor could
be one of the nodes with little adaptation. The gen-
erated codes for the distributed and shared arrays are
shown in Figure 7. For the shared array case, it is
assumed that each processor (host included) has its
own copy of the array, so no communication is needed

HOST:
if (6 € C) — non-empty 1/0
— get and unpack the messages
for p1 € Py
receive from p;
— enumerate the received elements
for e € £(p1)
unpack A(global(e))

SPMD node: - p is my id
—if non-emply I/O and I am in P,
if (ceCApePy)
— enumerate the elements to pack
for e € E(p)
pack A’(local(e))
send to host

Figure 8: Distributed collect

when the array is read. When it 1s written, the mes-
sage 1s sent to all nodes: the accessed elements defined
by the 1/0 statement are broadcasted.

For the distributed array case, the whole array 1is
allocated on the host, so the addressing on the host is
the same as in the original code. However this copy is
not kept coherent with the values on the nodes. It is
used just as a temporary space to hold 1/0 data. The
only issue is to move the needed values from the nodes
to the host when the array is read, and to update the
nodes from the host when the array i1s written. If the
region’s approximation is MAY and the array is defined
within the statement (distributed row and WRITE effect
column in Figure 7), a collect is performed prior to the
1/0 and the expected update. The rationale is that
some of the described elements may not be defined by
the statement, while the update generates a full copy
of that region. This added collect insures that the
elements that are not defined by the 1/0 are updated
with their original value.

2.3 Scanning code

The next issue is the generation of the collects and
updates, and how the polyhedra are used. For the
host-node model, two codes are generated: one for
the host, and one sPMD code for the nodes, parame-
terized by the processor identity. The two codes use
the processor polyhedron (P) differently. While the
host scans all the nodes described by the polyhedron,
the nodes check if they belong to the described set
to decide whether they have to communicate with the
host. On the host side, the polyhedron is used to enu-
merate the remote nodes, while on the node side it
enables an SPMD code.

The distributed collect code is shown in Figure 8.
First, each part checks whether an empty 1/0 is go-
ing to occur. If not, the host enumerates one of the
owner of the data to be communicated through the P
polyhedron. The messages are packed and sent from
the contributing nodes, and symetrically received and
unpacked on the host. The local and global functions



HOST:
if (6 € C) — non-empty 1/0
— for each primary owner
for p1 € P4
— enumerate the elements to pack
for e € £(p1)
pack A(global(e))
— send the buffer to all owners
for p € Pr(p1)
send to p

SPMD node: - p is my id
—if non-emply I/O and I am an owner
lf(O'EC/\pEP1 X Pr)
receive trom host
— enumerate the elements to unpack
for e € £(p)
unpack A’(local(e))

Figure 9: Distributed update

used model the addressing scheme for a given point of
the polyhedron which represents an array element. For
the running example, it 1s a mere projection since both
global («) and local (') indices are directly generated
by the enumeration process (£). The distributed up-
date code is shown in Figure 9. The replication poly-
hedron P, is used to send a copy of the same message
to all the processors that share the same view of the
array.

The correctness of the scheme requires that as many
messages are sent as received, and that these mes-
sages are packed and unpacked in the same order.
The balance of messages comes from the complemen-
tary conditions on the host and the nodes: the host
scans the very node set that is used by the nodes to
decide whether to communicate or not. The pack-
ing/unpacking synchronization is ensured since the
same scanning loop (£) is generated to enumerate the
required elements on both sides. The fact that for the
distributed update case the messages are packed for
the primary owner and unpacked on all the owners is
not a problem: the area to be enumerated is the same,
so 1t cannot depend on the ¢ variables of the replica-
tion dimensions. Thus the enumeration order is the
same.

This technique is implemented in hpfc, a prototype
HPF compiler [16, 15]. An excerpt of the automatically
generated code for the running example is shown in
Figure 10. The integer division with a positive remain-
der is used. The array declaration is statically reduced
on the nodes. The sPMD code is parameterized by the
processor identity (11, ¢2) which is instanciated differ-
ently on each node. The inner loop nest to enumerate
the elements is the same in both codes, as needed to
ensure the packing/unpacking synchronization.

3 Extensions
The previous sections address the compilation of
HPF 1/0 communications for a host-node model. From

// HOST
ARRAY A(30,30)
IF (m >5) THEN
DO ¢1 = 1, min(2E22 4)
DO ¢y = 1,2
CALL pvmfrecv(P(¢1,12)...)
DO v = 2= 11’2 6— 11’2
DO ay = max( 4—1— 1072 + 532, 3),
51po + 1072
DO aq = max(lwlT_lf’, 3),
min(”;p1 , 30, —az +m +1)
DO CY1 _ 18— 17'¢)1+2o¢1 18— 17'¢)1+2o¢1
61/2 —Cl/2—52/)2 -1—5—5’72
CALL pvmfunpack(A(ai, a2)...)
ENDDOs
ENDIF

// SPMD node, (¥1,%2) is my id in P
ARRAY A'(9,15)
IF (m >5 AND 17¢); < 2m + 12) THEN
CALL pvmfinitsend(...)
DO v = 2— 11’2 6— 11’2
DO ay = max( 4 + 1072 + 592, 3),
512 4+ 1072
DO a; = max(lwlT_lf’,Z%),
min(%, 30,—az+m+1)
DO 01 _ 18— 17'¢)1+2o¢1’ 18— 17'¢)1+2o¢1
ab =az — 5 +5 — 572
CALL pvmfpack(A'(af,ab)...)
ENDDOs
CALL pvmfsend(host, ...)
ENDIF

Figure 10: Collect host/SPMD node codes

an 1/0 statement, it has been shown how to formal-
ize and to solve the problem, then how to generate
code from this mathematical solution. In this sec-
tion, possible improvements are discussed first, then
the technique is extended to handle parallel 1/0 com-
munications.

3.1 Improvements

The implementation of the technique in hpfc al-
ready includes many basic optimizations. Let us look
at the automatically generated code again. Non nec-
essary variables (8,7, ) are removed from the original
system through exact integer projections when legal,
to reduce the polyhedron dimension. The condition
checked by the node to decide whether it has to com-
municate is simplified: for instance constraints coming
from the declarations on #’s do not need to be checked.
Moreover the variables used to scan the accessed ele-
ments are ordered so that the accesses are contiguous
if possible in the memory, taking into account the row
major allocation scheme of Fortran. Thus they are or-
dered by dimension first, then the cycle before the ar-
ray variables. .. However the generated code may still
be improved.



Figure 11: 2 1/0 processors
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Figure 12: Pio to P

First, Hermite transformations could have been
systematically applied to minimize the polyhedron
dimension, as suggested in [4]. The simplification
scheme used in the implementation may keep unnec-
essary variables in some cases.

Second, the generated code would benefit from
many standard optimizations such as strength reduc-
tion, invariant code motion, dag detection and con-
stant propagation [1], which are performed by any
classical compiler at no cost for hpfc. For instance, in
Figure 10, a compiler may notice that «) loop lower
and upper bounds are equal, that o, computation may
be moved outside of the «y loop, or even that o} and
oy computations are not necessary on the host.

Third, improving the analyses used by the tech-
nique would help enhance the generated code. For in-
stance, the current implementation of the region anal-
ysis only computes a polyhedron around the accessed
elements. Thus, it fails to detect accesses with a stride,
and useless elements may be transmitted. Equalities
may be added to the analysis to catch the underly-
ing lattice which is lost in such cases. Another issue
is to detect more MUST regions in general. Indeed, if
the region approximation is MAY while all elements are
accessed, then unuseful communications are generated
when distributed arrays are defined.

3.2 Parallel I/0O

The technique was presented for a host/node ar-
chitecture. Tt can be extended to parallel 1/0. The
basic idea of the method is to use standard polyhe-
dron scanning techniques to generate vectorized mes-
sages. A linear description of the problem is needed.
The reciprocal would be that if given a linear descrip-
tion of a parallel 1/0 problem, an efficient vectorized
message passing code can be generated. So it is. Let
us consider the running example again. Let us now

(

P, ¢ 17di0 — m < 16
(
(

Ya) 1 <p <2

Figure 13: Parallel 1/0 polyhedra

// SPMD I/0 node, i, is my id in Pio
IF (m >5 AND 1T¢io < m + 16) THEN
DO ¢1 = 2930 — 1, min( 257, 2450
DO o = 1,2
// receive from P(%¢1,%2) and unpack

ENDIF

// SPMD node, (¥1,%2) is my id in P

// i, is my attached I/0 node

IF (m >5 AND 17T¢; < 2m + 12) THEN
// pack and send to Pio(%i,)

ENDIF

Figure 14: Parallel 1/0 collect

assume that instead of a host/node architecture, we
have 2 1/0 processors which are regularily attached
to the processor grid as depicted in Figure 11. This
kind of arrangement is representative of 1/0 capabil-
ities of some real world machines. However, there is
no need for 1/0 nodes to be physically mapped as de-
picted. This regular mapping may only be a virtual
one [18] which allows to attach groups of processors to
1/0 nodes.

Figure 12 suggests a possible linear formulation of
the link between the 1/0 nodes and their attached pro-
cessors. i, ranges over the 1/0 nodes. An auxiliary
dummy variable (40) is used to scan the correspond-
ing processors. This description looks like the one pre-
sented in Figure 5. The same scheme to enumerate the
elements of interest (the contributing nodes, namely
polyhedron P) can be applied, with some external pa-
rameters (¢, m) to be instantiated at runtime on the
different nodes: the algorithm to build the scannable
polyhedra is applied three times instead of two. The
added level allows the 1/0 nodes (Pj,) to scan their
processors (P), as the processors are allowed to scan
their elements (£).

The resulting scannable polyhedra are shown in
Figure 13. They allow to generate the 2 SPMD codes of
Figure 14. One is for the 1/0 nodes, and the other for
the computation nodes. The inner loops are skipped,
since they are the same as in Figure 10. The 1/0 nodes
scan their attached nodes to collect the needed mes-
sages, and the computation nodes communicate with
their attached 1/0 node instead of the host. To com-



chpf$ processors P(4,2)
chpf$ io_processors Pio(2)
chpf$ io_distribute P(block,*) onto Pio

Figure 15: Suggested syntax for parallel 1/0

plete the code generation, a new addressing scheme
should be chosen on the 1/0 nodes, and a parallel file
system should be used to respect the distributed data
coherency.

This compilation scheme suggests new HPF direc-
tives to help compile parallel 1/0 statements. Indeed,
what is needed is a linear link between the 1/0 nodes
and the processing nodes. Moreover every computing
node must be given a corresponding 1/0 node. The
easiest way to achieve both linearity and total func-
tion is to rely on a distribution-like declaration, that
is to distribute processors onto 1/0 nodes. A possible
syntax is shown in Figure 15. It advises the compiler
about the distribution of the 1/0s onto the 1/0 nodes
of the machine for data-parallel 1/0. Tt is in the spirit
of the hint approach that was investigated by the HPF
Forum [21], that is to give some information to the
compiler. However the record oriented file organiza-
tion defined by the Fortran standard, which may also
be mapped onto 1/0 nodes, is not directly addressed
by this work, but such mappings may also be trans-
lated into linear constraints and compiled [4].

3.3 Related work

Other teams investigate the distributed memory
multicomputers 1/0 issues, both on the language and
runtime support point of view. Most works focus on
the development of runtime libraries to handle paral-
lel 1/0 in a convenient way for users. The suggested
solutions focus more on general issues than on specific
techniques to handle the required communications effi-
ciently. They are designed for the SPMD programming
model, and the allowed data distribution semantics is
reduced with respect to the extended data mapping
available in HPF.

In [9], a two-phase access strategy is advocated to
handle parallel 1/0 efficiently. One phase performs the
1/0, and the other redistribute the data as expected
by the application. The technique presented in this
paper would help the compilation of the communica-
tions involved by such a redistribution (between the
1/0 nodes and the computation nodes). This whatever
the HPF mapping, as part of a dataparallel program
to be compiled to a MIMD architecture.

In [23], the PETSc/Chameleon package is presented.
It emphasizes portability and parallel 1/0 abstraction.
[18] suggests to decluster explicitely the files, thus
defining logical partitions to be dealt with separately.
Their approach is investigated in the context of the
Vesta file system. An interface is provided to help
the user to perform parallel 1/0. In [34], the PIOUS
system 1s described. It is in the spirit of the client-
server paradigm, and a database-like protocol insures
the coherency of the concurrent accesses.

Moreover polyhedron scanning techniques have
proven to be efficient and realistic methods for compil-
ers to deal with general code transformations [39, 27]
as well as distributed code generation [2, 29, 4]. In [2],
a dataflow analysis is used to determine the communi-
cation sets. These sets are presented in a linear frame-
work, which includes more parametrization and over-
laps. The data mapping onto the processors is a su-
perset of the HPF mapping. The local memory alloca-
tion scheme is very simplistic (no address translations)
and cyclic distributions are handled through processor
virtualization. [29] presents similar techniques in the
context of the Pandore project, for commutative loop
nests. The mapping semantics is a subset of the HPF
mapping semantics. The Pandore local memory allo-
cation is based on a page-like technique, managed by
the compiler [30]. Both teh local addressing scheme
and the cyclic distributions are integrated in [4] to
compile HPF. Moreover equalities are used to improve
the scanning loop nests, and temporary allocation is-
sues are discussed.

Conclusion

Experiments were performed on a network of work-
stations and on a CMb5 with the PVM3-based gener-
ated code for the host-node model. The performances
are as good as what could have been expected on such
systems. The control overhead to enumerate the re-
quired elements is not too high, especially for simple
distributions. For network of workstations, the host
should be the file server, otherwise the data must be
transfered twice on the network.

We have presented a technique based on polyhe-
dron scanning methods to compile parallel 1/0 com-
munications for distributed memory multicomputers.
This technique for the host-node architecture is im-
plemented within hpfc, a prototype HPF compiler de-
veloped at CRI. This compiler is part of the PIPS
automatic parallelizer [26]. From Fortran 77 code and
static HPF mapping directives, 1t generates portable
PVM 3-based code. It 1mp1ements several optimiza-
tions such as message vectorization and overlap analy-
sis on top of a runtime resolution compilation. Future
work includes experiments, the implementation of ad-
vanced optimizations [4] and tests on real world codes.
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