
IN and OUT Array Region Analyses

B�eatrice Creusillet� creusillet�cri�ensmp�fr

Centre de Recherche en Informatique� �Ecole Nationale Sup�erieure des Mines de Paris�

��� rue Saint�Honor�e� ����� Fontainebleau Cedex� France	

Abstract

In order to perform powerful program optimizations� an exact interprocedural

analysis of array data �ow is needed� For that purpose� two new types of array

region are introduced� IN and OUT regions represent the sets of array elements�

the values of which are imported to or exported from the current statement or

procedure� Among the various applications are� compilation of communications

for message�passing machines� array privatization� compile�time optimization of

local memory or cache behavior in hierarchical memory machines�

Introduction

The optimization of scienti�c programs for distributed memory machines� hierarchical
memory machines or fault�tolerant computing environments is a particularly trouble�
some problem that requires a precise intra� and inter�procedural analysis of array data
�ow�

A recent study ��	 has opened up wide perspectives in this area� It provides an
exact analysis of array data �ow� originally in monoprocedural programs with static
control� This last constraint has since been partially removed �
�� �	� to the detriment
of the accuracy of the results� Furthermore� this method has not yet been extended to
interprocedural analyses� and its complexity makes it unpracticable on large programs�

Another approach is to calculate conservative summaries of the e
ects of procedure
calls on sets of array elements �
�� �	� They allow the analysis of large programs� thanks
to their weak complexity �in practice�� But since these analyses are �ow insensitive� and
since they do not precisely take into account the modi�cations of the values of integer
scalar variables� they are not accurate enough to handle powerful optimizations�

In PIPS �
�	� the Interprocedural Parallelizer of Scienti�c Programs developed at
�Ecole des Mines de Paris� we have extended Triolet�s array regions �
�	 to calculate sum�
maries that exactly represent the e
ects of statements and procedures upon sets of array
elements ��	� whereas the regions originally de�ned by Triolet were over�approximations

of these e
ects� The resulting READ�WRITE regions are already used to e�ciently com�
pile HPF ��	� However� they cannot be used to compute array data �ow� and are thus
insu�cient for other optimizations such as array privatization�

We therefore introduce two new types of exact regions� for any statement or proce�
dure� IN regions contain its imported array elements� and OUT regions represent its set
of live array elements� For a massively parallel machine� these regions could be used to






calculate the communications before and after the execution of a piece of code� They
can also be used to privatize array sections ��	� For a hierarchical memory machine�
they provide the sets of array elements that are used or reused� and hence should be
prefetched �IN regions� or kept �OUT regions� in caches or local memories �
�	� the array
elements that do not appear in these sets and that are accessed in the current piece
of code� are only temporaries� and should be handled as such� For fault�tolerant sys�
tems� checkpointing �

	 is a software solution that regularly saves the current state� as
they provide the set of elements that will be used in further computations� IN and OUT

regions could be used to reduce the amount of data to be saved�

This article is organized as follows� In Section 
� we present an example that
motivates the use of IN and OUT regions� and highlights the main di�culties of their
computation� Some necessary background is reviewed in Section �� Exact regions
are then de�ned in Section �� along with the operators to manipulate them� Section �
introduces IN and OUT regions� The details of their computation for the main structures
of the fortran language are then presented in Sections � and �� We conclude in
Section ��

� Motivating example

In the remainder of this article� we shall consider the contrived fortran program of
Figure 
 to illustrate the main features of the computation of IN and OUT regions�

�� K � FOO��

	� DO I � �
N

�� DO J � �
N

�� WORK�J
K� � J 
 K

ENDDO

�� CALL INC��K�

�� DO J � �
N

�� WORK�J
K� � J�J � K�K

�� A�I� � A�I�
WORK�J
K�
WORK�J
K���

ENDDO

ENDDO

SUBROUTINE INC��I�

I � I � �

END

Figure 
� Sample program

The purpose is to prove that any iteration of the I loop neither imports nor exports
any element of the array WORK� In other words� if there is a read reference to an element
of the array WORK� it has been previously initialized in the same iteration� and it is not
reused in the subsequent iterations �we assume that the array WORK is not used anymore
after the execution of the I loop�� An optimizing compiler would conclude that the
part of the array WORK that is handled in the I loop could be privatized�

There are two main di�culties in our example� First� di
erent elements of WORK are
referenced in several instructions� We shall need a way to summarize these accesses
within a single representation� by using a sort of union operator� Second� these refer�
ences� and thus their representations� depend on the value of the variable K� which is
unknown at the entry of the I loop� and is modi�ed by the instruction �� We shall need
a way to modelise this modi�cation in order to obtain representations that depend on

�



the same value of K� and hence can be merged �for instance��
The next two sections present the tools we shall use to perform the analysis of our

example�

� Transformers and Preconditions

In pips the parallelization process is divided into several phases� either analyses or
program transformations� Intraprocedural analyses are performed on the hierarchical

control �ow graph of the routines� The nodes of these graphs correspond to the for�

tran language structures �DO� IF� sequence of instructions� assignment� call� � � � �� or
are themselves small control �ow graphs� when a fragment of code is unstructured
�use of GOTOs�� Interprocedural analyses propagate information over the program call

graph� This graph is assumed acyclic� and the analyses can be performed bottom�up
or top�down�

Two kinds of analyses are of interest for the remainder of this paper� transformers

and preconditions ��	�
Transformers abstract the e
ects of instructions upon the values of integer scalar

variables by giving the a�ne relations that exist between their values before and after
the execution of a statement or procedure call� In equations they are denoted by the
letter T � whereas in programs they appear under the form T�args� fpredg� where args

is the list of modi�ed variables� and pred gives the non trivial relations existing between
the initial values �su�xed by �init� and the new values of variables� In Figure �� each
instruction is preceded by its corresponding transformer� A predicate with no constraint
�Instruction 
� indicates that the transformation could not be represented by a set of
linear constraints� When it is computable� the transformer of a loop gives its invariant
�Instruction ���

Preconditions are predicates over integer scalar variables� They hold just before
the execution of the corresponding instruction� In Figure �� they appear as P�vars�

fpredg� where vars is the list of modi�ed variables since the beginning of the current
routine� because preconditions abstract the e
ects of the routine from its entry point
to the current instruction�

Transformers are propagated backward� while preconditions are propagated for�
ward� If T� and P� correspond to the instruction S�� and P� to the instruction S�
immediately following S�� then P� � T��P���

� Regions� de�nitions and operators

Array regions are sets of array elements described by equalities and inequalities de�ning
a convex polyhedron �
�	� Two other characteristics have been introduced in PIPS to
represent the e
ects of statements and procedures upon array elements�

� the action upon the elements of the region� READ �R� for a use or WRITE �W� for a
de�nition�

� the approximation of the region� MAY if the region is an over�approximation of the
set of array elements actually referenced in the corresponding piece of code� MUST
if the region exactly represents this set �exact region��

�



C P�� fg

C T�K� fg

�� K � FOO��

C P�K� fg

C T�I�K� fK����K�init�Ig

	� DO I � �
N

C P�I�K� f�	�I� I	�Ng

�� DO J � �
N

C P�I�J�K� f�	�I� I	�N� �	�J� J	�Ng

�� WORK�J
K� � J 
 K

ENDDO

C P�I�K� f�	�I� I	�Ng

C T�K� fK��K�init��g

�� CALL INC��K�

�� DO J � �
N

C P�I�J�K� f�	�I� I	�N� �	�J� J	�Ng

�� WORK�J
K� � J�J � K�K

�� A�I� � A�I�
WORK�J
K�
WORK�J
K���

ENDDO

ENDDO

Figure �� Transformers and preconditions

For instance� the region�

�A���
����W�MUST�f����I
������g�

where �� et �� respectively represent the �rst and second dimensions of A� corresponds
to a de�nition of the element A�I
I��

In order to manipulate regions and propagate them along the control �ow graph
of the program� we need several binary operators� union ���� intersection ���� and
di
erence ���� We also need unary operators �T����� � T�����nI and projI� to deal with
variables of the program that are modi�ed� These operators are presented below�

Union

The union operator is used to merge two regions� Unfortunately� the union of two
convex polyhedra is not necessarily a convex polyhedron� The operator � we use
instead is the convex hull� It may contain points that do not belong to the original
polyhedra� Thus� the resulting region is a MAY region� The third column in Table 

gives the approximation of the resulting region against the characteristics of the initial
regions�

Intersection

The intersection of two convex polyhedra is a convex polyhedron� It follows that the
intersection of two MUST regions is a MUST region� The impact of the approximations of
the initial regions is summarized in the fourth column of Table 
�

�



R� R� R��R� R� � R� R� �R�

MUST MUST MUST� i
 exact convex hull MUST R� �R�� MUST i
 exact
MUST MAY MUST� i
 R� � R� MAY R�� MUST i
 R� � R� � �
MAY MUST MUST� i
 R� � R� MAY R� �R�� MAY

MAY MAY MAY MAY R�� MAY

Table 
� Binary operators on regions

Di�erence

The di
erence of two convex polyhedra is not necessarily a convex polyhedron� The
chosen operator �denoted �� gives an over�approximation of the actual di
erence of
the original regions� Its features are described in Table 
� Column ��

Translation from one store to another

The linear constraints de�ning a region often involve integer scalar variables from the
program �e�g� ����I�� Their values� and thus the region� are relative to the current
store� If we consider the statement I � I 
 �� the value of I is not the same in the
stores preceding and following the execution of the instruction� Thus� if the polyhedron
of a region is ����I before the execution of I � I 
 �� it must be ����I�� afterwards�

To apply one of the preceding operators to two regions� they must be relative to the
same store� We shall call T����� the transformation of a region relative to the store ��
into a region relative to the store ���

This transformation has been described in ��	� Very brie�y� it consists in adding
to the predicate of the region� the constraints of the transformer that abstracts the
e
ects of the program between the two stores� The variables of the original store ����
are then eliminated� The only variables that remain in the resulting polyhedron all
refer to the store ��� Thus� two transformations� T�k��k��

and T�k����k
� correspond to

the transformer Tk associated to the statement Sk� depending on the variables that are
eliminated�

For instance� let us assume that �� is the store preceding the statement I � I 
 ��
�� the store following it� and f����I�initg the predicate of a region relative to ��� We
�rst add the transformer corresponding to the statement �T�I� fI��I�init
�g�� This
gives the predicate f����I�init
 I��I�init
�g� We then eliminate I�init� because it
refers to ��� We obtain f����I��g� which is relative to ���

The elimination of a variable from a convex polyhedron may introduce integer points
that do not belong to the actual projection� Ancourt or Pugh �
� 
�	 have proposed
su�cient conditions under which this elimination is exact� They do not apply in our
case because program entities must be considered as parameters �symbolic constants�
for the polyhedron� and not as variables�

For instance� the elimination of I from f����I
 I��Jg gives f����Jg� It satis�es the
usual conditions for an exact projection� However� these two polyhedra do not describe
the same region� The �rst contains only one element� uniquely de�ned by the value of
I in the current store� even if we do not know it� Whereas the second contains all the
elements such that �� is smaller than the current value of J�

�



On the contrary� the elimination of I from f	�����I
 	I��Jg� which gives f������Jg�
is usually considered inexact� In our case� and referring to a given store� �� is uniquely
de�ned in both cases by the values of the variables appearing in both polyhedra�

Since this is not the purpose of our paper� we refer the reader to ��	 for su�cient
conditions of the exact projection of a region polyhedron along a program variable�
and their veri�cation� When these new conditions are not veri�ed� the elimination is
performed� but the original region becomes a MAY region�

Sometimes� we shall need to eliminate all but one variable �e�g� I�� We shall denote
the corresponding transformation T�����nI �

Elimination of loop indices

During the propagation of regions in a linear block of instructions� a loop index is
considered as a normal program entity� It receives a particular treatment only when
propagating regions outward or inward the corresponding loop� because it then takes
successively a whole range of values �iteration space�� instead of a single one� Thus�
the elimination of a loop index from the polyhedron of a region is exact if the following
conditions are veri�ed�


� the expressions of the lower and upper bounds� and of the increment� are a�ne�

�� the absolute value of the increment is equal to 
�

�� the conditions of Ancourt or Pugh for an exact projection are veri�ed�

The �rst two conditions ensure that the iteration space can be described exactly by
a convex polyhedron over the program entities �i�e� lb � i � ub if lb and ub are
respectively the upper and lower bounds of the loop index�� We shall denote projI the
elimination of loop index I�

Constraining the regions predicate

In order to have more information on � variables� the constraints of the preconditions
are systematically added to the predicate of the region� This is particularly useful
when merging two regions� For instance� f����Ig � f����Jg � fg� If we add the
current preconditions �e�g� fI��Jg� to the original regions� we obtain f����I
I��Jg

instead of fg� This operation increases the accuracy of the analysis� without modifying
the de�nition of regions�

The purpose of this paper is not to describe the computation of READ and WRITE

regions� However� since we shall need them for the calculation of IN and OUT regions�
we provide those concerning the array WORK in our current example� in Figure �� Each
elementary instruction is preceded by its READ and WRITE regions� and the regions pre�
ceding a DO are the summary regions for the loop� Notice that the variable K is modi�ed
in the body of the I loop� Therefore� K does not represent the same value in the regions
preceding and following the call to INC��

�



�� K � FOO��

C 	WORK�������
W
MUST
f�	���� ��	�N� K	���� ��	�K�Ng�

C 	WORK�������
R
MUST
f�	���� ��	�N� K	���� ��	�K�Ng�

	� DO I � �
N

C 	WORK�������
W
MUST
f�	���� ��	�N� ����K� �	�I� I	�Ng�

�� DO J � �
N

C 	WORK�������
W
MUST
f����J� ����K� �	�J� J	�N� �	�I� I	�Ng�

�� WORK�J
K� � J 
 K

ENDDO

�� CALL INC��K�

C 	WORK�������
W
MUST
f�	���� ��	�N� ����K� �	�I� I	�Ng�

C 	WORK�������
R
MUST
f�	���� ��	�N� K
�	���� ��	�K� �	�I� I	�Ng�

�� DO J � �
N

C 	WORK�������
W
MUST
f����J� ����K� �	�J� J	�N� �	�I� I	�Ng�

�� WORK�J
K� � J�J � K�K

C 	WORK�������
R
MUST
f����J� K
�	���� ��	�K� �	�J� J	�N� �	�I� I	�Ng�

�� A�I� � A�I�
WORK�J
K�
WORK�J
K���

ENDDO

ENDDO

Figure �� READ�WRITE regions

� IN and OUT Regions

READ and WRITE regions summarize the exact e
ects of statements and procedures upon
array elements� However� they do not represent the �ow of array elements� the knowl�
edge of which is necessary to achieve many optimizations� For that purpose� we intro�
duce two new types of region� IN and OUT regions�

IN regions contain the array elements� the values of which are �MUST� or may be
�MAY� imported by the current piece of code� These are the elements that are read before
being possibly rede�ned by another instruction of the same fragment� In Figure 
� in
the body of the second J loop� the element WORK�J
K� is read� but its value is not
imported because it is previously de�ned in the same iteration� On the contrary� the
element WORK�J
K��� is imported from the �rst J loop�

OUT regions corresponding to a piece of code contain the array elements that it
de�nes� and that are �MUST� or may be �MAY� used afterwards� in the execution order of
the program� These are the live or exported array elements� In the program of �gure 
�
the �rst J loop exports all the elements of the array WORK it de�nes towards the second
J loop� whereas� the elements of WORK de�ned in the latter are not exported towards
the next iterations of loop I�

The interprocedural propagation of IN regions is similar to that of READ�WRITE re�
gions ��� �	� It is a backward propagation� IN regions corresponding to formal pa�
rameters are translated into regions corresponding to actual parameters� at each call
site� On the contrary� the propagation of OUT regions on the call graph is a forward
propagation� actual parameters are translated into formal ones at each call site� and
the resulting regions are merged into a unique summary� which forms the OUT regions
of the procedure� For both types of region� the propagation consists in adding to the
predicate of the region the equation giving the relations between the subscript values

of the arrays in terms of � variables� The � variables of the formal �resp� actual� array

�



in case of IN �resp� OUT� regions are then eliminated� This can be optimized by con�
sidering the similar dimensions of both arrays� This method handles array reshaping�
which was only partially treated in �
�	�

We now limit ourselves to the intraprocedural computation of IN and OUT regions�
For that purpose� we use the following notations� If Sk is the k�th instruction of a
sequence of complex instructions� �k and �k�� are the memory stores immediately
preceding and following it� and Wk� INk� and OUTk are respectively its WRITE� IN and
OUT regions relative to the store �k�

� Computation of IN regions

In this section� we describe the calculation of IN regions of an assignment� a sequence
of complex instructions� or a loop� We assume that the code is correct� i�e� that no
variable or part of a variable is used without being initialized� This assumption is often
made in parallelizing compilers� where the purpose is not to verify programs� but to
transform and optimize them�

��� Assignment

For an assignment� IN regions are identical to READ regions because the values of the
referenced elements cannot come from the assignment itself� In the statement � �A�I�
� A�I�
WORK�J
K���
WORK�J
K�� in the program of Figure 
� the elements that are read
are WORK�J
K���� WORK�J
K� and A�I�� These are also the elements� the values of which
are imported� Thus� the IN regions are�

�WORK���
����IN�MUST�f����J
 K������
 ����K
 ���I
 I��N 
 ���J
 J��Ng�
�A�����IN�MUST�f����I
 ���I
 I��N 
 ���J
 J��Ng�

��� Sequence of instructions

Let us �rst take an example� We consider the body of the second J loop in Figure 
�
which consists in the sequence of instructions � and �� The instruction � imports two
elements of the array WORK� WORK�J
K� and WORK�J
K���� This is represented by the
region��

�WORK���
����IN�MUST�f����J
 K������
 ����Kg�

One of these elements� WORK�J
K�� is initialized in the instruction �� Since the instruc�
tion � imports no array element� the sequence of instructions does not import the value
of WORK�J
K�� and the IN region of the sequence is �nally obtained by removing the el�
ements of the WRITE region of the instruction � from the IN region of the instruction ��

�WORK���
����IN�MUST�f����J
 K������
 ����Kg�
� �WORK���
����W�MUST�f����J
 ����Kg�
� �WORK���
����IN�MUST�f����J
 ����K��g�

The IN region of the sequence of instructions � and � only contains the element
WORK�J
K����

�Without the constraints from the preconditions� since integer scalar variables are not modi�ed in
this loop body�

�



We now give the general method� We are interested in the region INB corresponding
to the block �or sequence� of instructions B � S�� � � � � Sn� and relative to the store �B �
�� preceding the execution of B� It is the set of array elements that are read by the
instructions of B� and the values of which come from the instructions preceding B�

For each instruction Sk� the corresponding regions Wk and INk� relative to the
store �k preceding Sk are supposed to be known�

We denote IN �
k �k � �
� n	� the IN regions corresponding to the subsequence Sk� � � � Sn�

INB is then de�ned by�
���
��

IN �
n � INn

IN �
k � INk � � T�k����k

�IN �
k��� � Wk 	

INB � IN �
�

T�k����k
translates the IN regions corresponding to Sk��� � � � � Sn in the same store �k as

the WRITE and IN regions of Sk� T�k����k
�IN �

k����Wk represents the regions imported
by the subsequence Sk��� � � � � Sn� but not de�ned by the statement Sk� Merged with
INk� they give the set of elements that are read by the sequence Sk� � � � � Sn before being
possibly rede�ned by any other statement of the same subsequence�

��� DO loop

Our purpose is now to compute the summary IN regions of the second J loop in Figure 
�
given the WRITE and IN regions of its body at iteration J�

�WORK���
����W�MUST�f����J
 ����K
 ���I
 I��N
 ���J
 J��Ng�
�WORK���
����IN�MUST�f����J
 ����K��
 ���I
 I��N
 ���J
 J��Ng�

The previous IN region represents the array elements that are imported by the iter�
ation J from the instructions preceding the loop� and from the preceding iterations
�J� such that fJ���J��g�� We must �rst remove those elements that are imported from
the previous iterations� hence those that are written by these iterations� The next
region represents the elements written by a single iteration J� preceding J�

�WORK���
����W�MUST�f����J
�
 ����K
 ���J�
 J���J��
 J��N
 ���I
 I��Ng�

By eliminating the loop index J�� we obtain the set of array elements written by all the
iterations preceding the iteration J�

�WORK���
����W�MUST�f�����
 ����J��
 ����K
 J��N
 ���I
 I��Ng�

We now remove these elements from the set of elements imported by the iteration J�

�WORK���
����IN�MUST�f����J
 ����K��
 ���I
 I��N
 ���J
 J��Ng�
� �WORK���
����W�MUST�f�����
 ����J��
 ����K
 J��N
 ���I
 I��Ng�
� �WORK���
����IN�MUST�f����J
 ����K��
 ���I
 I��N
 ���J
 J��Ng�

This last region represents the set of elements imported by the iteration J from the
instructions preceding the loop� We then eliminate J to obtain the set of elements
imported by all the iterations from the instructions preceding the loop�

�WORK���
����IN�MUST�f�����
 ����N
 ����K��
 ���I
 I��Ng�

Hence� the loop imports all the elements of the array WORK such that ����K���

�



We now give the general equations to compute the regions INL corresponding to the
DO loop L� given the WRITE and IN regions of its body� They are not only functions
of the value i of the loop index I� but also of the variables modi�ed in the loop body
�collectively denoted v�� Hence� we denote them W �i� v� and IN�i� v� for iteration i�

v variables are themselves functions of the loop index� We must eliminate them to
obtain WRITE and IN regions that are functions of the sole loop index �and of course of
variables that do not vary in the loop body�� This is achieved by using the operator
T�L��inI � �L being the store preceding the loop L� and �i the store preceding the
iteration such that I � i� This operator is based on the transformer of the loop body�
which represents the loop invariant �when it is computable�� In order to simplify the
next equation� we denote�

W �i� � T�L��inI� W �i� v� �
IN�i� � T�L��inI� IN�i� v� �

The IN regions of a DO loop are then given by the following equation�

INL � projI � IN�i�� projI��W �i��s�i��s�i� 	

where s is the sign of the loop increment�

projI��W �i��s�i��s�i� represents the array elements written by all the iterations i� pre�
ceding the iteration i� Thus� IN�i��projI��W �i��s�i��s�i� contains the elements imported
by the iteration i� but not from the preceding iterations� And �nally� projI � IN�i� �
projI��W �i��s�i��s�i� 	 is the set of array elements imported by all the iterations of the
loop from the instructions preceding it�

	 Computation of OUT regions

The computation of OUT regions is a forward analysis� Thus� we do not calculate the
OUT regions of an instruction� a sequence of instructions� or a loop� but the OUT regions
of the instructions of a sequence �given the OUT regions of the sequence�� or of the body
of a loop �given the OUT regions of the loop�� The OUT region corresponding to the whole
program is the empty set��

��� Instructions of a sequence

As an illustration� we consider the body of the second J loop in Figure 
� We assume
that its OUT region concerning the array WORK is the empty set� We want to calculate
the set of elements of the array WORK that are exported by the instructions � and ��

The array elements exported by the instruction � are those that it de�nes �here �
for the array WORK�� and that are exported by the whole sequence ���� this instruction
exports no element of the array WORK�

The instruction � may export the elements it de�nes toward the instructions follow�
ing the execution of the whole sequence� since the latter exports no elements� neither

�I�Os are performed by the program itself� and they are taken into account during the computation
of OUT regions�


�



does the instruction �� It may also export the elements it de�nes toward the instruc�
tion �� these are the element written by the instruction � and imported by the instruc�
tion � �not just the written elements because the instruction � might be a complex
instruction��

�WORK���
����W�MUST�f����J
 ����Kg�
� �WORK���
����IN�MUST�f����J
 K������
 ����Kg�
� �WORK���
����W�MUST�f����J
 ����Kg�

The �rst instruction exports the element it de�nes �WORK�J
K�� towards the second
one�

We now consider the general problem� The region OUTB corresponding to the se�
quence B � S�� � � � � Sn� and relative to the store �B � �� preceding it� is supposed to
be known� We are interested in the regions OUTk corresponding to each instruction Sk�
These regions contain the array elements written by the current instruction� and the
values of which are used by the next statements� inside and outside the sequence�

We call OUT �
k the set of array elements de�ned by the subsequence S�� � � � � Sk� and

the values of which are used after the execution of B �i�e� are exported outside of B��
The equations de�ning OUTk are then�

�����
����

OUT �
n
� T�B��n�OUTB�

OUTn � Wn �OUT �
n

OUT �
k � T�k����k

�OUT �
k�� � Wk���� � k � �
��n� 
	

OUTk � Wk � �OUT �
k � T�k����k

�IN �
k��� 	� � k � �
��n� 
	

OUTB is the OUT region corresponding to B � S�� � � � � Sn� It is relative to the store
�B preceding its execution� Therefore� T�B��n�OUTB� is the region corresponding to
S�� � � � � Sn� but relative to the store �n preceding Sn� This is exactly the de�nition of
OUT �

n
� Thus OUT �

n
� T�B��n�OUTB��

The elements exported by the subsequence S�� � � � � Sk towards the outside of B� are
those that exported by the subsequence S�� � � � � Sk�� towards the outside of B� minus
the elements exported by the instruction Sk��� The corresponding OUT regions must be
relative to the store �k� which gives�

OUT �
k
� T�k����k

�OUT �
k��

�Wk���

Finally� the OUT regions of the instruction Sk are the regions written by Sk and
exported towards the outside of B �Wk � OUT �

k�� to which we must add the regions
written by Sk and exported towards Sk��� � � � � Sn �Wk � T�k����k

�IN �
k����� This gives�

OUTk � Wk � � OUT �
k � T�k����k

�IN �
k��� 	

��� Body of a DO loop

First� let us take a simple example� We consider the I loop in Figure 
� We want to
compute the OUT regions of its body concerning the array WORK� assuming that the OUT

region of the loop is the empty set and given the WRITE and IN regions of the body��

�f����g represents the empty set�







�WORK���
����W�MUST�f�����
 ����N
 K����
 ����K
�
 ���I
 I��Ng�
�WORK���
����IN�MUST�f����g�

We �rst compute the set of array elements exported by the iteration I towards the
outside of the loop� it is the empty set� because the OUT region of the loop is the empty
set�

We then compute the set of array elements exported by the iteration I toward the
subsequent iterations I� �fI
���I�g�� These are the elements written by the iteration I�
and�


� imported by the subsequent iterations I��

�� but not de�ned by the iterations I�� between the iteration I and the iteration I��

This last constraint ensures that� among the elements read by the iteration I�� we do
not keep the elements that are imported from the iterations between I and I�� but we
keep those that may come from the iteration I�

Here� the IN regions of the loop body are the empty set� Thus� the iteration I does
not exports the elements it de�nes toward the subsequent iterations� its OUT region is
the empty set�

We now consider the general case� We assume that we know the OUT regions OUTL
corresponding to the loop L� We want to calculate the OUT regions of its body� OUT �i��
if i is the value of the loop index I� given its WRITE and IN regions� W �i� and IN�i� �we
have seen in section ��� how to get rid of variables that vary in the loop body��

The loop body represents any iteration i� Its OUT regions contain the elements that
are de�ned during this iteration� and that are used� either in the next iterations� or
outside the loop� This gives the following equation�

OUT �i� � f � W �i� � projI��W �i��s�i��s�i� 	 � T�L��i�OUTL� g �
fW �i� � � projI��IN�i��s�i��s�i � projI���W �i���s�i�s�i���s�i��� 	 g

where s represents the sign of the loop increment�
projI��W �i��s�i��s�i� contains the array elements that are de�ned by all the iter�

ations i� posterior to i� Thus� W �i� � projI��W �i��s�i��s�i� contains the elements
that are de�ned by iteration i� and that are not de�ned in the subsequent iterations�
T�L��i�OUTL� represents the OUT regions of loop L� but relative to the store preceding
the iteration i� Then� � W �i� � projI��W �i��s�i��s�i� 	 � T�L��i�OUTL� contains the
array elements that are de�ned by the iteration i and that are exported towards the
outside of the loop�

Similarly� projI���W �i���s�i�s�i���s�i�� represents the elements that are written by all
the iterations between iterations i and i�� Then� IN�i��s�i��s�i � projI���W �i���s�i�s�i���s�i��
contain the elements imported by iteration i� but that do not come from any it�
eration posterior to i� i�e� that are imported either from the instructions preced�
ing the loop or from iterations up to iteration i �included�� The projection along
i� gives the set of elements that are imported by all iterations following iteration i�
either from iteration i and its predecessors� or from the outside of the loop� Thus�
W �i� � � projI��IN�i��s�i��s�i � projI���W �i���s�i�s�i���s�i��� 	 exactly represents the ele�
ments that are de�ned by the iteration i and that are e
ectively used in the subsequent
iterations�


�



Note� In order to ensure the precision of the analysis� it is necessary to add to the
predicate of T�L��i�OUTL� the preconditions induced by the variation domain of the
loop index� i�e� lb � i � ub if lb and ub are respectively its lower and upper bounds�

We now take another example to illustrate some features of the previous algorithm�
We consider the I loop in the program of �gure 
� We assume that the OUT regions of
the loop concerning the array A are�

�A�����OUT�MUST�f�����
 ����Ng�

We �rst calculate T�L��i�OUTL�� We add the constraints of the loop transformer�
T�I
K�fK��K�INIT
I��g� to the polyhedron of the region� along with the conditions on
the variation domain of I� i�e� f���I
 I��Ng� This leads to�

�A�����OUT�MUST�f�����
 ����N
 ���I
 I��Ng�

Given that the WRITE and IN regions of the loop body concerning the array A are�

�A�����W�MUST�f����I
 ���I
 I��Ng�
�A�����IN�MUST�f����I
 ���I
 I��Ng�

we successively have�

W �i�
s�i��s�i � �A�����W�MUST�f����I
�
 ���I
 I
���I�
 I���Ng�

projI��W �i�
s�i��s�i
 � �A�����W�MUST�fI
�����
 ����N
 ���Ig�

W �i
 � projI� �W �i�
s�i��s�i
 � �A�����W�MUST�f����I
 ���I
 I��Ng�

�W �i
 � projI� �W �i�
s�i��s�i
 � � T�L��i�OUTL
 �

�A�����W�MUST�f����I
 ���I
 I��Ng�

� �A�����OUT�MUST�f�����
 ����N
 ���I
 I��Ng�

� �A�����OUT�MUST�f����I
 ���I
 I��Ng�

This last region represents the elements exported outward the loop� We now calculate
the set of elements exported towards the other iterations�

W �i��
s�i�s�i���s�i� � �A�����W�MUST�f����I
��
���I
I
���I��
I��
���I�
I���Ng�

projI�� �W �i��
s�i�s�i���s�i�
 � �A�����W�MUST�fI
�����
 ��
���I
�
 I���N
 ���Ig�

IN�i�
s�i��s�i � �A�����IN�MUST�f����I
�
 ���I
 I
���I�
 I���Ng�

IN�i�
s�i��s�i � projI�� �W �i��
s�i�s�i���s�i�
 �

�A�����IN�MUST�f����I
�
 ���I
 I
���I�
 I���Ng�

projI��IN�i�
s�i��s�i � projI�� �W �i��
s�i�s�i���s�i�

 �

�A�����IN�MUST�fI
�����
 ����N
 ���Ig�

W �i
 � � projI��IN�i�
s�i��s�i � projI�� �W �i��
s�i�s�i���s�i�

 � �

�A�����W�MUST�f����I
 ���I
 I��Ng�

� �A�����IN�MUST�fI
�����
 ����N
 ���Ig�

� �

Thus� the iteration i exports no element of A towards the subsequent iterations� And
�nally�

OUT �i
 � �A�����OUT�MUST�f����I
 ���I
 I��Ng�

We provide in Figure � the IN and OUT regions of the program of Figure 
� given
the OUT regions of the outer loop�


�



�� K � FOO��

C 	A����
IN
MUST
f�	���� ��	�Ng

C 	A����
OUT
MUST
f�	���� ��	�Ng

	� DO I � �
N

C 	WORK�������
OUT
MUST
f�	���� ��	�N� ����K� �	�I� I	�Ng�

�� DO J � �
N

C 	WORK�������
OUT
MUST
f����J� ����K� J	�I� J	�N� �	�I� I	�Ng�

�� WORK�J
K� � J 
 K

ENDDO

�� CALL INC��K�

C 	A����
OUT
MUST
f����I� �	�I� I	�Ng

C 	WORK�������
IN
MUST
f�	���� ��	�N� ����K
�� �	�I� I	�Ng�

�� DO J � �
N

C 	WORK�������
OUT
MUST
f����J� ����K� J	�I� J	�N� �	�I� I	�Ng�

�� WORK�J
K� � J�J � K�K

C 	A����
IN
MUST
f����I� �	�I� I	�N� J	�I� J	�Ng

C 	A����
OUT
MUST
f����I� �	�I� I	�N� J	�I� J	�Ng

C 	WORK�������
IN
MUST
f��	��J� K
�	���� ��	�K� J	�I� J	�N� �	�I� I	�Ng�

�� A�I� � A�I�
WORK�J
K�
WORK�J
K���

ENDDO

ENDDO

Figure �� IN and OUT regions


 Conclusion

We have introduced two new types of array regions that can be used to compute the
�ow of array elements and perform powerful optimizations� IN and OUT regions represent
the sets of array elements that are imported or exported by the corresponding piece
of code� Their intraprocedural propagation relies on a preliminary analysis of the
e
ects of statements upon integer scalar variables� This locally ensures the accuracy
of the analyses� even when variables occurring in regions expressions are modi�ed�
The current implementation covers all the intraprocedural structures of the fortran
language� along with the interprocedural propagation ��� �	�

Experiments performed on some of the Perfect Club benchmarks ��	 have shown the
practicability of these analyses in spite of the theoretically exponential complexity of
the operators on polyhedra� However� further experiments are needed to determine if
the representation of regions in polyhedral form is precise enough to allow optimizations
such as array privatization� generation of communications in distributed memory ma�
chines� compile�time optimization of cache behavior in hierarchical memory machines�
or improvement of the use of distributed shared memory systems�

A more powerful alternative to polyhedra would be the use of �nite unions of
polyhedra� The cost� both in terms of memory use and computation time� would
certainly be more important� But it would increase the accuracy of analyses by avoiding
inexact unions or di
erences�

Acknowledgments

I am thankful to Corinne Ancourt� Fabien Coelho� Fran�cois Irigoin� Pierre Jouvelot
and Alexis Platono
 for their careful reading� and their helpful comments�


�



References

��� Corinne Ancourt and Fran�cois Irigoin	 Scanning polyhedra with DO loops	 In Symposium

on Principles and Practice of Parallel Programming� April ����	

��� B�eatrice Apvrille�Creusillet	 R�egions exactes et privatisation de tableaux �exact array
region analysis and array privatization
	 Master�s thesis� Universit�e Paris VI� France�
September ����	 Available via http���www	cri	ensmp	fr�
creusil	

��� M	 Berry et al	 The PERFECT Club benchmarks� E
ective performance evaluation of
supercomputers	 Technical Report CSRD����� Center for Supercomputing Research and
Development� University of Illinois� May ����	

��� D	 Callahan and K	 Kennedy	 Analysis of interprocedural side e
ects in a parallel pro�
gramming environment	 Journal of Parallel and Distributed Computing� ���������� ����	

��� Fabien Coelho	 Compilation of I�O communications for HPF	 In Frontiers��	� February
����	 Available via http���www	cri	ensmp	fr�
coelho	

��� Jean�Fran�cois Collard	 Automatic parallelization of while�loops using speculative execu�
tion	 International Journal of Parallel Programming� ����
��������� ����	

��� B�eatrice Creusillet and Fran�cois Irigoin	 Interprocedural array regions analyses	 Technical
report A����� CRI� �Ecole des Mines de Paris� March ����	 Submitted to LCPC���	

��� Paul Feautrier	 Data�ow analysis of array and scalar references	 International Journal of
Parallel Programming� ����
������� September ����	

��� Fran�cois Irigoin	 Interprocedural analyses for programming environments	 In Workshop

on Environments and Tools for Parallel Scienti
c Computing� September ����	

���� Fran�cois Irigoin� Pierre Jouvelot� and R�emi Triolet	 Semantical interprocedural paralleliza�
tion � An overview of the PIPS project	 In International Conference on Supercomputing�
June ����	

���� Chung�Chi Jim Li� Elliot M	 Stewart� and W	 Kent Fuchs	 Compiler�assisted full check�
pointing	 Software � Practice and Experience� �����
��������� October ����	

���� Vadim Maslov	 Lazy array data��ow analysis	 In Symposium on Principles of Programming

Language� pages �������� January ����	

���� Ravi Mirchandaney� Seema Hiranandani� and Ajay Sethi	 Improving the performance of
DSM systems via compiler involvement	 In International Conference on Supercomputing�
pages �������� November ����	

���� William Pugh	 A practical algorithm for exact array dependence analysis	 Communications

of the ACM� ����
��������� August ����	

���� R�emi Triolet	 Interprocedural analysis for program restructuring with parafrase	 Technical
report ���� Center for Supercomputing Research and Development� University of Illinois�
December ����	

���� R�emi Triolet� Paul Feautrier� and Fran�cois Irigoin	 Direct parallelization of call statements	
In Proceedings of the ACM Symposium on Compiler Construction� ����	


�


