Activity Counter:
a New Optimization for SIMD Control Flow (extended

version )
Ronan Keryell* Nicolas Paris *
Centre de Recherche en Informatique Hyperparallel Technologies
Ecole des Mines de Paris Ecole Polytechnique X-POLE
77305 FONTAINEBLEAU Cedex 91128 PALAISEAU Cedex
FRANCE FRANCE

11 January 1993

Abstract

SIMD computers and collection-oriented languages, like C*| are designed to per-
form the same computation on each data item or on just a subset of the data.
Subsets of processors or data items are implemented via an activity bit and a stack
of activity bits when subsets of subsets are supported. We present an implemen-
tation of activity stacks based on counters. At a given stack depth n, the number
of memory bits required is log, n, whereas previous implementations require n
bits. The local controller is of equivalent complexity in both cases. This algorithm
1s useful for sSIMD machines and for compilers of collection-oriented languages on
MIMD computers.

1 Introduction

The data-parallel programming model is seen as an acceptable solution to efficiently
program many parallel applications on massively parallel machines. In this model, a
single program is applied on different instances of data, spread across different proces-
sors, to gain use of parallelism on SIMD or MIMD machines.

Data-parallel collection-oriented languages like MP1L [Mas91], C* [Thi90] or PompC
[Par92] and siMD' computers like the mp-1 [Bla90], the cwm-2 [Bla90] or pomP
[HKMP91] have in common that they all deal with a set of objects and apply the
same operation on each object of the set:

e in an SIMD computer there is a unique instruction flow and thus each processor
performs the same operation on different data;

*Major parts of this work were made when the authors were with the Laboratoire d’Informatique
de I'Ecole Normale Supérieure, 45 Rue d’ULm, 75005 PARIS, FRANCE. This research and the pomp
project were partially funded by the French Research and Technology Ministry, Thomson Digital
Image, the cNRS (National Center of Scientific Research), the LIENS, the Ecole Normale Supérieure,
the PRC-ANM.

!Single Instruction stream, Multiple Data streams.



e in a collection-oriented language, the data parallel semantics allow parallel oper-
ations on a set of data in a locked-step SIMD way: operations are applied on each
element of data.

The goal of these parallel approaches is to obtain maximal performance on straight
regular data parallel problems. However, it is at least as important to deal correctly
with data parallel control flow.

As a matter of fact, a lot of numerical problems, like solving partial differential
equation problems, often need to apply different at the boundary conditions which are
different from the ones used on the interior points. The computation of many classical
mathematical functions, such as the absolute value and many general algorithms also
need such a control flow on parallel data. This is the extension in the space domain of
the sequential if...then...else construct.

There seems to be an intrinsic contradiction in the commonly used siMD control flow
model and the need for a local instruction stream, i.e. a bounded dissynchronization
in the synchronous siMb model, to deal with parallel control flow.

Section 2 presents an abstract of the PoMPC language in order to display examples
of data parallel control flow. Section 3 discusses background to generally related work
and section 4 presents our new algorithm with some examples applied to PompC
parallel control flow operators. Section 5 compares the activity stack with our method
according to time and space complexity, for sSiMD and MIMD, hardware and software.
Section 6 presents a general view of the implementation of the method used in our
POMP project and our POMPC compiler. Section 7 presents related work.

2 POMPC: a collection-oriented data parallel language

Although it is not the object of this article, we briefly present a data parallel language
to exhibit the problems related to parallel control flow in some languages with SiMD
semantics.

PowmrC is a superset of the C language similar to the new version of C* and gathers
some advantages of C* [Thi90], mpL [Mas91] and murTiC [Wav9l]. It is:

¢ a data parallel language since it can express computations on parallel data, with
element by element interactions, such as additions of vectors or matrices;

¢ a collection-oriented language since each variable belongs to an equivalence class,
a collection in our language, which defines its size, its geometry and its activity,
a better suited term we introduce for the previous “mask” or “context” (detailed

below).

Thus, PoMpPC has a new keyword collection to declare a new collection. The
collection name is a new parallel type that can be combined with the usual C type. In
fact, PoMmPC adopts a microscopic point of view of parallelism, in contrast to languages
such as FORTRAN 90.

In Figure 1, we define a rectangular collection an_array with 100 x 200 elements
and a and b two double precision variables. a_vector is a collection with a size and
a number of dimensions unknown a compile time and v is a parallel double precision
variable belonging to this collection.



collection an_array[100,200] ;
collection a_vector; /* The size is defined dynamically elsewhere in the program.
Y/
double an_array a,b; /* a and b are parallel variables of the collection
an_array. */
double a_vector v; /* The parallel size of wv is unknown at compile time. */

void div_by_0()
{
int i = 0;
double s = 0;

where (a '= 0)
where (a > 0)

{

b = 1/a;
i++;
where (v > 0)
s +<- v;

b += s;

}

elsewhere
b = -1/a;

elsewhere
b = 0;

Figure 1: Example in PompC with where/elsewheres.

Belonging to the same collection allows variables to interact element by element. All
other interactions are explicit and called communications, but this is not our interest
here.

As in most parallel languages, PoMPC contains parallel control flow operators, like
the classical where/elsewhere to select some variable elements. As in AcTus [Per79]
or C*, they can be nested. Fach operator has an action only on the variables in the
same collection as specified by the collection of the condition in the operator.

The function div_by_0 of Figure 1 assigns 0 to an element of b when the corre-
sponding element in a is 0, the absolute inverse of a when the element of a is negative
and the inverse of a plus the sum of all the positive elements of v when a is positive.

The scalar operation i++ is always executed since it is scalar code and does not
belong to the an_array collection controlled by any previous wheres. The scalar re-
duction s +<- vis always executed with the selected elements, the active elements, by
the where (v > 0). This where is not affected by the previous wheres since they do
not involve the a_vector collection.

We can consider this microscopic point of view of parallelism as if there were as
many virtual SIMD machines in the computer as there are collections in the program.



Each virtual machine is naturally independent and has its own activity, its own number
of virtual processors, its own geometry: it is the virtualization. An important point is
that it is possible to have calls to functions in a conditional parallel block and these
functions may have conditional parallel blocks depending on other collections. So it is
neither always possible nor easy to have interprocedural analysis. Also such side effects
may be hidden in libraries because of the mechanism of separated compilation in the
C language, when source code is not available.
Therefore, activity resolution is needed at run time.

3 Classical approaches to parallel control flow

We use the same model as FLyNN [Fly66] and view an SIMD program as a sequen-
tial frame, running on a physical or virtual sequential machine, containing parallel
instructions for a physical or virtual sSIMD machine.

Conceptually, the parallel control flow can be seen as a jump into the future to
an address which will be reached by the global instruction stream. Indeed, since a
processing element (PE) cannot influence this stream, it has to wait until the stream
gives it the expected instruction. In comparison with a sequential computer, it appears
to be a space-time duality:

e an “sSIMD branch” is a time delay since a PE must wait for the moving of the
global instruction stream until the expected instruction is reached;

e a sequential branch (or on the PE of an MIMD? computer) is into the space since it
can change the value of its program counter and instantaneously jump to another
point of the program.

We need a global program counter with a value broadcasted to all the PEs which
can execute or not an instruction if they have reached the branch destination or not
[HLJ*91]. But behind this conceptual point of view there are some problems:

e programming with recursion is impossible since the recursion level is lost through
a flat address space;

e a hardware realization requires the addition of a special bus to broadcast the
global current address.

So this global address would have to be replaced by a global time, whose computation
at compile time is equivalent to executing the program and is not usually possible.

Hopefully, if we restrict our interest to structured parallel programming then parallel
control flow is applied on block structures: parallel gotos are not allowed.

3.1 Activity mask

The following properties hold for parallel instruction blocks:

e an instruction block has a beginning and an end;

2Multiple Instruction stream, Multiple Data stream.



e an instruction block is executed (active) or not (inactive), waiting for an active
block, according to a local condition;

e each block is strictly nested into another block or is the main block of the program;

e by construction, a block inherits the activity of its ancestors, i.e. its surrounding
blocks. Each idle block on a given collection has all the included blocks which
are idle on this collection.

Thus it is useless to have a global program counter or a global time to tackle
recursion. Instead the activity is stored in a local bit representing the current activity.
This method is used in most stMmD [SBM62] and vector computers when parallel control
flow exists [MU84].

If the programming model needs parallel control flow imbrications (nests of parallel
control flow operators), the activity mask is pushed on a stack to recall the history.

3.2 Memory write control

Since each computation result can be seen as moving this result in memory, a variation
of the previous method is to transform the program in such a way that a local condition
controls the writing of the result, thus simulating local execution control.

This method has many drawbacks since:

e results cannot stay in registers for optimization, memory bandwidth is wasted;

¢ executed instructions may still have side effects like a divide by 0 exception for
division.

This method is used in computers such as CrRAY [Rus78] or GF11 [BDWS5], along with
an activity mask. Another useful but different application domain of this method is
speculative execution for RISC and VLIW processors.

3.3 Local addressing

Another variation is to use local memory addressing to simulate the memory write.
When a PE must be locally turned off, results are written in a dump memory cell
instead of the destination cell. It is still slower than the previous method, but the
necessary hardware is simpler.

3.4 Conditional instructions

Another simple method is to implement conditional instructions in the pes like those
in the Gr11 microcode. Unfortunately, compilers have difficulties dealing with them
when these instructions are used to build macrocode only, as in the BLITZEN [BDR87].

4 Activity counter

The activity bit stack is only used to determine the level of inactivity. Figure 2 shows
an example of a nest of 6 parallel control flow statements, where the first three ones



o*

1%

Inactive

fo—

Activity=0

where
nesting
Active

Figure 2: Example of a mask stack.

Table 1: Semantics of the push and pop operations on the activity stack.

Operation Behavior Precondition Action
push(cond) s—s+1 fots+1 fo = fo
a; — cond (fo=s+1)A(cond =0) fo—s
(fo=s+1)A(cond=1) fo—s+1
pop if*(s>1),s —s—1 fo#s+1 fo — fo
return(a,) fo=s+1 fo—s+1

“Note that if the program is correct, this condition is always true.

have true conditions (shown as “1” in the figure) and the condition is false after the
third one (represented by “07).

Before the first false condition, the stack only contains 1s, indicating that the pPE
is executing the code. The exit of a conditional block does not change this activity;
the PE remains active. These 1s do not have any intrinsic significance in the stack.

When a PE reaches a local false condition, it becomes inactive for all its included
blocks. The current activity is the logical and of the history of activity, ¢.e. all the
activity bits on the stack. Once a 0 bit is pushed on the stack, all the following bits
on the stack no longer have meaning (represented with a “*” in Figure 2.) since the
activity is 0 (inactive).

4.1 Factorization

The only useful information in this stack is the number of imbrications of parallel
conditional blocks after the first idle block, which indicates when a PE can resume
execution. Therefore, it seems a waste of hardware to use a stack where a plain counter
should be enough.

Let push(cond) and pop be the two operations controlling the stack (a;);en. We can
analyze their functionality according to fy, the rank of the first 0 on the stack, and s
the current size of the stack, according to Figure 2. The activity of a PE is defined by
A= NZ; a;. The pr is active if A = 1 and idle if A = 0.

By definition, PEs are all active at initialization time, so s = 1, ay = 1 (active),
fo = s+ 1 when there is no 0 in any stack element. A pop on an empty stack returns
an activity true.

Table 1 gives an operational semantics of the activity stack. A PE is active if and
only if fy = s+ 1, when there is no 0 in the stack. In fact, it is more interesting to do



Table 2: Semantic of the push and pop operations on the activity counter.

Operation Precondition Action
push(cond) c#0 c—c+1
(c=0)A(cond =0) c—1
(c=0)A(cond=1) c¢—0
pop c#0 c—c—1
c=20 c—10

Table 3: Implementation of the where/elsewhere with an activity counter.

Operation Precondition Action

where(cond) c#0 (idle) c—c+1
c=0 (active) ¢ — =cond

elsewhere ¢ <1 (activatable) ¢ — —c
cL1 c—c

End of the where | ¢ # 0 (idle) c—c—1

/elsewhere c=0 (active) c—0

the variable exchange ¢ = s+ 1 — f; because only a comparison to 0 is necessary. This
form is easier to implement in hardware and often even in software [Ker89, Ker92].
The basic manipulations on ¢ are the same as on f5: increment or decrement, load or
store, as shown on Table 2.

The push(cond) when ¢ = 0 can be simplified to ¢ < =cond. A more detailed proof

of the equivalence between an activity stack and an activity counter for parallel control
flow can be found in [BL92].

4.2 Application to a data parallel language

Now we can use this mechanism to implement classical parallel control flow operators
such as those in the PoMpC language.

4.2.1 where

The basic operator is the where/elsewhere pair which is found in most data parallel
languages from FORTRAN 90 to C*.

The where is equivalent to the push operator but we have to translate the
elsewhere. A PE is active in an elsewhere if and only if the PE was inactive due
to the last where, i.e. the inactivity level ¢ = 1. The value 1 can be seen here as a
special value that codes for an “activatable” state for the where or elsewhere block.

An implementation is presented in Table 3.

4.2.2 whilesomewhere

A parallel extension of the C language while is the whilesomewhere construct which
iterates a parallel loop until all parallel conditions are false. The continue and break



Table 4: Implementation of the whilesomewhere with an activity counter.

Operation Precondition Action
whilesomewhere(cond) | ¢ # 0 (idle) c—c+2
c=0 (active) ¢ — 2 x —cond
Loop beginning all cond =0 ~+ Loop exit
continue c=0 (active) c—1°
break c=0 (active) c—2°
Loop end c=1 (re-activatable) ¢ — 0, ~ Loop begin
c#1 ~ Loop beginning
Loop ezxit c<1 (activatable) ¢ —0
c%1 (idle) c—c—2

“Relative value to the current whilesomewhere block. See Section 4.2.2.

are also extended to inactivate a PE until the next iteration or until the whilesomewhere
exit, respectively.
A PE can be in one of the following states:

1. inactive before the entry in the whilesomewhere block, thus it will remain inactive

in this block;
2. active at the whilesomewhere entry;

3. inactive at the whilesomewhere entry because the local condition is false; the PE
will remain inactive until the whilesomewhere exits;

4. inactive in the whilesomewhere until the whilesomewhere exits because of a
break.

5. inactive in the whilesomewhere until the next iteration after executing a
continue;

States 3 and 4 are not different once the break is executed; the PE remains idle
until the whilesomewhere exits. They can be implemented in the same way.

In comparison with the where/elsewhere, only point 5 requires additional mecha-
nisms. It is implemented by reserving a protected value 1 in the counter by a double
incrementation in the first row of the implementation presented on table 4.

The value ¢ = 1 is used to implement state 5 (the continue) and the value ¢ = 2
is used for the states 3 and 4 (line 2 and row 4 of Table 4.

In a real implementation on an SIMD machine, there is a scalar loop around Loop
begin/Loop end exiting on all cond = 0 condition. On an MIMD machine, the loop is
repeated on each PE.

A more complex but common case is when the continue or the break are enclosed
in a where/elsewhere. In this case, ¢ «— 1 or ¢ — 2 could be thought of as an
where/elsewhere exit instead of a break or a continue. It is the reason why the value
marked with “%” must be relative to the current whilesomewhere block, i.e. augmented



Table 5: Implementation of the switchwhere with an activity counter.

Operation Precondition Action
switchwhere(value) | ¢ #0 (idle) c—c+2
c=0 (active) c—1
case constant : (¢ =1) A (value = constant) ¢ — 0
break c=0 (active) c—2°
default : c=1 (activatable) c+—0
switchwhere closing | ¢ <1 c—0
cL1 c—c—2

“Must be relative to the current switchwhere block, if the break is included in one or more
where/elsewhere.

by the number of where/elsewhere imbrications between the whilesomewhere block
and the continue or the break.

The dowhere/whilesomewhere version is derived from Table 4 as the transforma-
tion of a while into a do/while in the C language. Similarly, the implementation of
a data parallel for, a forwhere, is derived from the whilesomewhere according to the
translation of for to while in C.

4.2.3 switchwhere

The compilation of a switchwhere, the parallel extension of the language C switch,
also has several states. A PE can be:

1. inactive before the switchwhere;

2. active in a case (after matching a value) or in a default;

3. inactive in a case, waiting for a matching value;

4. inactive in the switchwhere because of a break, until the switchwhere exit.

The break is similar to the whilesomewhere one. An example of state coding we
use is ¢ = 1 for the state 3 and ¢ = 2 for the state 4, as shown in Table 5.
4.2.4 Parallel return

The parallel return allows a parallel function to return a parallel value and can be
used in parallel control flow in the example of Figure 3.

In this case, we want the PEs that execute the parallel return to become idle until
the exit of the current function. It is very similar to the break in a whilesomewhere
or a switchwhere and has the following states:

1. a PE is active at the function entry;
2. a PE is inactive at the function entry;

3. a PE is inactive until the end of the function because it has executed a return.



collection a_coll double fabs(a_coll double x)

{

where (x > 0)

return x;
elsewhere
return -x;

Figure 3: Example of a generic parallel absolute value function in PompC.

Table 6: Implementation of the parallel return with an activity counter.

Operation Precondition Action

Function entry | ¢#0  (idle) c¢—c+1
return c=0 (active) c¢«—c+1°
Function closing | ¢ #0  (idle) ¢—c—1

“Must be relative to the current function block, if the returnis included in some parallel conditional

blocks.

In order to constrain the visibility of the parallel return of the function, a value
¢ = 1 is reserved in the counter, as shown in Table 6.

5 Activity counters versus activity stacks

In order to develop choice arguments, we have to analyze the time and space complexity
of the activity counter method and activity stack method, both for siMmD and MIMD
computers.

5.1 On an SIMD machine

The counter method needs a counter with log, ¢ bits per PE if at most ¢ levels of parallel
conditional blocks are imbricated. If each PE has an L-bit operator, a PE needs [log; |
cycles of duration ¢ to do an activity counter operation.

The activity stack needs only 1-bit manipulation on each PE and takes a time ¢, but
needs a stack pointer to manage the stack. Since the execution is siMD, all the stacks
are synchronous and the stack pointer can be:

e centralized on the scalar processor which broadcasts its value to the PEs;
e distributed with local pointers which evolve synchronously.

In the first case, it takes a time T on the scalar processor and the time is negligible
on the PEs. In the second case, a time t[log; ¢] is needed to control the stack pointer
on each PE. The hardware complexity is ¢ for a stack of 1 bit elements in each case,
plus [log; ¢] bits for the global stack pointer in the first case and N [log; ¢| bits for
the local stack pointers in the second case, for a N-PE computer.

10



Table 7: Complexity of the activity counter and activity stack methods.

Parallel Computing complexity Hardware #
conditioning scalar parallel complexity broadcast
Stack (global pointer) | T t Ne+ [log, c] 1
Stack (local pointers) € t(1+ [log; c]) | N(c+ [log,¢]) 0
Activity counters € t[log; | Nlog, c] 0

The complexity of the three previous methods are summarized up in Table 7.

If the computer has only fine grain PEs, typically L = 1 or 4 bits, it is more
interesting to subcontract the computation to the scalar processor with a global stack
pointer. Indeed, the scalar processor is often larger and more powerful, so the stack
pointer computation only uses few cycles, and even the broadcast is often shorter than
the t[log; c] required to deal with a local stack pointer or activity counter by L-bit
slices. Moreover, 1-bit PEs have the advantage that they easily access memory with
1-bit. This method is used on computers such as the cm-2 [Thi87] or the Mmp-1 [Bla90].

The activity stack with a local stack pointer is well suited for small PEs, when a
broadcast is too expensive and a local indirection is available. But the local indirection
in memory must be fast enough to compensate for the lack of fast broadcast. Unfortu-
nately, a fine grain PE rarely has a large enough adder on the address bus to keep with
a fast memory indirection, and more generally a sufficient data address bus throughput
compared with the data bus throughput, since there often is a common address data
bus which is time-multiplexed between all the PEs of a chip.

The activity counter algorithm is particularly interesting for coarse grain SIMD
machines. These computers often have short cycle time and the local memory access
is slow in comparison to the PE cycle time. A large data bus to memory is not adapted
to deal with 1-bit accesses in memory required by the activity stack, so the activity
counter clearly avoids wasting memory bandwidth. The drastic reduction in storage
size allows a counter hardware implementation on the PE that minimizes latency.

The activity counter could have been applied efficiently in the 1LLIAC 1v [BBKT68],
Grl11 [BDWS5], opsira [AB86] and more recently the cm-5 [Thi91] or the mp-2.

If we were designing a new SIMD computer, we would implement the activity counter
in hardware instead of emulating it in software. However, the method is also useful in
software and can improve compilers for existing architectures.

5.2 On an MIMD machine

The complexity of our method for an MIMD machine is the same as in table 7 except
that since there is no scalar processor, it is not interesting to have a global activity
stack pointer and thus only local pointers or activity counters are necessary.

As for the siMD computers, the same conclusions arise according to the size of the
PEs. Activity counters can avoid the 1-bit stack management, specially ineflicient on
the coarse grain PEs which are in most MIMD computers. Besides, the activity counter
on each PE reduces to O(logc¢) the hardware complexity to store the activity.

But unlike SIMD computers, it is not worth implementing the activity counter in
hardware since local conditional jumps are used in fine to efficiently emulate the activity

11



Figure 4: PE node synoptic in the POMP computer.

corresponding to the counter value. Thus, it would need incessant exchanges between
a PE, its counter and its memory.

6 Implementation

In the pOMP project, we have studied a hardware implementation for the POMP machine
and a compiler for the PoMPC language which uses activity counters if they exist or
emulates them if not.

6.1 Hardware application

In the poMP siMD computer [HKMP91, Ker92], off-the-shelf RISC PEs are used. Since
they are coarse grain processors (Motorola Mc88100) the activity counter is valuable.

It was not possible to implement such a counter inside the processor, so it was done
in a companion circuit made with a FPGA (named HyperCom in figure 4) which also
has other functions that allow the machine to run in an sSIMD mode (communications,
broadcast, exception control,...).

The activity counter is implemented with a 32-bit counter, allowing up to 2°? nested
parallel conditional blocks and a comparator to 0,1 and 2 to speed up whilesomewhere
and switchwhere. The control of the instruction execution in the PE is performed by
the FPGA which controls the ready signal (CRO:CR1) of the instruction bus of the PE
through a fast PAL that does not slow down the pipelined processor bus.

The parallel conditional execution is supervised by the 8-bit HyperCom instruction
added to the 32-bit basis instruction of the PE. These instructions are produced by

12



the scalar processor, another Mc88100 with a vLIW coupling. Each PE can access its
activity counter for complex parallel control flow and for virtualization goals through
the data bus. DMA operation between the counter and the memory is done simply but
optimally by initializing a read on the PE at the memory address plus a major offset
indicating to the HyperCom it has to spy the bus.

6.2 Compilation

A compiler of PompC for the cM-2, the MP-1 and UNIX workstations for simulation
has been written and generates C*, MPL and C programs respectively.

The compiler for the cM-2 is not using activity counters since the PEs only have
1-bit operators and virtualization is present in C*.

On the contrary, the Mp-1 has larger 4-bit PEs and MPL does not virtualize, i.e. only
parallel variables with the same size as the physical machine can be used. Thus soft
activity counters are used to deal with parallel control flow in the compiler of PompC
to MPL.

The imbrication of parallel control flow operators, merging different collections and
scalar operations, are sliced in the same manner as in the AcTUus compiler described in
[PCMPS85], but they use extents of parallelism to manage an activity stack instead of
an activity counter. In the PoMPC compiler, each time there is an operation affecting
another collection, the current activity counters are saved in memory and new values
for the next collection are loaded instead.

Since the POMP prototype is not yet finished, we do not have a compiler which uses
an activity counter in hardware.

7 Related work

In Section 4 we presented an optimization of the activity concept described in Section 3.
But other methods based on a different principle can be found in the literature.

A common solution for vector computers is the use of scatter/gather to boost vector
performance on sparse problems. Computations on subdomains are put together in
different parallel variables corresponding to the subdomains of the problem. Thus,
each variable is a dense vector and the vector processor can be used efficiently on it.
At the end of the computations, the dense vectors are scattered back to their original
place. Unfortunately, this method needs the programmer to restructure the program
and sometimes to modify the algorithm.

A generalization of this method is presented in [Ble89, BS90] for the PARALLATION
Lisp compiler to siMmD computers. Fach subdomain selection is transformed in a scat-
ter/gather couple, i.e. a global communication before and after the computation. The
method does not implement complexity evaluation to choose between classical activ-
ity method and scatter/gather. Even when this complexity evaluation is possible at
compile time, it is not trivial. But it is necessary because the scatter/gather may
be negligible compared with an activity method, depending of programs and data (a
big computation kernel concerning only one collection in a where, a where and an
elsewhere well-balanced) or it may be very important due to communication over-
heads (a lot of where and many collections concerning few operations).

13



In the first case the scatter/gather method is better but in the second case an
activity method is advisable. Since we improve the activity method, we also extend its
application domain.

8 Conclusion

We have developed a new method to deal with nested parallel control flow for siMD and
MIMD computers, and compilers for languages with collection oriented data parallelism.

This technique allows a reduction to a straight logarithmic term of the size in
bits of memory used to keep track of the PE history. The method is more suited to
coarse grain parallel computers since it avoids an ineflicient indirection in memory, 1-
bit stack management, a global address broadcast and relieves the scalar processor of
a henceforth superfluous load.

The optimization is also interesting for compilers targeted to modern MIMD comput-
ers when the imbricated parallel control flow cannot be resolved at compile time. For
example, if different collections are mixed, interprocedural analysis is not performed
or not possible, or if complex sub-array selections cannot be determined. If the ac-
tivity counter method can often be replaced by MiMD local control flow, for complex
imbricated case it seems a better choice.

9 Acknowledgements

The authors of this paper would like to acknowledge many useful discussions with
all the members of the pOMP team since the beginning of the project: Philippe
MATHERAT, Philippe HooGvorsT, César DouADY, Patrice OssoNaA DEMENDEZ,
Théodore PAPADOPOULO and Pierre CHICOURRAT.

Special thanks are due to Luc BoUGE and his team, especially Jean-Luc LEVAIRE,
for their discussions on SIMD semantics in parallel control flow and for their interest for
the domain and our work.

At last but not the least, the authors are indebted to Kathryn MAcCKINLEY,
Francois IRIGOIN and Pierre JOUVELOT for their invaluable comments and their ap-
propriate suggestions.

References

[AB86] M. AuGuIN and F. BoERI. “The OPSILA Computer”. In INRIA| editor, Parallel
Algorithms & Architectures, pages 143-153. North-Holland, 1986.

eorge H. BARNES, Richar . BROwWN, Maso KaTo, David J. Kuck, Daniel L.

BBKt68] G H. B Richard M. B M K David J. K Daniel L
SLOTNICK, and Richard A. STOKES. “The ILLIAC 1V Computer”. TEFEE Trans-
actions on Computers, C-17(8):746-757, August 1968.

[BDR87] Donald W. BLEVINS, Edward W. Davis, and John H. REIF. “Processing Element
and Custom Chip Architecture for the BLITZEN Massively Parallel Processor”.
Technical Report TR87-22 Revision 1, Microelectronics Center of NC, 1987.

[BDW85] John BEETEM, Monty DENNEAU, and Don WEINGARTEN. “The GF11 Supercom-
puter”. In SIGARCH 85, pages 108-115. The Institute of Electrical and Electronics
Engineers, Inc., 1985.

14



[BLY2]

[Blag0]

[Ble89)]

[BS90]

[Fly66]

[HKMP91]

[HLJ*91]

[Ker89]

[Ker92)

[Mas91]

[MU84]

[Par92]

[PCMP85]

[Per79]

[Rus78]

Luc BouGE and Jean-Luc LEVAIRE. “Control structures for data-parallel SIMD
languages: semantics and implementation”. Future Generation Computer Systems,

8(3-4):363-378, 1992.

Tom BLANK. “The MasPar MP-1 Architecture”. In IEEE, editor, IEEE Compcon
Spring 1990, February 1990.

Guy E. BLELLOCH. “Scan Primitives and Parallel Vector Models”. PhD thesis,
Laboratory for Computer Science — Massachusetts Institute of Technology, Octo-

ber 1989. MIT/LCS/TR-463.

Guy E. BLELLOCH and Gary W. SaBoT. “Compiling Collection-Oriented Lan-
guages onto Massively Parallel Computers”. Journal of Parallel and Distributed

Computing, 8(2):119-134, February 1990.

Michael J. FLYNN. “Very High-Speed Computing Systems”. Proceedings of the
IEEE, 54(12):1901-1909, December 1966.

Philippe HooavorsT, Ronan KERYELL, Philippe MATHERAT, and Nicolas
Paris. “POMP or How to Design a Massively Parallel Machine with Small
Developments”. In PARLE ’91 Parallel Architectures and Languages Furope,
volume 505(T), pages 83-100. Lecture Notes in Computer Science, Springer-
Verlag, June 1991. Available by ftp anonymous on spi.ens.fr in the file
pub/reports/liens/liens-91-5.A4.ps.Z.

Philip J. HATCHER, Anthony J. LAPADULA, Robert R. JoONES, Michael J. QUINN,
and Ray J. ANDERSON. “A Production-Quality C* Compiler for Hypercube Mul-
ticomputers”. In Third ACM SIGPLAN Symposium on Principles & Practice of
Parallel Programming, volume 26(7), pages 73-82, July 1991. SIGPLAN Notices.

Ronan KERYELL. “POMP2 : D’un Petit Ordinateur Massivement Parallele”. Rap-
port de magistére, LIENS — Ecole Normale Supérieure, October 1989.

Ronan KERYELL. “POMP : d’un Petit Ordinateur Massivement Paralléle SIMD
a Base de Processeurs RISC — Concepts, Etude et Réalisation”. PhD Thesis,
Laboratoire d’Informatique de I’Ecole Normale Supérieure — Université Paris XI,

October 1992.

MasPar Computer Corporation. “MasPar Parallel Application Language (MPL)
Reference Manual’, document part number: 9302-000, revision: a4 edition, March
1991. Software Version 2.0.

Kenichi Miura and Keiichiro UcHIDA. “Facom Vector Processor System: VP-
100/VP-200 7. In Proceedings of NATO Advanced Research Workshop on High
Speed Computing, volume F7, pages 59-73. IEEE Computer Society Press, 1984.

Nicolas PARIS. “Definition of POMPC (Version 1.99)”.  Technical Re-
port LIENS-92-5-bis, Laboratoire d’Informatique de I’Ecole Normale Supérieure,
March ~ 1992. Available by ftp anonymous on spi.ens.fr in the file
pub/reports/liens/liens-92-5-bis.A4.ps.Z.

Ronald H. PERROTT, Danny CROOKES, Peter MILLIGAN, and W. R. Martin
PurDy. “A Compiler for an Array and Vector Processing Language”. IEEE Trans-
actions on Software Engineering, SE-11(5):471-478, May 1985.

R. H. PERROTT. “A Language for Array and Vector Processors”. ACM Transac-
tions on Programming Languages and Systems, 1(2):177-195, October 1979.

Richard M. RUsseL. “The CRAY-1 Computer System”. Communications of the
ACM, 21(1):63-72, January 1978.

15



[SBM62] Daniel L. StoTnick, W. Carl Borok, and Robert C. McREYNOLDs. “The
SOLOMON Computer”. In Proceedings of the Fall 1962 FEastern Joint Computer
Conference, pages 97-107, December 1962.

[Thi87] Thinking Machine Corporation. “Connection Machine Model CM-2 Technical Sum-
mary’, April 1987. HA8T-4.

[Thi90] Thinking Machine Corporation. “C* Programming Guide” , November 1990. Version
6.0.

[Thi91] Thinking Machine Corporation. “The Connection Machine CM-5 Technical Sum-
mary’, October 1991.

[Wav91] Wavetracer Inc. “The multiC Programming Language — User Documentation”

pub-00001-001-1.01 edition, September 1991.

16



