
Type and E�ect Systems via Abstract Interpretation�

J�er�ome Vouillon

Pierre Jouvelot

CRI� Ecole des Mines de Paris

fvouillon� jouvelotg�cri�ensmp�fr

July ��� ����

Abstract

Abstract interpretation and type and e�ect systems are two well�known frameworks for

the static analysis of programs� While abstract interpretation uses the program control�

�ow to approximate its run�time behavior� type and e�ect systems are based on the pro�

gram structural syntax�

The fundamental result of this paper is to show how these a priori distinct approaches

can be related to each other� shedding a new light on their relative expressiveness� A single

example of static analysis� namely a straightforward program time complexity estimator for

the simply typed lambda�calculus with recursion� is used throughout the paper to present

the core ideas� We show how an abstract interpretation and a type and e�ect system can

be designed for this analysis and prove them equivalent� thus paving the way to a better

understanding of the relative merits of these two frameworks�

Keywords� Static analysis� abstract interpretation� type and e�ect systems� foundations of
program semantics� time complexity�

� Introduction

Abstract interpretation ��� and type and e�ect systems ��� are two well	known frameworks for
the static analysis of programs� Although targeting the same goal� i�e�� obtaining an as	good	as
possible understanding of the program run	time behavior at compile time� these two frameworks
are based on quite di�erent grounds�

� Abstract interpretation uses the program control	
ow to analyze its run	time behavior�
Identi�ers are bound to elements of a lattice of abstract values� and �generally uncom	
putable
 �xpoint computations are approximated to ensure termination of the analysis�

� Type and e�ect systems are based on the program structural syntax� Each expression of
the program is associated to a type and an e�ect� respectively abstracting the value it
evaluates to� and the side	e�ects it performs during evaluation� E�ects� which are also
included within function types� are usually de�ned over an algebraic domain ��� ���� This
requires non	free uni�cation to be performed during type and e�ect reconstruction�

Even though these two approaches seem quite di�erent� the fundamental result of this paper
is to show that these frameworks can indeed be formally related to each other� shedding a new
light on their relative expressiveness�

�This paper is partially supported by the ESPRIT BRA project LOMAPS �������

�



To motivate and simplify the presentation� a single example of static analysis� namely a
straightforward program time complexity estimator for the simply typed lambda	calculus with
recursion ��� ���� is used throughout the paper to present the core ideas� In this system�
an approximation of the number of function applications and variable lookups is obtained for
each non	recursive expression� the special value � being used for recursive ones�� Note that this
assignment is by no means trivial since the full higher	order language is treated and expressions
that use the �xpoint constructor � but are not actually recursive are properly treated�

Both a type and e�ect system and an abstract interpretation for this static analysis are
given� Our main theorem� Theorem �� shows how these two speci�cations are related� e�ectively
allowing one to deduce the type and e�ect system from the abstract interpretation or vice	
versa� This is the �rst time such a formal and clear connection is established between these
two domains�

The structure of the paper is the following� In Section �� we give the general notations used
in the paper� Section � de�nes the object language and gives a dynamic semantics instrumented
with time information� Section � recalls the static type and e�ect system semantics for program
complexity analysis de�ned in ���� Section �� after a brief introduction on Galois connections�
is dedicated to the de�nition of a new abstract interpretation for complexity analysis� ��

abstraction function for values and ��
 abstract semantics� Section � formally relates these two
static semantics� introducing the main Theorem �� Section � suggests possible extensions of
this work with respect to subtyping and polymorphism� Before concluding in Section �� we
survey the related work in Section ��

All proofs are omitted from this abstract� but can be obtained by anonymous ftp on cri�ensmp�fr

in pub�popl���submission�dvi�

� De�nitions and Notations

We here give general de�nitions and explain notations used throughout the paper� We note
A � B the set of total functions from the set A into the set B� while A � B is extended to
partial ones�

Let X and Y be two partially ordered sets� We note sup�x� y
 the least upper bound� if it
exists� of x and y� Let � be a function from X to Y � noted � � X � Y �

� � is monotone� which is written � � X
m
�� Y � i� �u� v � X�u � v � ��u
 � ��v
�

� � is additive� which is written � � X
a
�� Y � i� for any sequence �ui
i�I of elements ui of

X such that supi�I ui exists� supi�I ��ui
 � ��supi�I ui
�

One can notice that an additive function is monotone�
We note f �x 	 v� the function that returns v for x and f y for y di�erent from x� We

sometimes note f � x 
�� v when f x � v�

� Language De�nition

��� Syntax

We use expressions �in Exp
 of the lambda calculus with recursion as our language of study�
For the sake of simplicity in the dynamic semantics� we only allow recursion to be used on
explicit function de�nitions� The classical language syntax is given below�

�	
� used the term long for ��

�



e � Exp ��� x Identi�er in I
�x�e Function de�nition
�f��x�e Recursive function
ee Function application

��� Dynamic Semantics

Since we use time complexity as our example in this paper� the dynamic semantics of this
language departs from the usual one in its time instrumentation� Every expression� in an
environment � � I � V from identi�ers to values� evaluates to a pair formed from a value and
an integer in N denoting the number of evaluation steps performed during evaluation� Without
loss of generality� we assume that all operations in the dynamic semantics take an amount of
time equal to �� The de�nition of values in V is as follows�

v � V ��� b Basic value
h�x�ei� Closure

For our purpose� we do not need to distinguish between di�erent basic values� they are all
gathered under the name b�

The dynamic semantics ����� � Exp � �I � V 
 � �I � N
 speci�es how an expression e is
evaluated in an environment � to yield a value v and time n� We use eager evaluation since it
is easier to de�ne a dynamic semantics with time within this strategy� It is inductively de�ned
as follows�

��x��� � ���x
� �

���x�e��� � �h�x�ei�� �


��e�e���� � �v��� � � n� n� � n��
 if

��
�

��e���� � �h�x�ei�� � n

��e���� � �v�� n�

��e�����x	 v�� � �v��� n��


���f��x�e��� � �v� �
 where v � h�x�ei��f�v�

The two following sections de�ne two di�erent static semantics that strive to approximate
this dynamic semantics� The �rst one �Section �
 uses the framework of e�ect systems� while
the second �Section �
 is based on abstract interpretation� The main result of Section � formally
shows how they relate�

� E�ect System

This section quickly recalls the material presented in ���� Since we are not speci�cally interested
here in typing issues� we restrict ourselves to expressions that can be typed using the rules of
the simply	typed lambda	calculus ����

This static system extends the classical simply	typed lambda calculus with e�ect informa	
tion� The type B corresponds to basic values b� Function types are decorated with latent
e�ect information� this encapsulates the e�ect of the function body� In our example� e�ects�
i�e�� times� are elements of the non	free algebra N� that extends N with the value �� Possibly
non	terminating expressions have time �� while certainly terminating ones correspond to usual
integers� Usual arithmetic operations are extended to N�� � being an absorbing element �e�g��
�� � � �
� The domains of types and e�ects are de�ned below�

t � T ��� B Basic type

t
�
� t Function type

� � N� ��� n Integer
�

�



A type and time system for our language speci�es how every expression e in a typing
environment A � I � T from identi�ers to types in T can be associated to a type t and e�ect �
in N�� The speci�cation of the semantics� using operational rules in the style of ����� is given
in Figure ��

A x � t

A � x � t� �

A�x	 t�� � e � t� �

A � �x�e � t�
�
� t� �

A�f 	 t
�
� t�� � �x�e � t

�
� t�� �

A � �f��x�e � t
�
� t�� �

A � e� � t�
�
� t� ��

A � e� � t�� ��
A � e�e� � t� �� �� � �� � �

Figure �� Static Semantics

The interplay between types and e�ects can be easily seen by looking at the rules for ab	
straction and application� In the abstraction case� the e�ect of the lambda body is encapsulated
within the function type� this e�ect is then exposed when this function is applied� as shown by
the rule for function application� The case for recursive de�nition is a simple extension of the
abstraction rule�

� Abstract Interpretation

We now use the formalism of abstract interpretation to specify an analysis that� as we latter
show� computes information equivalent to the one of Section �� But �rst� we recall some basic
de�nitions and properties of the formal foundations of abstract interpretation�

��� Galois Connections

Let �E��
 and �E����
 be two partial orders� When the order relation is clear from context�
we simply write E instead of �E��
�

De�nition � Let � � E � E� and 	 � E� � E� ��� 	
 is a Galois connection� which is written

E
�

�
�
E�� i�

�p � E� �p� � E�� ��p
 �� p� 
 p � 	�p�


The abstraction function � maps values from the concrete domain E into the abstract one
E�� while the concretization function 	 goes in the opposite direction� This de�nition expresses
the conservative nature of the abstraction process� this correctness criterion can be better seen
in the following corollary�

p � �	 � �
�p
 and �� � 	
�p�
 � p��

One can easily show that � and 	 are additive �and thus monotone
� and that the following
duality relation holds�

�



If �E��

�

�
�
�E����
� then �E����


�

�
�
�E��


Let us look at a few examples of Galois connections� which are used later on�

� �P�E
��

�

�
�
�P�E
��
 shows how one can de�ne an abstraction over sets of values� the

abstraction of a set S is the set of the upper bounds of all elements in S�

�
��S
 � fn� � E
�n � S� n � n�g
	�S�
 � fn � E
�n� � S�� n � n�g

� P�I � E

�

�
�
I � P�E
 maps sets of functions �using set inclusion as partial order
 from

I to E into functions from I to sets of elements of E �using set inclusion on the function
range as partial order
�

�
��F 
 � �x�ff�x

f � F 

	�f �
 � ff � I � E
�x � I� f�x
 � f ��x
g

� The last example �P�A �B
��

�

�
�
P�A
�P�B
 extends Galois connections to products

of sets�

�
��R
 � �fa � A
�b � B� �a� b
 � Rg� fb � B
�a � A� �a� b
 � Rg

	�X�Y 
 � X � Y

New connections can also be designed by using an existing Galois connection� say E
�

�
�
E��

and straightforwardly extending it to the sets I � E and I � E�� or E�F and E��F � Galois
connections can also be composed in order to obtain some more complex Galois connections�

E
��
��

�
����

E�� if E
�

�
�

E�
��

�
��

E��

��� Value Abstraction

We �rst show how to abstract values of V � To make the de�nition more symmetric with respect
to abstraction and concretization� we reason in terms of sets of values� instead of simple values�
It is thus natural to de�ne the abstraction that way�

���
 �
�
v��

�V �v


where �V � V � P�T 
 is still to be speci�ed� We deduce from that �see ���
�

	�� 
 � fv � V
� � �V �v
g

The central idea is then to see the abstraction of a value v as the set of ground types

compatible �in a sense to be made more precise later on
 with it� �P�V 
��

�

�
�

�P�T 
��
 is

then a Galois connection� Note that one needs to use � as the partial order on P�T 
 since�
informally� as a set a values grows� its set of compatible types shrinks�

�



Let us now de�ne �V by carefully comparing the de�nitions of the dynamic and static
semantics� First� the concrete semantics given in Section � de�nes a notion of application on
values�

� � V � V � V �N
v 
�� v� 
�� �v��� n��


if v � h�x�ei�
and ��e�����x	 v�� � �v��� n��


Indeed� we have�
��e�e���� � �v��� � � n� n� � n��


if

��
�

�v� n
 � ��e����
�v�� n�
 � ��e����
�v��� n��
 � ��v
�v�


Second� there is also a quite natural notion of application on sets of types induced by the
static semantics of Section ��


 � P�T 

a
�� P�T 


a
�� P�T � N�


� 
�� � � 
�� f�t� �

�t� � � �� t�
�
� t � �g

So to de�ne an abstraction interpretation that mimics the static semantics� we need to
choose �V such that 
 is an abstraction of �� For that purpose� it is necessary to insure the
following commuting safety condition�

�v � V� �v� � V� ��v
�v�
 � 	R�
���fvg

���fv
�g


��


where 	R �resp� �R
 is the extension of 	 �resp� �
 to sets of pairs of types �resp� values
 and
times computed by the static �resp� dynamic
 semantics� In words� the concretization of the
return types of the applications of function types in the abstraction of v to the argument types
in the abstraction of v� contains �i�e�� is a conservative approximation of
 the value computed
by applying the function v to the argument v�� A similar line of explanation can be thought
out for time information�

De�nition � �Abstraction Function��

�V �h�x�ei�
 �

�
t
���

� t�

��� � P�V 
� t � ����
�
�t�� ���
 � �R�f��e����x	 v��
v� � ��g


�
�V �b
 � fBg

�R�R
 � ��fv � V
�n � N� �v� n
 � Rg
� f� � N�
��v� n
 � R� n v �g

where � v �� i� � � �� or �� � �� This relation order on e�ects is required to properly deal
in the abstract semantics with possibly non	terminating expressions� It is interesting to notice
how explicit the treatment of non	termination is in the abstract interpretation framework� In
the static semantics based on e�ect systems� the only thing that forces looping constructs to
admit a time � is the algebraic rules of the e�ect domain� and the equality of � with �� n for
some n induced by recursive calls�

Note that it is not obvious that this recursive de�nition of �V is well	formed� an argument
based on the inductive size of types can be used to actually show that this is indeed the case�

Theorem � When �V is de�ned as above� 
 is an abstraction of ��

Also� it is worth mentioning that the proof itself imposes stringent constraints on the proper
de�nition of �V � In fact� except for base types and values� the viable de�nitions for �V are
always smaller than the one given above� which is thus as precise as possible�

�



��� Abstract Semantics

The abstract semantics based on abstract interpretation maps expressions in a given abstract
environment to sets of pairs� each of which is made of a type and a time� So we want to have
an abstract semantics such as�

��e��� � �I � P�T 

� P�T �N�


since P�T 
 is the set of abstract values� The Galois connection de�ned in the previous subsection
induces the two following Galois connections�

� P�I � V 

�E

�
�E

I � P�T 
 relates abstract environments to environments in the dynamic

semantics� �
�E�P 
�x
 � ��f��x

� � Pg

	E ���
 � f� � I � V
�x � dom�� ��x
 � 	����x

g

� �P�V � N
��

�R
�
�R

�P�T �N�
��
 connects the returned pairs in the dynamic semantics

with their compatible type and time �see above the de�nition of �R
�

	R�R
�
 � 	�ft � T
�� � N�� �t� �
 � R�g
� fn � N
��t� �
 � R�� n v �g

according to the following schemes�

P�I � V 
 � I � P�V 
 � I � P�T 


P�V � N
 � P�V 
� P�N
 � P�T 
� P�N�
 � P�T � N�


We are now equipped to de�ne our abstract interpretation in the way given in Figure ��

��x����� � ���x
� f�g

���x�e����� � ft
���

� t� � T
�t�� ���
 � ��e������x	 ftg�g � f�g

��e�e���
��� � f�t�� � � �� �� � ���

�t � T� �t

���

� t�� �
 � ��e���
��� � �t� ��
 � ��e���

���g

���f��x�e����� � f�t� �

t � T � �t� �
 � ���x�e�����f 	 ftg�g

Figure �� Abstract Semantics

This abstract interpretation computes� for each expression� the set of types and times that
it can have�

One now needs to ensure that the abstract values computed by this abstract interpretation
is correct with respect to the dynamic semantics� Note that we did not do it for the static
semantics of Section �� since this result is already present in ����

An abstract semantics �����
�
is correct with respect to the dynamic semantics whenever�

�e � Exp� �� � I � V� ��e��� � 	R���e��
���E�f�g




that is whenever the abstract semantics does not forget any values with respect to the dynamic
semantics� Thus�

Theorem � The abstract semantics of Figure � above is correct�

�



� Equivalence

Since we wanted to establish a connection between a type and e�ect system and abstract
interpretation� we are left with comparing the two analysis given in Figures � and �� In fact�
this relationship can be stated by the following fundamental theorem�

Theorem � Let A be a typing environment and de�ne �� the abstract environment such that
��x is fAxg if x is in the domain of A� and � otherwise� Then�

A � e � t� � i� �t� �
 � ��e�����

This theorem precisely de�ne the relationship between the formulations of a time analysis
respectively by abstract interpretation and via a type and e�ect system�

We end this section with a couple of observations trying to recapitulate how we analyze
the di�erence between these two frameworks� First� abstract interpretation can be seen as a
speci�cation method in which one manipulates the set of possible abstract values� here types�
Type and e�ect systems� on the other end� use non	determinism to assign a proper type and
e�ect to a given expression� So� for instance� one could think of introducing higher	order
constructs in an abstract interpretation �e�g�� taking the maximum of all possible types
 which
could be di�cult to express in a static semantics framework�

Second� the manipulation of recursion is usually much more explicit in an abstract inter	
pretation than in a static semantics� as can be seen in Figure �� However� this is not quite true
for the abstract interpretation of Figure �� which should be expected since both speci�cations
are equivalent�

Last� it is interesting to relate the fundamental concepts of both frameworks� For instance�
the use of name equality in the static semantics rules �e�g�� in the application case
 which forces
two types to be equal relates to set intersection in the abstract interpretation world �i�e� a type
must belong to two abstract values
� Also� one might be surprised not to �nd the usual abstract
call to function bodies while dealing with function applications in the abstract interpretation
framework� in fact� the abstract semantics does not need here to mimic the usual 
ow of control
since its result can be precomputed by our choice of abstract value for closures�

	 Extensions

Two obvious contenders for extension are polymorphism and subtyping�sube�ecting� We look
at these issues below�

��� Polymorphism

The �rst problem one may notice is that T contains in fact no type variables� but only a type
constant B� there is thus no hope in this setting to have the usual polymorphism in the static
semantics� But as the abstract semantics manipulates sets of types� we saw in Section � this
enables operations which are not expressible in a static semantics� So� polymorphic types can
be here represented as sets of ground types �the sets of their ground instances
� One naturally
gets the following speci�cation�

��let x � e� in e���
�
�� � f�t�� � � �� ��

� � E � �t�� ��
 � ��e���

�
���x	 � �g

where

�
� � ft � T
�� � N�� �t� �
 � ��e���

�
��g

E � f� � N�
�t � T� �t� �
��e���
�
��g

It is not completely clear yet how this could be re
ected into a given static semantics �the
previous equation computes what amounts to a most general type
� although one may look at
an approach similar to the �rst	class polymorphic values of �����

�



��� Subtyping

E�ects are ordered� For the sake of simplicity� we did not introduce sube�ecting �allowing an
expression to admit larger times
 in the static semantics� although it would be quite easy to
add it� and extend the abstract interpretation accordingly�

It seems then quite natural to try to extend this order to types� The idea is that a type is
greater than another whenever it can be used instead of this other� that is� in the abstraction
framework�

�t� t� � T� t � t� � ��� � P�V 
� t � ���
� t� � ���

��


It seems intuitive that the following contravariant order satis�es this constraint�

t�� � t��
t� � t�
�� v ��

t��
��� t� � t��

��� t�

Let us de�ne the closure operator c � P�T 
� P�T 
 by�

c�� 
 � ft� � T
�t � �� t � t�g

The condition ��
 can be proved equivalent to

c � � � ���


The interesting aspect of this equation is that� whenever we have the approximation � of ���
�
we know that in fact c�� 
 is also an approximation �as c�� 
 � c����

 � ���

�

This can be used to prove a less restrictive abstract semantics for application�

��e�e���
�
�� �

�
�t��� � � �� �� � ���



�t�� t� � T� �t�
���

� t��� �
 � ��e���
�
�� � �t�� ��
 � ��e���

�
�� � t� � t�

�

The rewriting rule given in Section � can be applied here� giving the usual application with
subtyping for the actual argument�


 Related Work

One of the �rst papers relating type systems and abstract interpretation is ����� which uses
the similar idea of representing types by sets of values� and formally describing an abstract
interpretation that computes them� The equivalence was not formally proved� Our work
extends this approach to add e�ect information and ability to deal with non	free algebras�
Also� their approach uses a relational model instead of the Galois connections we introduced�

Mycroft and Jones were actually interested in strictness analysis in the previous paper�
This example is also used by Coppo and Ferrari ���� Here� they use �lter domains within their
abstract semantics� and are able to relate them to the intersection types used for strictness
analysis� We use much simpler domains for our abstract interpretation� and study a di�erent
type semantics�

We discussed in Section � the possibility of adding polymorphism in both frameworks� This
line of thought is present in the work of Monsuez ���� although he is working with a much
more complex system� We believe the presented approach is simpler and� of course� adds the
orthogonal issues of e�ect information�

The paper ��� discusses the interplay between abstract interpretation and inductive de�ni	
tions� However the purpose there is to �nd a way of relating di�erent static semantics� using
abstract interpretation as a vehicle for transition� We are interested in a more applied approach�
trying to better explain the relative power of existing frameworks�

�



Note that most of these papers relate abstract interpretation and type �only
 systems�
Although this is an interesting endeavor� we believe it actually makes more sense to compare
it with type and e�ect systems� Indeed� the various e�ect systems in the literature �e�g�� ����
���
 study various behavioral abstractions of programs in a way similar to the various related
analyses performed by abstract interpretation �e�g�� ��� ���
�

� Conclusion

We showed in this paper how the a priori distinct approaches of abstract interpretation and
type and e�ect systems can be related to each other� shedding a new light on their relative
expressiveness� We used a simple program complexity analysis as a driving line for our study�
We showed how an abstract interpretation and a type and e�ect system can be designed for this
analysis and proved them equivalent� We also suggested possible extensions of what we believe
to be a simple and easy to understand way of comparing these two frameworks� in particular
with respect to subtyping and polymorphism�

It is worth mentioning that� surprisingly� our work does not heavily rely on the actual
e�ects described� The abstraction of values� for instance� only needs to use the fact that the
e�ect domain is ordered� This makes us hope that a more general presentation is not too
far away� abstracted over the actual e�ect analysis used in the static semantics �or abstract
interpretation
�

Acknowledgments

The second author thanks Patrick Cousot for discussions� at a workshop in Bordeaux �long

time ago� about some of the issues discussed in this paper�

References

��� Coppo� M�� and Ferrari� A� Type Inference� Abstract Interpretation and Strictness Analysis�
In Theoretical Computer Science ��� 	�

�� ���
����

��� Cousot� P�� and Cousot� R� Abstract Interpretation� a uni�ed lattice model for static analysis
of programs by construction of approximationof �xpoints� InACM Symposium on Principles
of Programming Languages� �����

��� Cousot� P�� and Cousot� R� Inductive De�nitions� Semantics and Abstract Interpretation� In
Proceedings of the �

� ACM Conference on Principles of Programming Languages� ACM�
New	York� ����

��� Dornic� V�� Jouvelot� P� and Gi�ord� D� K� Polymorphic Time Systems for Estimating
Program Complexity� ACM Letters on Programming Languages and Systems� vol� �� no� ��
�����

��� Jouvelot� P�� and Gi�ord� D� K� Algebraic Reconstruction of Types and E�ects� In Pro

ceedings of the �

� ACM Conference on Principles of Programming Languages� ACM�
New	York� �����

��� Lucassen� J� M�� and Gi�ord� D� K� Polymorphic E�ect Systems� In Proceedings of the �
��
ACM Conference on Principles of Programming Languages� ACM� New	York� �����

��� Mercouro�� N� Analyse S�emantique des Communications entre Processus de Programmes
Paralleles� Ph�D� Thesis� Ecole Polytechnique� �����

��� Mitchell� J� Type Systems for Programming Languages� In Formal Models and Semantics�
Handbook of Theoretical Computer Science� Elsevier� �����

��



��� Monsuez� B� Polymorphic Typing by Abstract Interpretation� In Proceedings of the ��th
Conference FST � TCS� Springer Verlag LNCS ����

���� Mycroft� A�� and Jones� N� D� A relational framework for abstract interpretation� In Pro

ceedings of a workshop in Copenhagen� Ed� Ganziger and Jones� ����� Springer Verlag LNCS
����

���� Nielson� H� R�� and Nielson� F� Higher	Order Concurrent Programs with Finite Communi	
cation Topology� In Proceedings of the �

� ACM Conference on Principles of Programming
Languages� ACM� New	York� �����

���� O�Toole� J� W� Jr� and Gi�ord� D� K� Type Reconstruction with First	Class Polymorphic
Values� In Proceedings of the �
�
 ACM Conference on Programming Language Design and
Implementation� ACM� New	York� �����

���� Plotkin� G� A structural approach to operational semantics� In Technical report DAIMI

FN
�
� Aarhus University� �����

���� Reistad� B�� and Gi�ord� D� K� Static Dependant Costs for Estimating Program Execution
Time� In Proceedings of the �

� ACM Conference on Lisp and Functional Programming�
ACM� New	York� �����

���� Shivers� O� Control
Flow Analysis of Higher
Order Languages� PhD thesis� CMU� May
�����

���� Yang� Y� M�� and Jouvelot� P� Separate Abstract Interpretation for Control	Flow Analy	
sis� In Proceedings of the International Conference on the Theoretical Aspects of Computer
Software� LNCS ���� Springer Verlag� �����

��


