IN and OUT Array Region Analyses

Béatrice CREUSILLET, creusillet@cri.ensmp.fr

Centre de Recherche en Informatique, Ecole Nationale Supérieure des Mines de Paris,
35, rue Saint-Honoré, 77305 FONTAINEBLEAU Cedex, FRANCE.

Abstract

In order to perform powerful program optimizations, an ezxact interprocedural
analysis of array data flow is needed. For that purpose, two new types of array
region are introduced. IN and OUT regions represent the sets of array elements,
the values of which are imported to or exported from the current statement or
procedure. Among the various applications are: compilation of communications
for message-passing machines, array privatization, compile-time optimization of
local memory or cache behavior in hierarchical memory machines.

Introduction

The optimization of scientific programs for distributed memory machines, hierarchical
memory machines or fault-tolerant computing environments is a particularly trouble-
some problem that requires a precise intra- and inter-procedural analysis of array data
flow.

A recent study [8] has opened up wide perspectives in this area. It provides an
exact analysis of array data flow, originally in monoprocedural programs with static
control. This last constraint has since been partially removed [12, 6], to the detriment
of the accuracy of the results. Furthermore, this method has not yet been extended to
interprocedural analyses, and its complexity makes it unpracticable on large programs.

Another approach is to calculate conservative summaries of the effects of procedure
calls on sets of array elements [16, 4]. They allow the analysis of large programs, thanks
to their weak complexity (in practice). But since these analyses are flow insensitive, and
since they do not precisely take into account the modifications of the values of integer
scalar variables, they are not accurate enough to handle powerful optimizations.

In PIPS [10], the Interprocedural Parallelizer of Scientific Programs developed at
Ecole des Mines de Paris, we have extended Triolet’s array regions [16] to calculate sum-
maries that exactly represent the effects of statements and procedures upon sets of array
elements [2], whereas the regions originally defined by Triolet were over-approximations
of these effects. The resulting READ/WRITE regions are already used to efficiently com-
pile HPF [5]. However, they cannot be used to compute array data flow, and are thus
insufficient for other optimizations such as array privatization.

We therefore introduce two new types of exact regions: for any statement or proce-
dure, IN regions contain its imported array elements, and 0UT regions represent its set
of live array elements. For a massively parallel machine, these regions could be used to

calculate the communications before and after the execution of a piece of code. They
can also be used to privatize array sections [2]. For a hierarchical memory machine,
they provide the sets of array elements that are used or reused, and hence should be
prefetched (IN regions) or kept (OUT regions) in caches or local memories [13]; the array
elements that do not appear in these sets and that are accessed in the current piece
of code, are only temporaries, and should be handled as such. For fault-tolerant sys-
tems, checkpointing [11] is a software solution that regularly saves the current state: as
they provide the set of elements that will be used in further computations, IN and 0UT
regions could be used to reduce the amount of data to be saved.

This article is organized as follows. In Section 1, we present an example that
motivates the use of IN and 0UT regions, and highlights the main difficulties of their
computation. Some necessary background is reviewed in Section 2. Exact regions
are then defined in Section 3, along with the operators to manipulate them. Section 4
introduces IN and 0UT regions. The details of their computation for the main structures
of the FORTRAN language are then presented in Sections 5 and 6. We conclude in
Section 7.

1 Motivating example

In the remainder of this article, we shall consider the contrived FORTRAN program of
Figure 1 to illustrate the main features of the computation of IN and 0UT regions.

1. K = FO0OQ) SUBROUTINE INC1(I)
2.D0I=1,N I=1I+1
3. DO J =1,N END
4 WORK(J,K) = J + K
ENDDO
CALL INC1(K)
DO J =1,N
WORK(J,K) = J*xJ - K*K
A(I) = A(I)+WORK(J,K)+WORK(J,K-1)
ENDDO
ENDDO

0 N O O;

Figure 1: Sample program

The purpose is to prove that any iteration of the I loop neither imports nor exports
any element of the array WORK. In other words, if there is a read reference to an element
of the array WORK, it has been previously initialized in the same iteration, and it is not
reused in the subsequent iterations (we assume that the array WORK is not used anymore
after the execution of the I loop). An optimizing compiler would conclude that the
part of the array WORK that is handled in the I loop could be privatized.

There are two main difficulties in our example. First, different elements of WORK are
referenced in several instructions. We shall need a way to summarize these accesses
within a single representation, by using a sort of union operator. Second, these refer-
ences, and thus their representations, depend on the value of the variable K, which is
unknown at the entry of the I loop, and is modified by the instruction 6. We shall need
a way to modelise this modification in order to obtain representations that depend on

the same value of X, and hence can be merged (for instance).
The next two sections present the tools we shall use to perform the analysis of our
example.

2 Transformers and Preconditions

In pips the parallelization process is divided into several phases, either analyses or
program transformations. Intraprocedural analyses are performed on the hierarchical
control flow graph of the routines. The nodes of these graphs correspond to the FOR-
TRAN language structures (DO, IF, sequence of instructions, assignment, call, ...), or
are themselves small control flow graphs, when a fragment of code is unstructured
(use of GOTOs). Interprocedural analyses propagate information over the program call
graph. This graph is assumed acyclic, and the analyses can be performed bottom-up
or top-down.

Two kinds of analyses are of interest for the remainder of this paper: transformers
and preconditions [9)].

Transformers abstract the effects of instructions upon the values of integer scalar
variables by giving the affine relations that exist between their values before and after
the execution of a statement or procedure call. In equations they are denoted by the
letter T, whereas in programs they appear under the form T(args) {pred}, where args
is the list of modified variables, and pred gives the non trivial relations existing between
the initial values (suffixed by #init) and the new values of variables. In Figure 2, each
instruction is preceded by its corresponding transformer. A predicate with no constraint
(Instruction 1) indicates that the transformation could not be represented by a set of
linear constraints. When it is computable, the transformer of a loop gives its invariant
(Instruction 2).

Preconditions are predicates over integer scalar variables. They hold just before
the execution of the corresponding instruction. In Figure 2, they appear as P(vars)
{pred}, where vars is the list of modified variables since the beginning of the current
routine, because preconditions abstract the effects of the routine from its entry point
to the current instruction.

Transformers are propagated backward, while preconditions are propagated for-
ward. If T} and P, correspond to the instruction S;, and P, to the instruction S
immediately following S, then P, = T1(P,).

3 Regions: definitions and operators

Array regions are sets of array elements described by equalities and inequalities defining
a convex polyhedron [16]. Two other characteristics have been introduced in PIPS to
represent the effects of statements and procedures upon array elements:

e the action upon the elements of the region; READ (R) for a use or WRITE (W) for a
definition;

e the approximation of the region; MAY if the region is an over-approximation of the
set of array elements actually referenced in the corresponding piece of code; MUST
if the region exactly represents this set (ezact region).

PO {}

T(K) {}
1. K = FOOO)
P(K) {}
T(I,K) {K+1==K#init+I}
2. DO I = 1,N
C P(I,K) {1<=I, I<=N}
3. DO J = 1,N
C P(I,J,K) {1<=I, I<=N, 1<=J, J<=N}
4. WORK(J,K) = J + K
ENDDO

P(I,K) {1<=I, I<=N}
T(K) {K==K#init+1}

5. CALL INC1(X)
6. DO J = 1,N
C P(I,J,K) {1<=I, I<=N, 1<=J, J<=N}
7. WORK(J,K) = J*xJ — KxK
8. A(I) = A(I)+WORK(J,K)+WORK(J,K-1)
ENDDO
ENDDO

Figure 2: Transformers and preconditions

For instance, the region:
<A1, ¢2) -W-MUST-{p1==1, 1 ==¢ho } >

where ¢; et ¢, respectively represent the first and second dimensions of A, corresponds
to a definition of the element A(I,I).

In order to manipulate regions and propagate them along the control flow graph
of the program, we need several binary operators: union (U), intersection (N), and
difference (©). We also need unary operators (7,,_.,,, 75, —o,\r and proj;) to deal with
variables of the program that are modified. These operators are presented below.

Union

The union operator is used to merge two regions. Unfortunately, the union of two
convex polyhedra is not necessarily a convex polyhedron. The operator U we use
instead is the convex hull. It may contain points that do not belong to the original
polyhedra. Thus, the resulting region is a MAY region. The third column in Table 1
gives the approximation of the resulting region against the characteristics of the initial
regions.

Intersection

The intersection of two convex polyhedra is a convex polyhedron. It follows that the
intersection of two MUST regions is a MUST region. The impact of the approximations of
the initial regions is summarized in the fourth column of Table 1.

R, R, R1UR; RiNRy | Ri© Ry

MUST | MUST | MUST, iff exact convex hull | MUST Ry — R,, MUST iff exact

MUST | MAY | MUST, iff R» C Ry MAY R, MUST iff Ry N Ry = &
MAY | MUST | MUST, iff R; C R, MAY Ri — R», MAY

MAY MAY MAY MAY Ry, MAY

Table 1: Binary operators on regions

Difference

The difference of two convex polyhedra is not necessarily a convex polyhedron. The
chosen operator (denoted ©) gives an over-approximation of the actual difference of
the original regions. Its features are described in Table 1, Column 5.

Translation from one store to another

The linear constraints defining a region often involve integer scalar variables from the
program (e.g. ¢;==I). Their values, and thus the region, are relative to the current
store. If we consider the statement I = I + 1, the value of I is not the same in the
stores preceding and following the execution of the instruction. Thus, if the polyhedron
of a region is ¢;==I before the execution of I = I + 1, it must be ¢;==I-1 afterwards.

To apply one of the preceding operators to two regions, they must be relative to the
same store. We shall call 7, _,,, the transformation of a region relative to the store oy
into a region relative to the store .

This transformation has been described in [2]. Very briefly, it consists in adding
to the predicate of the region, the constraints of the transformer that abstracts the
effects of the program between the two stores. The variables of the original store (o)
are then eliminated. The only variables that remain in the resulting polyhedron all
refer to the store o,. Thus, two transformations, 7,, _.,,,, and 7,, ., _.,,, correspond to
the transformer T}, associated to the statement Sj, depending on the variables that are
eliminated.

For instance, let us assume that o; is the store preceding the statement I = I + 1,
o3 the store following it, and {¢;==I#init} the predicate of a region relative to o;. We
first add the transformer corresponding to the statement (T(I) {I==I#init+1}). This
gives the predicate {¢;==I#init, I==I#init+1}. We then eliminate I#init, because it
refers to o;. We obtain {¢;==I-1}, which is relative to o.

The elimination of a variable from a convex polyhedron may introduce integer points
that do not belong to the actual projection. Ancourt or Pugh [1, 14] have proposed
sufficient conditions under which this elimination is exact. They do not apply in our
case because program entities must be considered as parameters (symbolic constants)
for the polyhedron, and not as variables.

For instance, the elimination of I from {¢;==I, I<=J} gives {¢;<=J}. It satisfies the
usual conditions for an exact projection. However, these two polyhedra do not describe
the same region. The first contains only one element, uniquely defined by the value of
I in the current store, even if we do not know it. Whereas the second contains all the
elements such that ¢; is smaller than the current value of J.

On the contrary, the elimination of I from {2¢,==3I, 2I==J}, which gives {4¢;==3J},
is usually considered inexact. In our case, and referring to a given store, ¢, is uniquely
defined in both cases by the values of the variables appearing in both polyhedra.

Since this is not the purpose of our paper, we refer the reader to [2] for sufficient
conditions of the exact projection of a region polyhedron along a program variable,
and their verification. When these new conditions are not verified, the elimination is
performed, but the original region becomes a MAY region.

Sometimes, we shall need to eliminate all but one variable (e.g. I). We shall denote
the corresponding transformation 7;, . ,,\1.

Elimination of loop indices

During the propagation of regions in a linear block of instructions, a loop index is
considered as a normal program entity. It receives a particular treatment only when
propagating regions outward or inward the corresponding loop, because it then takes
successively a whole range of values (iteration space), instead of a single one. Thus,
the elimination of a loop index from the polyhedron of a region is exact if the following
conditions are verified:

1. the expressions of the lower and upper bounds, and of the increment, are affine;
2. the absolute value of the increment is equal to 1;
3. the conditions of Ancourt or Pugh for an exact projection are verified.

The first two conditions ensure that the iteration space can be described exactly by
a convex polyhedron over the program entities (i.e. [b < i < wb if [b and ub are
respectively the upper and lower bounds of the loop index). We shall denote proj; the
elimination of loop index I.

Constraining the regions predicate

In order to have more information on ¢ variables, the constraints of the preconditions
are systematically added to the predicate of the region. This is particularly useful
when merging two regions. For instance, {¢1==I} U {¢1==3} = {}. If we add the
current preconditions (e.g. {I==J}) to the original regions, we obtain {¢;==1,1==J}
instead of {}. This operation increases the accuracy of the analysis, without modifying
the definition of regions.

The purpose of this paper is not to describe the computation of READ and WRITE
regions. However, since we shall need them for the calculation of IN and OUT regions,
we provide those concerning the array WORK in our current example, in Figure 3. Each
elementary instruction is preceded by its READ and WRITE regions; and the regions pre-
ceding a DO are the summary regions for the loop. Notice that the variable K is modified
in the body of the I loop. Therefore, K does not represent the same value in the regions
preceding and following the call to INC1.

1. K = F0OOQ)
C <WORK(¢1, ¢2)—W—MUST—{1<=¢1 , ¢p1<=N, K<=¢2, ¢)2<=K+N}>
C <WORK(¢1, ¢2)—R—MUST—{1<=¢1 , ¢p1<=N, K<=¢2, ¢)2<=K+N}>

2. DO I =1,N
C <WORK(¢1,¢2)-W-MUST-{1<=¢1, ¢1<=N, ¢o==K, 1<=I, I<=N}>
3. DO J = 1,N
C <WORK(¢1,¢2)-W-MUST-{¢1==J, ¢2==K, 1<=J, J<=N, 1<=I, I<=N}>
4, WORK(J,K) = J + K
ENDDO
5. CALL INC1(K)

C <WORK(¢1,¢2)-W-MUST-{1<=¢1, ¢1<=N, ¢o==K, 1<=I, I<=N}>

C <WORK(¢1,¢2)-R-MUST-{1<=¢1, ¢1<=N, K-1<=¢p2, ¢2<=K, 1<=I, I<=N}>
6. DO J = 1,N

C <WORK(¢1,¢2)-W-MUST-{¢1==J, ¢2==K, 1<=J, J<=N, 1<=I, I<=N}>
7. WORK(J,K) = JxJ - K*K

C <WORK(¢1,¢2)-R-MUST-{¢p1==J, K-1<=¢po, ¢2<=K, 1<=J, J<=N, 1<=I, I<=N}>
8. A(I) = A(I)+WORK(J,K)+WORK(J,K-1)

ENDDO
ENDDO

Figure 3: READ/WRITE regions

4 1IN and OUT Regions

READ and WRITE regions summarize the exact effects of statements and procedures upon
array elements. However, they do not represent the flow of array elements, the knowl-
edge of which is necessary to achieve many optimizations. For that purpose, we intro-
duce two new types of region: IN and OUT regions.

IN regions contain the array elements, the values of which are (MUST) or may be
(MAY) imported by the current piece of code. These are the elements that are read before
being possibly redefined by another instruction of the same fragment. In Figure 1, in
the body of the second J loop, the element WORK(J,K) is read, but its value is not
imported because it is previously defined in the same iteration. On the contrary, the
element WORK(J,K-1) is imported from the first J loop.

0UT regions corresponding to a piece of code contain the array elements that it
defines, and that are (MUST) or may be (MAY) used afterwards, in the execution order of
the program. These are the live or exported array elements. In the program of figure 1,
the first J loop exports all the elements of the array WORK it defines towards the second
J loop; whereas, the elements of WORK defined in the latter are not exported towards
the next iterations of loop I.

The interprocedural propagation of IN regions is similar to that of READ/WRITE re-
gions [9, 7]. It is a backward propagation: IN regions corresponding to formal pa-
rameters are translated into regions corresponding to actual parameters, at each call
site. On the contrary, the propagation of OUT regions on the call graph is a forward
propagation: actual parameters are translated into formal ones at each call site, and
the resulting regions are merged into a unique summary, which forms the 0UT regions
of the procedure. For both types of region, the propagation consists in adding to the
predicate of the region the equation giving the relations between the subscript values
of the arrays in terms of ¢ variables. The ¢ variables of the formal (resp. actual) array

in case of IN (resp. OUT) regions are then eliminated. This can be optimized by con-
sidering the similar dimensions of both arrays. This method handles array reshaping,
which was only partially treated in [15].

We now limit ourselves to the intraprocedural computation of IN and 0UT regions.
For that purpose, we use the following notations. If S} is the k-th instruction of a
sequence of complex instructions, o, and o4,; are the memory stores immediately
preceding and following it; and Wy, IN;, and OUT}, are respectively its WRITE, IN and
0UT regions relative to the store oy,.

5 Computation of IN regions

In this section, we describe the calculation of IN regions of an assignment, a sequence
of complex instructions, or a loop. We assume that the code is correct, i.e. that no
variable or part of a variable is used without being initialized. This assumption is often
made in parallelizing compilers, where the purpose is not to verify programs, but to
transform and optimize them.

5.1 Assignment

For an assignment, IN regions are identical to READ regions because the values of the
referenced elements cannot come from the assignment itself. In the statement 8 (A(I)
= A(I)+WORK(J,K-1)+WORK(J,K)) in the program of Figure 1, the elements that are read
are WORK(J,K-1), WORK(J,K) and A(I). These are also the elements, the values of which
are imported. Thus, the IN regions are:

<WORK (1 , p2) -IN-MUST-{¢)1==J, K-1<=¢ho, ¢2<=K, 1<=I, I<=N , 1<=J, J<=N}>
<A(¢y) -IN-MUST-{¢==1, 1<=I, I<=N , 1<=J, J<=N}>

5.2 Sequence of instructions

Let us first take an example. We consider the body of the second J loop in Figure 1,

which consists in the sequence of instructions 7 and 8. The instruction 8 imports two

elements of the array WORK: WORK(J,K) and WORK(J,K-1). This is represented by the
: 1

region':

<WORK (¢; , b2) ~IN-MUST-{p;==J, K-1<=¢y, ¢h<=K}>

One of these elements, WORK(J,X), is initialized in the instruction 7. Since the instruc-
tion 7 imports no array element, the sequence of instructions does not import the value
of WORK(J,K), and the IN region of the sequence is finally obtained by removing the el-
ements of the WRITE region of the instruction 7 from the IN region of the instruction 8:

<WORK (¢1 , p2) ~IN-MUST-{¢p1==J, K-1<=¢hp, ¢<=K}>
© <WORK(¢1,p2) -W-MUST-{¢1==J, ¢o==K}>
= <WORK(¢1,¢2)-IN-MUST-{¢1==J, ¢o==K-1}>

The IN region of the sequence of instructions 7 and 8 only contains the element
WORK (J,K-1).

Without the constraints from the preconditions, since integer scalar variables are not modified in
this loop body.

We now give the general method. We are interested in the region I Ng corresponding
to the block (or sequence) of instructions B = Sy, ..., .S, and relative to the store o =
o1 preceding the execution of B. It is the set of array elements that are read by the
instructions of B, and the values of which come from the instructions preceding B.

For each instruction S, the corresponding regions W, and IN,, relative to the
store 0, preceding .S, are supposed to be known.

We denote IN;, (k € [1,n]) the IN regions corresponding to the subsequence S, ... S,.
INg is then defined by:

IN! =IN,
IN, =IN,U| T, -0, (IN,,) © W;]
INg = IN!

7,

sni1—0, translates the IN regions corresponding to Si11,..., S, in the same store o}, as
the WRITE and IN regions of Si. 7,, ., .., (IN;) — W} represents the regions imported
by the subsequence Sy, 1,...,S,, but not defined by the statement S;. Merged with
I Ny, they give the set of elements that are read by the sequence Sy, ..., .S, before being

possibly redefined by any other statement of the same subsequence.

5.3 DO loop

Our purpose is now to compute the summary IN regions of the second J loop in Figure 1,
given the WRITE and IN regions of its body at iteration J:

<WORK (1 , o) -W-MUST-{p;==J, ¢p==K, 1<=I, I<=N, 1<=J, J<=N}>
<WORK (1 , o) ~IN-MUST-{¢==J, ¢p==K-1, 1<=I, I<=N, 1<=J, J<=N}>

The previous IN region represents the array elements that are imported by the iter-
ation J from the instructions preceding the loop, and from the preceding iterations
(3" such that {J'<=J-1}). We must first remove those elements that are imported from
the previous iterations, hence those that are written by these iterations. The next
region represents the elements written by a single iteration J' preceding J:

<WORK (1 , ho) -W-MUST-{¢p1==J", ¢a==K, 1<=J', J'<=J-1, J<=N, 1<=I, I<=N}>

By eliminating the loop index J', we obtain the set of array elements written by all the
iterations preceding the iteration J:

<WORK (1 , p2) -W-MUST-{1<=¢p;, ¢1<=J-1, ¢o==K, J<=N, 1<=I, I<=N}>
We now remove these elements from the set of elements imported by the iteration J:

<WORK (01 , ho) ~IN-MUST-{¢1==J, ¢o==K-1, 1<=I, I<=N, 1<=J, J<=N}>
© <WORK(¢@q,¢p2)-W-MUST-{1<=¢1, ¢1<=J-1, ¢o==K, J<=N, 1<=I, I<=N}>
= <WORK(¢1,d2)-IN-MUST-{¢;==J, ¢o==K-1, 1<=I, I<=N, 1<=J, J<=N}>

This last region represents the set of elements imported by the iteration J from the
instructions preceding the loop. We then eliminate J to obtain the set of elements
imported by all the iterations from the instructions preceding the loop:

<WORK (¢h1 , o) ~IN-MUST-{1<=¢h;, ¢h1<=N, ¢p==K-1, 1<=I, I<=N}>

Hence, the loop imports all the elements of the array WORK such that ¢,==K-1.

We now give the general equations to compute the regions I N, corresponding to the
DO loop L, given the WRITE and IN regions of its body. They are not only functions
of the value ¢ of the loop index I, but also of the variables modified in the loop body
(collectively denoted v). Hence, we denote them W (i,v) and IN(i,v) for iteration .

v variables are themselves functions of the loop index. We must eliminate them to
obtain WRITE and IN regions that are functions of the sole loop index (and of course of
variables that do not vary in the loop body). This is achieved by using the operator
T,,—c:\1, 01 being the store preceding the loop L, and o; the store preceding the
iteration such that I = ¢. This operator is based on the transformer of the loop body,
which represents the loop invariant (when it is computable). In order to simplify the
next equation, we denote:

W) = Zo—ona(W(i,0))
ING) = Tponi(IN(i,0))

The IN regions of a DO loop are then given by the following equation:
INp = proji[IN(i) © projr (W (i')s.i<s.i) |

where s is the sign of the loop increment.

projp (W (i') . <s.;) represents the array elements written by all the iterations ¢’ pre-
ceding the iteration i. Thus, IN (i)Oprojp (W (i'),.i <s.;) contains the elements imported
by the iteration %, but not from the preceding iterations. And finally, proj;[IN(i) ©
projp (W (i')s.i<s.i) | is the set of array elements imported by all the iterations of the
loop from the instructions preceding it.

6 Computation of OUT regions

The computation of OUT regions is a forward analysis. Thus, we do not calculate the
0UT regions of an instruction, a sequence of instructions, or a loop, but the 0UT regions
of the instructions of a sequence (given the 0UT regions of the sequence), or of the body
of a loop (given the OUT regions of the loop). The 0UT region corresponding to the whole
program is the empty set?.

6.1 Instructions of a sequence

As an illustration, we consider the body of the second J loop in Figure 1. We assume
that its OUT region concerning the array WORK is the empty set. We want to calculate
the set of elements of the array WORK that are exported by the instructions 7 and 8.

The array elements exported by the instruction 8 are those that it defines (here &
for the array WORK), and that are exported by the whole sequence (@): this instruction
exports no element of the array WORK.

The instruction 7 may export the elements it defines toward the instructions follow-
ing the execution of the whole sequence: since the latter exports no elements, neither

21/0Os are performed by the program itself, and they are taken into account during the computation
of OUT regions.

10

does the instruction 7. It may also export the elements it defines toward the instruc-
tion 8: these are the element written by the instruction 7 and imported by the instruc-
tion 8 (not just the written elements because the instruction 8 might be a complex
instruction):

<WORK (¢1 , ¢h2) ~W-MUST-{1==J, ¢2==K}>
N <WORK(¢q,d) ~IN-MUST-{¢p1==J, K-1<=¢py, ¢2<=K}>
= <WORK(¢y,¢2)-W-MUST-{¢1==J, ¢==K}>

The first instruction exports the element it defines (WORK(J,K)) towards the second
one.

We now consider the general problem. The region OUTj5 corresponding to the se-
quence B = S1,...,5,, and relative to the store op = 0, preceding it, is supposed to
be known. We are interested in the regions OUT}, corresponding to each instruction Sy.
These regions contain the array elements written by the current instruction, and the
values of which are used by the next statements, inside and outside the sequence.

We call OUT], the set of array elements defined by the subsequence S, ..., S, and
the values of which are used after the execution of B (i.e. are exported outside of B).
The equations defining OUT), are then:

oUT! =T, ., (OUTy)
OUT, = W, NOUT!,
OUT, =Ty, 0 (OUTL,, © Wipn), Vk € [Ln — 1]

OUT, =W, N [OUT,UT,,,,—s(INi,)], Vi € [L.n — 1]

OUTjg is the 0UT region corresponding to B = Sy,...,S,. It is relative to the store
op preceding its execution. Therefore, 7,,_., (OUTp) is the region corresponding to
Si,...,S,, but relative to the store o, preceding S,,. This is exactly the definition of
OUT). Thus OUT, =71,,_.,, (OUTg).

The elements exported by the subsequence S, ..., S, towards the outside of B, are
those that exported by the subsequence Si,..., S, towards the outside of B, minus
the elements exported by the instruction Sj,;. The corresponding 0UT regions must be
relative to the store oy, which gives:

ouT,, =1,

Okt1—0k

(OUT,Q+1 - Wk+1)

Finally, the 0UT regions of the instruction S, are the regions written by S, and
exported towards the outside of B (W, N OUT}), to which we must add the regions
written by Sj and exported towards Sy 1,...,S, (W, N7, (INj;,))- This gives:

Ok+1 0k

OUT, = Wy N [OUT,UT,,,,-0.(INL,,)]

6.2 Body of a DO loop

First, let us take a simple example. We consider the I loop in Figure 1. We want to
compute the 0UT regions of its body concerning the array WORK, assuming that the 0UT
region of the loop is the empty set and given the WRITE and IN regions of the body?®:

3{0==1} represents the empty set.

11

<WORK (1 , p2) ~-W-MUST-{1<=¢)1, ¢p1<=N, K<=¢hy, Po<=K+1, 1<=I, I<=N}>
<WORK (¢ , ¢po) ~IN-MUST-{0==1}>

We first compute the set of array elements exported by the iteration I towards the
outside of the loop: it is the empty set, because the 0UT region of the loop is the empty
set.

We then compute the set of array elements exported by the iteration I toward the
subsequent iterations I' ({I+1<=I'}). These are the elements written by the iteration I,
and:

1. imported by the subsequent iterations I';
2. but not defined by the iterations I” between the iteration I and the iteration I’.

This last constraint ensures that, among the elements read by the iteration I’, we do
not keep the elements that are imported from the iterations between I and I’; but we
keep those that may come from the iteration I.

Here, the IN regions of the loop body are the empty set. Thus, the iteration I does
not exports the elements it defines toward the subsequent iterations: its OUT region is
the empty set.

We now consider the general case. We assume that we know the 0UT regions OUTY,
corresponding to the loop L. We want to calculate the 0UT regions of its body, OUT(7),
if 7 is the value of the loop index I, given its WRITE and IN regions, W (i) and IN (i) (we
have seen in section 5.3 how to get rid of variables that vary in the loop body).

The loop body represents any iteration ¢. Its OUT regions contain the elements that
are defined during this iteration, and that are used, either in the next iterations, or
outside the loop. This gives the following equation:

OUT(i) = {[W(@E) © projr(W(i)siss:)] N Tyy—0, (OUTL) } T
{W@E) N [projr(IN(i')s.issi © projr(W(i")sics.iv<si))] }

where s represents the sign of the loop increment.

projp (W (i')s.#>s;) contains the array elements that are defined by all the iter-
ations 7' posterior to i. Thus, W(i) © projp(W(i')s#~s;) contains the elements
that are defined by iteration ¢, and that are not defined in the subsequent iterations.
75, -0 (OUTy) represents the 0UT regions of loop L, but relative to the store preceding
the iteration ¢. Then, [W (i) © projpr(W(¢')s.issi)] N Ty, -0, (OUTYL) contains the
array elements that are defined by the iteration ¢ and that are exported towards the
outside of the loop.

Similarly, projr (W (i")s.i<s.iv<s.#) represents the elements that are written by all
the iterations between iterations ¢ and i'. Then, IN (i), © projp (W (i), ics.im <s.ir)
contain the elements imported by iteration ' but that do not come from any it-
eration posterior to ¢, i.e. that are imported either from the instructions preced-
ing the loop or from iterations up to iteration 7 (included). The projection along
1’ gives the set of elements that are imported by all iterations following iteration i,
either from iteration ¢ and its predecessors, or from the outside of the loop. Thus,
W) N [projr(IN(i')sissi © projr(W(i")sics.iv<s.i)) | exactly represents the ele-
ments that are defined by the iteration ¢z and that are effectively used in the subsequent
iterations.

12

Note: In order to ensure the precision of the analysis, it is necessary to add to the
predicate of 7, _,,(OUT}) the preconditions induced by the variation domain of the
loop index, i.e. (b <4 < ub if [b and ub are respectively its lower and upper bounds.

We now take another example to illustrate some features of the previous algorithm.
We consider the I loop in the program of figure 1. We assume that the 0UT regions of
the loop concerning the array A are:

<A(¢1)-0UT-MUST-{1<=¢;, ¢;<=N}>
We first calculate 7,, _,,(OUTy). We add the constraints of the loop transformer,

T(I,K){K==K#INIT+I-1}, to the polyhedron of the region, along with the conditions on
the variation domain of I, i.e. {1<=I, I<=N}. This leads to:

<A(¢1)-0UT-MUST-{1<=¢;, ¢1<=N, 1<=I, I<=N}>
Given that the WRITE and IN regions of the loop body concerning the array A are:

<A(¢1) -W-MUST-{¢==1, 1<=I, I<=N}>
<A($1)-IN-MUST-{¢py==I, 1<=I, I<=N}>

we successively have:

W(i")s.ir>s.i = <A(¢)-W-MUST-{¢;==1', 1<=I, I+1<=I', I'<=N}>
projr (W (i')s.ir>s.i = <A(¢)-W-MUST-{I+1<=¢y, ¢;<=N, 1<=I}>
W (i) © projpr (W (i')s.i>s.4) = <A(¢1)-W-MUST-{¢==I, 1<=I, I<=N}>

[W(i) © projr(W(i')s.issi)] N Topno,(OUTL) =
<A(¢)1)—W—MUST—{¢)1==I, 1<=I, I<=N}>
N <A(¢1)-0UT-MUST-{1<=¢;, ¢1<=N, 1<=I, I<=N}>
= <A(¢p1)-0UT-MUST-{¢y==I, 1<=I, I<=N}>

This last region represents the elements exported outward the loop. We now calculate
the set of elements exported towards the other iterations:

W (i Ys.i<s.ir <s.i = <A(¢1)-W-MUST-{¢==1",1<=I,I+1<=T",1"+1<=T',I'<=N}>
prOjI”(W('L.”)s.i<s.i”<s.i’) = <A(¢1)—W—MUST—{I+1<=¢1, ¢1+1<=II, II<=N, 1<=I}>
IN(i")s.ir>s. = <A(¢p)-IN-MUST-{¢==I', 1<=I, I+1<=I', I'<=N}>

IN(i,)s.i’>s.i © projl”(W(i”)s.i<s.i”<s.i’) =
<A(¢)1)—IN—MUST—{¢)1==I', 1<=I, I+1<=T', I'<=N}>
projr(IN(i')s.i>s.i © projr (W(i")s.ics.in<s.it)) =
<A(p1)-IN-MUST-{I+1<=¢;, ¢1<=N, 1<=I}>
W(Z) N [p’l"Oj[I (IN(il)s.i’>s.i © proj[”(W(i”)s.i<s.i”<s.i’))] =
<A(¢1) -W-MUST-{¢==1, 1<=I, I<=N}>
N <A(¢1)-IN-MUST-{I+1<=¢;, ¢1<=N, 1<=I}>
= o
Thus, the iteration ¢ exports no element of A towards the subsequent iterations. And

finally,
OUT (i) = <A(¢)-0UT-MUST-{¢p;==1, 1<=I, I<=N}>

We provide in Figure 4 the IN and OUT regions of the program of Figure 1, given
the OUT regions of the outer loop.

13

1. K = FOOQ)
C <A(¢1)-IN-MUST-{1<=¢h;, ¢1<=N}
C <A(¢1)-0UT-MUST-{1<=¢; , ¢h1<=N}

2. DO I =1,N
C <WORK(¢1 ,¢2)-0UT-MUST-{1<=¢1, $1<=N, ¢po==K, 1<=I, I<=N}>
3. DO J = 1,N
C <WORK(¢1 ,¢2)-0UT-MUST-{¢p1==J, ¢==K, J<=I, J<=N, 1<=I, I<=N}>
4, WORK(J,K) = J + K
ENDDO
5. CALL INC1(K)

C <A($1)-0UT-MUST-{¢p1==I, 1<=I, I<=N}
C <WORK(1 ,ho)-IN-MUST-{1<=¢h1 , p1<=N, ¢p==K-1, 1<=I, I<=N}>

6. DO J = 1,N
C <WORK(¢1 ,¢p2)-DUT-MUST-{¢p1==J, ¢o==K, J<=I, J<=N, 1<=I, I<=N}>
7. WORK(J,K) = J*xJ - Kx*K

C <A($1)-IN-MUST-{¢;==I, 1<=I, I<=N, J<=I, J<=N}
C <A(h1)-0UT-MUST-{¢p1==I, 1<=I, I<=N, J<=I, J<=N}
C <WORK(1 ,ho) -IN-MUST-{ch1 <==J, K-1<=¢hs, pp<=K, J<=I, J<=N, 1<=I, I<=N}>
8. A(CI) = A(CI)+WORK(J,K)+WORK(J,K-1)
ENDDO
ENDDO

Figure 4: IN and 0UT regions

7 Conclusion

We have introduced two new types of array regions that can be used to compute the
flow of array elements and perform powerful optimizations. IN and 0UT regions represent
the sets of array elements that are imported or exported by the corresponding piece
of code. Their intraprocedural propagation relies on a preliminary analysis of the
effects of statements upon integer scalar variables. This locally ensures the accuracy
of the analyses, even when variables occurring in regions expressions are modified.
The current implementation covers all the intraprocedural structures of the FORTRAN
language, along with the interprocedural propagation [2, 7].

Experiments performed on some of the Perfect Club benchmarks [3] have shown the
practicability of these analyses in spite of the theoretically exponential complexity of
the operators on polyhedra. However, further experiments are needed to determine if
the representation of regions in polyhedral form is precise enough to allow optimizations
such as array privatization, generation of communications in distributed memory ma-
chines, compile-time optimization of cache behavior in hierarchical memory machines,
or improvement of the use of distributed shared memory systems.

A more powerful alternative to polyhedra would be the use of finite unions of
polyhedra. The cost, both in terms of memory use and computation time, would
certainly be more important. But it would increase the accuracy of analyses by avoiding
inexact unions or differences.

Acknowledgments

I am thankful to Corinne Ancourt, Fabien Coelho, Francois Irigoin, Pierre Jouvelot
and Alexis Platonoff for their careful reading, and their helpful comments.

14

References

1]

2]

Corinne Ancourt and Francois Irigoin. Scanning polyhedra with DO loops. In Symposium
on Principles and Practice of Parallel Programming, April 1991.

Béatrice Apvrille-Creusillet. Régions exactes et privatisation de tableaux (exact array
region analysis and array privatization). Master’s thesis, Université Paris VI, France,
September 1994. Available via http://www.cri.ensmp.fr/"creusil.

M. Berry et al. The PERFECT Club benchmarks: Effective performance evaluation of
supercomputers. Technical Report CSRD-827, Center for Supercomputing Research and
Development, University of Illinois, May 1989.

D. Callahan and K. Kennedy. Analysis of interprocedural side effects in a parallel pro-
gramming environment. Journal of Parallel and Distributed Computing, 5:517-550, 1988.

Fabien Coelho. Compilation of I/O communications for HPF. In Frontiers’95, February
1995. Available via http://www.cri.ensmp.fr/"coelho.

Jean-Francois Collard. Automatic parallelization of while-loops using speculative execu-
tion. International Journal of Parallel Programming, 23(2):191-219, 1995.

Béatrice Creusillet and Frangois Irigoin. Interprocedural array regions analyses. Technical
report A-270, CRI, Ecole des Mines de Paris, March 1995. Submitted to LCPC’95.

Paul Feautrier. Dataflow analysis of array and scalar references. International Journal of
Parallel Programming, 20(1):23-53, September 1991.

Francois Irigoin. Interprocedural analyses for programming environments. In Workshop
on Environments and Tools for Parallel Scientific Computing, September 1992.

Francois Irigoin, Pierre Jouvelot, and Rémi Triolet. Semantical interprocedural paralleliza-
tion : An overview of the PIPS project. In International Conference on Supercomputing,
June 1991.

Chung-Chi Jim Li, Elliot M. Stewart, and W. Kent Fuchs. Compiler-assisted full check-
pointing. Software : Practice and Ezperience, 24(10):871-886, October 1994.

Vadim Maslov. Lazy array data-flow analysis. In Symposium on Principles of Programming
Language, pages 311-325, January 1994.

Ravi Mirchandaney, Seema Hiranandani, and Ajay Sethi. Improving the performance of
DSM systems via compiler involvement. In International Conference on Supercomputing,
pages 763-772, November 1994.

William Pugh. A practical algorithm for exact array dependence analysis. Communications
of the ACM, 35(8):102-114, August 1992.

Rémi Triolet. Interprocedural analysis for program restructuring with parafrase. Technical
report 538, Center for Supercomputing Research and Development, University of Illinois,
December 1985.

Rémi Triolet, Paul Feautrier, and Francgois Irigoin. Direct parallelization of call statements.
In Proceedings of the ACM Symposium on Compiler Construction, 1986.

15

