
Array Regions for Interprocedural Parallelization and

Array Privatization

B�eatrice Creusillet�

Centre de Recherche en Informatique
�Ecole des mines de Paris

Internal Report A�����CRI

Abstract

Three demonstrations are presented� that highlight the need for interprocedural

analyses such as preconditions and exact array regions� in order to parallelize loops

that contain subroutine calls or temporary arrays� These analyses are provided by

PIPS in an interactive environment�

� Interprocedural Parallelization

AILE is an application from the ONERA� the French institute of aerospatial research�
It has more than ���� lines of FORTRAN code� It has been slightly modi�ed to test
the coherence of some input values�

The aim of this demonstration is to show that interprocedural analyses are necessary
for an automatic parallelization�

For that purpose� we have chosen the subroutine �or module� EXTR� which is called
by the module GEOM� itself called by the main routine AILE� An excerpt is given in
Figure 	 �without the intermediate call to GEOM��

��� EXTR

EXTR contains a DO loop that has several characteristics


	� There are several read and write references to elements of the array T� This
induces dependences that cannot be disproved if we don�t know the relations
between index expressions� and more precisely between J and JH� We already
know that JH�J��J��J� but we don�t know the values of J�� J� and JA� which
are global variables initialized in AILE� Thus� we can disprove the loop�carried
dependences between T�J���NC�	
 and T�JH���NC�	
 for instance� only if we
interprocedurally propagate the values of J�� J� and JA from AILE� This type of
information is called precondition in PIPS �� ���

�e�mail� �creusil�cri�ensmp�fr�� web� �http�		www�cri�ensmp�fr	�creusil�

	



PROGRAM AILE

DIMENSION T
��������

COMMON	CT	T

COMMON	CI	I�I��IMAX�IP�IP��I�M�I�M��IBF

COMMON	CJ	J�J��JMAX�JP�JP��J�M�J�M��JA�JB�JAM�JBP

COMMON	CK	K�K��KMAX�KP�KP��K�M�K�M�

COMMON	CNI	L

���

READ
NXYZ� I�I��J�JA�K�K�

C

IF
J�GE��AND�K�GE�� THEN

N���

J�J�

J����JA�

JA�JA�

K�K�

���

CALL EXTR
NI�NC�

ENDIF

END

SUBROUTINE EXTR
NI�NC�

DIMENSION T
��������

COMMON	CT	T

COMMON	CI	I�I��IMAX�IP�IP��I�M�I�M��IBF

COMMON	CJ	J�J��JMAX�JP�JP��J�M�J�M��JA�JB�JAM�JBP

COMMON	CK	K�K��KMAX�KP�KP��K�M�K�M�

COMMON	CNI	L

L�NI

K�K

DO ��� J�J�JA

S�D
J�K �J�K��

S��D
J�K��J�K����S

S��D
J�K���J�K����S�

T
J��NC����S��S�	

S�S���
S�S���

T
J��NC����S��S	

S��S���
S��S��

T
J��NC����S�S�	

S��S��
S��S���

JH�J�J��J

T
JH��NC����T
J��NC���

T
JH��NC����T
J��NC���

T
JH��NC����T
J��NC���

��� CONTINUE

END

REAL FUNCTION D
J�K�JP�KP�

DIMENSION T
��������

COMMON	CT	T

COMMON	CNI	L

C

D�SQRT

T
J�K�L ��T
JP�KP�L �����

 �
T
J�K�L���T
JP�KP�L������

� �
T
J�K�L����T
JP�KP�L��������

END

Figure 	
 Excerpt from program AILE�

�



�� There are three calls to the function D in EXTR� D contains several read references
to the global array T� So� we must assume that the whole array is potentially read
by each call to D� This induces dependences in EXTR between the calls to D and
the other statements� In order to disprove these dependences� we need a way to
represent the set of array elements read by any invocation of D� and be able to use
this information at each call site� These sets are called array regions in PIPS ���

�� S�� S�� S	 and JH are de�ned and used at each iteration� This induces loop�
carried dependences� But we may notice that each use is preceded by a de�nition
in the same iteration� These variables can be privatized �this means that a local
copy is assigned to each iteration� to remove the spurious dependences�

��� D

As written before� there are several references to elements of the array T in D� Our aim
is to represent this set of elements� such that it can be used at each call site to help
disproving dependences�

If we know nothing about the relations between the values of K and KP or between
J and JP� all we can deduce is that the third index of all the array elements ranges
between L and L��� This is represented by the region


�T�����������R�MAY�fL������L��g	

The � variables represent the dimensions of the array� R means that we consider the
read e�ects on the variable� and MAY means that the region is an over�approximation
of the set of elements that are actually read�

The relations between the values of K and KP or J and JP are those that exist
between the real arguments� At each call site� we have JP��J and KP��K��� These
contidions hold true before each execution of D� we call them preconditions � Under
these conditions� we can now recompute the region associated to the array T


�T�����������R�MUST�f����J� K������K�
� L������L��g	

Notice that this is a MUST region� because it exactly represents the set of array elements
read by any invocation of function D�

��� Parallelisation of EXTR

We can now parallelize EXTR by


	� privatizing the scalar variables�

�� using array regions to summarize the read e�ects on the array T by each invocation
of D�

�� using the preconditions induced by the initialization of global scalar variables �in
AILE� to disprove the remaining dependences�

This leads to the parallelized version of Figure ��

�



SUBROUTINE EXTR
NI�NC�

DIMENSION T
��������

COMMON	CT	T

COMMON	CI	I�I��IMAX�IP�IP��I�M�I�M��IBF

COMMON	CJ	J�J��JMAX�JP�JP��J�M�J�M��JA�JB�JAM�JBP

COMMON	CK	K�K��KMAX�KP�KP��K�M�K�M�

COMMON	CNI	L

L � NI

K � K

DOALL J � J� JA

PRIVATE S�S��S�

S � D
J� K� J� K��

S� � D
J� K�� J� K����S

S� � D
J� K��� J� K����S�

T
J��NC��� � S��S�	

S�S���
S�S���

T
J��NC��� � S��S	

S��S���
S��S��

T
J��NC��� � S�S�	

S��S��
S��S���

ENDDO

DOALL J � J� JA

PRIVATE JH

JH � J�J��J

T
JH��NC��� � T
J��NC���

T
JH��NC��� � T
J��NC���

T
JH��NC��� � T
J��NC���

ENDDO

END

Figure �
 Parallelized version of EXTR�

�



� Array Privatization

Array privatization is not yet implemented in PIPS� but the information needed to
perform the transformation is already available
 IN and OUT regions �� 	��

To illustrate the characteritics of these regions� we will consider two examples
 NORM
is another excerpt from AILE� and RENPAR� is a contrived example that highlights some
details of the computation of regions and the possibilities opened up by IN and OUT
regions�

��� NORM

This is a very simple example �see Figure �� that shows the necessity of array
privatization� and the need for IN and OUT array regions�

In the loop of subroutine NORM� the references to the array T do not induce loop�
carried dependences� Furthermore� there are only read�read dependences on S� How�
ever� notice that the array TI is a real argument in the call to PVNMUT� and that there
are � read references to array TI� This induces potential interprocedural dependences�
We have seen with the previous example that these dependences can sometimes be
disproved with array regions�

We must �rst compute the regions of array TI that are referenced in PVNMUT� In
PVNMUT� TI is called C� And the � elements of C are written� but not read� This leads
to


�C�����W�MUST�f
�������g	

�W means that this is a write e�ect�
At the call site� C is translated into TI� which gives the region


�TI�����W�MUST�f
�������g	

And �nally� the regions corresponding to the whole body of the loop nest are


�TI�����W�MUST�f
�������g	
�TI�����R�MUST�f
�������g	

These regions are identical� which means that each iteration of loops K and J reads
and writes to the same memory locations of array TI� Thus� there are loop�carried
dependences� and the loop cannot be parallelized�

However� these dependences are false dependences� because if we allocate a copy of
array TI to each iteration �in fact to each processor�� there are no more dependences�
This is what is called array privatization� In order to privatize an array� we must be sure
that� in each iteration� no element is read before being written in the same iteration�
Thus� there are no loop�carried producer�consumer dependences�

This last property cannot be veri�ed by using READ regions� because they contain
all the elements that are read� and not only those that are read before being written�
This is represented in PIPS by IN regions� In our case� we must verify that no element
of TI belongs to the IN region corresponding to the loop body� which is the case�

We must also be sure that no element of TI that is initialized by a single iteration
is used in the subsequent iterations or after the loops� This information is provided in
PIPS by the OUT regions� They represent the set of live array elements� that is to say
those that are used in the continuation�

We can now parallelize NORM by


�



PROGRAM AILE

DIMENSION T
��������

COMMON	CT	T

COMMON	CI	I�I��IMAX�IP�IP��I�M�I�M��IBF

COMMON	CJ	J�J��JMAX�JP�JP��J�M�J�M��JA�JB�JAM�JBP

COMMON	CK	K�K��KMAX�KP�KP��K�M�K�M�

COMMON	CNI	L

DATA N�N��N��N��N��N��N�	������������	

READ
NXYZ� I�I��J�JA�K�K�

C

IF
J�GE��AND�K�GE�� THEN

N���

J�J�

J����JA�

JA�JA�

K�K�

CALL NORM
N��N��N��N��N��I��

ENDIF

END

SUBROUTINE NORM
LI�NI�MI�NN�NC �I�

DIMENSION T
��������

DIMENSION TI
��

COMMON	T	T

COMMON	I	I�I��IMAX�IP�IP��I�M�I�M��IBF

COMMON	J	J�J��JMAX�JP�JP��J�M�J�M��JA�JB�JAM�JBP

COMMON	K	K�K��KMAX�KP�KP��K�M�K�M�

COMMON	IO	LEC �IMP�KIMP�NXYZ�NGEO�NDIST

C ����

DO ��� K�K�K�

DO ��� J�J�JA

CALL PVNMUT
TI�

T
J�K�NN ��S�TI
�

T
J�K�NN���S�TI
��

T
J�K�NN����S�TI
��

��� CONTINUE

C ����

END

SUBROUTINE PVNMUT
C�

DIMENSION C
��� CX
��

CX
�� 

CX
��� �

CX
��� �

R�SQRT
CX
��CX
��CX
���CX
���CX
���CX
���

IF
R�LT��E��� R��

DO I � ��

C
I� � CX
I�	R

ENDDO

RETURN

END

Figure �
 Another excerpt from AILE
 NORM

�



	� using array regions to perform the dependence analysis�

�� using IN and OUT array regions to privatize the array TI�

This leads to the parallelized version of Figure ��

SUBROUTINE NORM
LI�NI�MI�NN�NC �I�

DIMENSION T
��������

DIMENSION TI
��

COMMON	CT	T

COMMON	I	I�I��IMAX�IP�IP��I�M�I�M��IBF

COMMON	J	J�J��JMAX�JP�JP��J�M�J�M��JA�JB�JAM�JBP

COMMON	K	K�K��KMAX�KP�KP��K�M�K�M�

COMMON	IO	LEC �IMP�KIMP�NXYZ�NGEO�NDIST

C ����

DOALL K � K� K�

PRIVATE J

DOALL J � J� JA

PRIVATE TI

CALL PVNMUT
TI�

T
J�K�NN� � S�TI
�

T
J�K�NN�� � S�TI
��

T
J�K�NN��� � S�TI
��

ENDDO

ENDDO

C ����

END

Figure �
 Parallelized version of NORM�

��� RENPAR�

RENPAR� is a contrived example �see Figure �� designed to show on a very simple
program the power of READ� WRITE� IN and OUT regions� and some particular
details of their computations� especially when integer scalar variables that appear in
array indices are modi�ed�

The main purpose is to see that array WORK is only a temporary and can be priva�
tized� Notice that the value of K is unknown on entry to the loop I� and that its value
is modi�ed by a call to INC� at each iteration �INC� simply increments its value by 	��

We are interested in the sets of array elements that are referenced in each iteration�
However� since the value of K is not the same in the two written references� we cannot
summarize the write accesses if we do not know the relation that exists between the
two values of K� This is achieved in PIPS by using transformers� that here show how
the new value of K is related to the value before the CALL �Kinit�


T�K� fK��K�init�
g

And the transformer of the loop shows how the value of K at each step is related to the
values of I and Kinit �value of K before the loop�


�



SUBROUTINE RENPAR�
A�N�K�M�

INTEGER N�K�M�A
N�

DIMENSION WORK
������

K � M � M

DO I � �N

DO J � �N

WORK
J�K� � J � K

ENDDO

CALL INC
K�

DO J � �N

WORK
J�K� � J � J � K � K

A
I� � A
I� � WORK
J�K� � WORK
J�K��

ENDDO

ENDDO

END

SUBROUTINE INC
I�

I � I � 

END

Figure �
 Contrived example
 RENPAR�

T�I�K� fK��I�K�init�
g

This previous information is used to summarize the sets of elements that are read
or written by each program structure� In order to compute the summary for the loop
I� we must merge the sets for the two J loops� Be careful that the value of K is not the
same for these two loops� We must use the transformer of the CALL to translate the
value of K in the second region into the value of K before the CALL� At this step� we
have a summary of what is done by a single iteration� We then compute the regions for
the whole loop I� This is done with the help of the transformer of the loop that gives
the relation between K and I�

However� as we have seen with NORM� READ and WRITE regions are not su�cient
for array privatization� because we must verify that every element of WORK that is read
by an iteration is previously written in the same iteration� This is achieved by the IN
region� Then OUT regions allow us to verify that no element of WORK is used in the
subsequent iterations or in the continuation of the loop�

We can now try to parallelize RENPAR� by


	� using transfomers to compute array regions �

�� using array regions to perform the dependence analysis�

�� using IN and OUT array regions to privatize the array WORK�

This leads to the parallelized version of Figure �� The array WORK is privatized
in loop I� However� the loop is not parallelized� because automatic induction variable
substitution is not available in PIPS� This transformation has been performed by hand�
This leads to the subroutine RENPAR� � in �gure �� And after array privatization� PIPS
is able to parallelize the loop I �see Figure ���

�



SUBROUTINE RENPAR�
A�N�K�M�

INTEGER N�K�M�A
N�

DIMENSION WORK
������

K � M�M

DO I � � N

PRIVATE WORK�I

DOALL J � � N

PRIVATE J

WORK
J�K� � J�K

ENDDO

CALL INC
K�

DOALL J � � N

PRIVATE J

WORK
J�K� � J�J�K�K

ENDDO

DO J � � N

PRIVATE J

A
I� � A
I��WORK
J�K��WORK
J�K��

ENDDO

ENDDO

END

Figure �
 Parallelized version of RENPAR��

SUBROUTINE RENPAR���
A�N�K�M�

INTEGER N�K�M�A
N�

DIMENSION WORK
������

K� � M � M

DO I � �N

K � K��I�

DO J � �N

WORK
J�K� � J � K

ENDDO

CALL INC
K�

DO J � �N

WORK
J�K� � J � J � K � K

A
I� � A
I� � WORK
J�K� � WORK
J�K��

ENDDO

ENDDO

END

Figure �
 RENPAR� ��

�



SUBROUTINE RENPAR���
A�N�K�M�

INTEGER N�K�M�A
N�

DIMENSION WORK
������

K� � M�M

DOALL I � � N

PRIVATE WORK�J�K�I

K � K��I�

DOALL J � � N

PRIVATE J

WORK
J�K� � J�K

ENDDO

CALL INC
K�

DOALL J � � N

PRIVATE J

WORK
J�K� � J�J�K�K

ENDDO

DO J � � N

PRIVATE J

A
I� � A
I��WORK
J�K��WORK
J�K��

ENDDO

ENDDO

END

Figure �
 Parallelized version of RENPAR� ��

In fact� IN and OUT regions could also be used to reduce the set of elements of
array WORK to allocate to each processor� because each iteration only accesses a sub�
array� These regions provide an exact representation of the set of elements that are
actually needed�

References

��� B�eatrice Creusillet� IN and OUT array region analyses� In Fifth International Workshop

on Compilers for Parallel Computers� June ���	�

�
� B�eatrice Creusillet and Fran�cois Irigoin� Interprocedural array regions analyses� In Language

and Compilers for Parallel Computing� August ���	�

��� Fran�cois Irigoin� Interprocedural analyses for programming environments� In Workshop on

Environments and Tools for Parallel Scienti�c Computing� September ���
�

�� Fran�cois Irigoin� Pierre Jouvelot� and R�emi Triolet� Semantical interprocedural paralleliza�
tion� An overview of the PIPS project� In International Conference on Supercomputing�
June �����

	�


