Array Regions for Interprocedural Parallelization and
Array Privatization

Béatrice CREUSILLET*

Centre de Recherche en Informatique
Ecole des mines de Paris

Internal Report A/279/CRI

Abstract

Three demonstrations are presented, that highlight the need for interprocedural
analyses such as preconditions and ezact array regions, in order to parallelize loops
that contain subroutine calls or temporary arrays. These analyses are provided by
PIPS in an interactive environment.

1 Interprocedural Parallelization

ATLE is an application from the ONERA, the French institute of aerospatial research.
It has more than 3000 lines of FORTRAN code. It has been slightly modified to test
the coherence of some input values.

The aim of this demonstration is to show that interprocedural analyses are necessary
for an automatic parallelization.

For that purpose, we have chosen the subroutine (or module) EXTR, which is called
by the module GEQM, itself called by the main routine AILE. An excerpt is given in
Figure 1 (without the intermediate call to GEOM).

1.1 EXTR

EXTR contains a DO loop that has several characteristics:

1. There are several read and write references to elements of the array T. This
induces dependences that cannot be disproved if we don’t know the relations
between index expressions, and more precisely between J and JH. We already
know that JH=J1+J2-J, but we don’t know the values of J1, J2 and JA, which
are global variables initialized in AILE. Thus, we can disprove the loop-carried
dependences between T(J,1,NC+3) and T(JH,1,NC+3) for instance, only if we
interprocedurally propagate the values of J1, J2 and JA from AILE. This type of
information is called precondition in PIPS [4, 3].

*e-mail: <creusil@cri.ensmp.fr>, web: <http://wuw.cri.ensmp.fr/ creusil>

PROGRAM AILE

DIMENSION T(52,21,60)

COMMON/CT/T
COMMON/CI/I1,12,IMAX,T1P1,T11P2,12M1,I2M2,1IBF
COMMON/CJ/J1,J2,JMAX,J1P1,J1P2,J2M1,J2M2,JA, JB, JAM1, JBP1
COMMON/CK/K1,K2,KMAX,K1P1,K1P2,K2M1,K2M2

COMMON/CNI/L

READ(NXYZ) I1,I2,J1,JA,K1,K2

IF(J1.GE.1.AND.K1.GE.1) THEN
N4=4
J1=J1+1
J2=2%JA+1
JA=JA+1
K1=K1+1

CALL EXTR(NI,NC)
ENDIF
END

SUBROUTINE EXTR(NI,NC)

DIMENSION T(52,21,60)

COMMON/CT/T

COMMON/CI/I1,12,IMAX,I1P1,I1P2,I2M1,I2M2,IBF

COMMON/CJ/J1,J2,JMAX,J1P1,J1P2,J2M1, J2M2,JA, JB, JAM1, JBP1

COMMON/CK/K1,K2,KMAX,K1P1,K1P2,K2M1,K2M2

COMMON/CNI/L

L=NI

K=K1

DO 300 J=J1,JA
S1=D(J,K ,J,K+1)
$2=D(J,K+1,J,K+2)+S1
$3=D(J,K+2,J,K+3)+32
T(J,1,NC+3)=82%33/((81-82)*(51-33))
T(J,1,NC+4)=33*%31/((82-83)*(52-51))
T(J,1,NC+5)=81*%32/((83-51)*(83-32))
JH=J1+J2-]
T(JH,1,NC+3)=T(J,1,NC+3)
T(JH,1,NC+4)=T(J,1,NC+4)
T(JH,1,NC+5)=T(J,1,NC+5)

300 CONTINUE
END

REAL FUNCTION D(J,K,JP,KP)
DIMENSION T(52,21,60)
COMMON/CT/T

COMMON/CNI/L

D=SQRT((T(J,K,L)-T(JP,KP,L))*x*2
1 +(T(J,K,L+1)-T(JP,KP,L+1)) **2
2 +(T(J,K,L+2)-T(JP ,KP,L+2)) **2)

END

Figure 1: Excerpt from program AILE.

2. There are three calls to the function D in EXTR. D contains several read references
to the global array T. So, we must assume that the whole array is potentially read
by each call to D. This induces dependences in EXTR between the calls to D and
the other statements. In order to disprove these dependences, we need a way to
represent the set of array elements read by any invocation of D, and be able to use
this information at each call site. These sets are called array regions in PIPS [2].

3. S1, 32, 83 and JH are defined and used at each iteration. This induces loop-
carried dependences. But we may notice that each use is preceded by a definition
in the same iteration. These variables can be privatized (this means that a local
copy is assigned to each iteration) to remove the spurious dependences.

1.2 D

As written before, there are several references to elements of the array T in D. Our aim
is to represent this set of elements, such that it can be used at each call site to help
disproving dependences.

If we know nothing about the relations between the values of K and KP or between
J and JP, all we can deduce is that the third index of all the array elements ranges
between L and L+2. This is represented by the region:

<T(¢1,¢2,¢3) ~R-MAY-{L<=¢$3<=L+2}>

The ¢ variables represent the dimensions of the array; R means that we consider the
read effects on the variable; and MAY means that the region is an over-approximation
of the set of elements that are actually read.

The relations between the values of K and KP or J and JP are those that exist
between the real arguments. At each call site, we have JP==J and KP==K+1. These
contidions hold true before each execution of D; we call them preconditions. Under
these conditions, we can now recompute the region associated to the array T:

<T(¢1,¢2,¢3) ~R-MUST-{¢$1==], K<=¢<=K+1, L<=¢3<=L+2}>

Notice that this is a MUST region, because it exactly represents the set of array elements
read by any invocation of function D.

1.3 Parallelisation of EXTR

We can now parallelize EXTR by:
1. privatizing the scalar variables;

2. using array regions to summarize the read effects on the array T by each invocation
of D;

3. using the preconditions induced by the initialization of global scalar variables (in
AILE) to disprove the remaining dependences.

This leads to the parallelized version of Figure 2.

SUBROUTINE EXTR(NI,NC)

DIMENSION T(52,21,60)

COMMON/CT/T
COMMON/CI/I1,12,IMAX,T1P1,T11P2,12M1,I2M2,1IBF
COMMON/CJ/J1,J2,JMAX,J1P1,J1P2,J2M1,J2M2,JA, JB, JAM1, JBP1
COMMON/CK/K1,K2,KMAX,K1P1,K1P2,K2M1,K2M2

COMMON/CNI/L
L =NI
K = K1

DOALL J = J1, JA
PRIVATE 51,582,853
S1 =D(J, K, J, K+1)

S2 = D(J, K+1, J, K+2)+S1
S3 = D(J, K+2, J, K+3)+32
T(J,1,NC+3) = S2%383/((S1-82)#(S1-83))
T(J,1,NC+4) = S3%31/((S2-83)#(S2-51))
T(J,1,NC+5) = S1%382/((S3-S1)#(83-52))
ENDDO
DOALL J = J1, JA
PRIVATE JH

JH = J14J2-J
T(JH,1,NC+3) = T(J,1,NC+3)
T(JH,1,NC+4) = T(J,1,NC+4)
T(JH,1,NC+5) = T(J,1,NC+5)

ENDDO

END

Figure 2: Parallelized version of EXTR.

2 Array Privatization

Array privatization is not yet implemented in PIPS, but the information needed to
perform the transformation is already available: IN and OUT regions [2, 1].

To illustrate the characteritics of these regions, we will consider two examples: NORM
is another excerpt from AILE, and RENPARSG is a contrived example that highlights some
details of the computation of regions and the possibilities opened up by IN and OUT
regions.

2.1 NORM

This is a very simple example (see Figure 3) that shows the necessity of array
privatization, and the need for IN and OUT array regions.

In the loop of subroutine NORM, the references to the array T do not induce loop-
carried dependences. Furthermore, there are only read-read dependences on S. How-
ever, notice that the array TI is a real argument in the call to PVNMUT, and that there
are 3 read references to array TI. This induces potential interprocedural dependences.
We have seen with the previous example that these dependences can sometimes be
disproved with array regions.

We must first compute the regions of array TI that are referenced in PVNMUT. In
PVNMUT, TI is called C. And the 3 elements of C are written, but not read. This leads
to:

<C(¢1)-W-MUST-{1<=¢1<=3}>

(W means that this is a write effect)
At the call site, C is translated into TI, which gives the region:

<TI(¢1)-W-MUST-{1<=¢1<=3}>

And finally, the regions corresponding to the whole body of the loop nest are:
<TI(¢1)-W-MUST-{1<=¢1<=3}>
<TI(¢1)-R-MUST-{1<=¢1<=3}>

These regions are identical, which means that each iteration of loops K and J reads
and writes to the same memory locations of array TI. Thus, there are loop-carried
dependences, and the loop cannot be parallelized.

However, these dependences are false dependences, because if we allocate a copy of
array TI to each iteration (in fact to each processor), there are no more dependences.
This is what is called array privatization. In order to privatize an array, we must be sure
that, in each iteration, no element is read before being written in the same iteration.
Thus, there are no loop-carried producer-consumer dependences.

This last property cannot be verified by using READ regions, because they contain
all the elements that are read, and not only those that are read before being written.
This is represented in PIPS by IN regions. In our case, we must verify that no element
of TI belongs to the IN region corresponding to the loop body, which is the case.

We must also be sure that no element of TI that is initialized by a single iteration
is used in the subsequent iterations or after the loops. This information is provided in
PIPS by the OUT regions. They represent the set of live array elements, that is to say
those that are used in the continuation.

We can now parallelize NORM by:

PROGRAM AILE

DIMENSION T(52,21,60)

COMMON/CT/T
COMMON/CI/I1,12,IMAX,T1P1,T11P2,12M1,I2M2,1IBF
COMMON/CJ/J1,J2,JMAX,J1P1,J1P2,J2M1,J2M2,JA, JB, JAM1, JBP1
COMMON/CK/K1,K2,KMAX,K1P1,K1P2,K2M1,K2M2

COMMON/CNI/L

DATA N1,N3,N4,N7,N10,N14,N17/1,3,4,7,10,14,17/

READ(NXYZ) I1,I2,J1,JA,K1,K2

IF(J1.GE.1.AND.K1.GE.1) THEN

N4=4

J1=J1+1

J2=2%JA+1

JA=JA+1

K1=K1+1

CALL NORM(N10,N7,N4,N14,N17,I2)
ENDIF
END

SUBROUTINE NORM(LI,NI,MI,NN,NC ,I)
DIMENSION T(52,21,60)
DIMENSION TI(3)

COMMON/T/T

COMMON/I/I1,12,IMAX,I1P1,11P2,12M1,I2M2,IBF
COMMON/J/J1,J2,JMAX,J1P1,J1P2,J2M1,J2M2,JA,JB, JAM1, JBP1
COMMON/K/K1,K2,KMAX ,K1P1,K1P2,K2M1,K2M2

COMMON/IO/LEC ,IMP,KIMP,NXYZ,NGEO,NDIST

c
DO 300 K=K1,K2
DO 300 J=J1,JA

CALL PVNMUT(TI)

T(J,K,NN)=S*TI(1)

T(J,K,NN+1)=S*TI(2)

T(J,K,NN+2)=S*TI(3)
300 CONTINUE

END

SUBROUTINE PVNMUT(C)
DIMENSION C(3), CX(3)
CX(1)=1

CX(2)= 2

CX(3)= 3

R=SQRT (CX (1) *CX(1)+CX(2)*CX(2)+CX(3)*CX(3))
IF(R.LT.1.E-12) R=1.
DOI=1,3

C(I) = CX(I)/R

ENDDO

RETURN

END

Figure 3: Another excerpt from AILE: NORM

1. using array regions to perform the dependence analysis;
2. using IN and OUT array regions to privatize the array TI.

This leads to the parallelized version of Figure 4.

SUBROUTINE NORM(LI,NI,MI,NN,NC ,I)
DIMENSION T(52,21,60)
DIMENSION TI(3)

COMMON/CT/T
COMMON/I/I1,12,IMAX,I1P1,11P2,12M1,I2M2,IBF
COMMON/J/J1,J2,JMAX,J1P1,J1P2,J2M1,J2M2,JA,JB, JAM1, JBP1
COMMON/K/K1,K2,KMAX ,K1P1,K1P2,K2M1,K2M2

COMMON/IO/LEC ,IMP,KIMP,NXYZ,NGEO,NDIST

DOALL K = K1, K2
PRIVATE J
DOALL J = J1, JA
PRIVATE TI
CALL PVNMUT(TI)
T(J,K,NN) = S*TI(1)
T(J,K,NN+1) = S*TI(2)
T(J,K,NN+2) = S*TI(3)
ENDDO
ENDDO

END
Figure 4: Parallelized version of NORM.

2.2 RENPARG6

RENPARS is a contrived example (see Figure 5) designed to show on a very simple
program the power of READ, WRITE, IN and OUT regions, and some particular
details of their computations, especially when integer scalar variables that appear in
array indices are modified.

The main purpose is to see that array WORK is only a temporary and can be priva-
tized. Notice that the value of K is unknown on entry to the loop I, and that its value
is modified by a call to INC1 at each iteration (INC1 simply increments its value by 1).

We are interested in the sets of array elements that are referenced in each iteration.
However, since the value of K is not the same in the two written references, we cannot
summarize the write accesses if we do not know the relation that exists between the
two values of K. This is achieved in PIPS by using transformers, that here show how
the new value of X is related to the value before the CALL (K#init):

T(K) {K==K#init+1}

And the transformer of the loop shows how the value of K at each step is related to the
values of I and K#init (value of K before the loop):

SUBROUTINE RENPAR6(A,N,K,M)
INTEGER N,K,M,ACN)
DIMENSION WORK(100,100)

K=M=*HM
DOI =1,N
Do J=1,N
WORK(J,K) = J + K
ENDDO

CALL INC1(K)

D0 J=1,N
WORK(J,K) = J * J - K * K
A(I) = A(I) + WORK(J,K) + WORK(J,K-1)
ENDDO
ENDDO
END

SUBROUTINE INC1(I)
I=1I+1
END

Figure 5: Contrived example: RENPAR6

T(I,K) {K==I+K#init-1}

This previous information is used to summarize the sets of elements that are read
or written by each program structure. In order to compute the summary for the loop
I, we must merge the sets for the two J loops. Be careful that the value of K is not the
same for these two loops. We must use the transformer of the CALL to translate the
value of K in the second region into the value of K before the CALL. At this step, we
have a summary of what is done by a single iteration. We then compute the regions for
the whole loop I. This is done with the help of the transformer of the loop that gives
the relation between K and I.

However, as we have seen with NORM, READ and WRITE regions are not sufficient
for array privatization, because we must verify that every element of WORK that is read
by an iteration is previously written in the same iteration. This is achieved by the IN
region. Then OUT regions allow us to verify that no element of WORK is used in the
subsequent iterations or in the continuation of the loop.

We can now try to parallelize RENPARS by:

1. using transfomers to compute array regions;
2. using array regions to perform the dependence analysis;
3. using IN and OUT array regions to privatize the array WORK.

This leads to the parallelized version of Figure 6. The array WORK is privatized
in loop I. However, the loop is not parallelized, because automatic induction variable
substitution is not available in PIPS. This transformation has been performed by hand.
This leads to the subroutine RENPAR6_2 in figure 7. And after array privatization, PIPS
is able to parallelize the loop I (see Figure 8).

SUBROUTINE RENPAR6 (A,N,K,M)
INTEGER N,K,M,ACN)
DIMENSION WORK(100,100)
K = M*M
DOI =1, N
PRIVATE WORK,I
DOALL J =1, N
PRIVATE J
WORK (J,K)
ENDDO
CALL INC1(K)
DOALL J =1, N
PRIVATE J
WORK (J,K)
ENDDO
DOJ=1, N
PRIVATE J
A(I) = A(I)+WORK(J,K)+WORK(J,K-1)
ENDDO
ENDDO
END

J+K

J*J-K*K

Figure 6: Parallelized version of RENPARG.

SUBROUTINE RENPAR6_2(A,N,K,M)
INTEGER N,K,M,ACN)
DIMENSION WORK(100,100)
KO =M * M
DOI=1,0
K = KO+I-1
DO J = 1,0
WORK (J,K)
ENDDO

1]
—
+
=

CALL INC1(K)

D0 J=1,N
WORK(J,K) = J * J - K * K
A(I) = A(I) + WORK(J,K) + WORK(J,K-1)
ENDDO
ENDDO
END

Figure 7: RENPAR6 2.

SUBROUTINE RENPAR6_2(A,N,K,M)
INTEGER N,K,M,ACN)
DIMENSION WORK(100,100)
KO = M#M
DOALL I =1, N
PRIVATE WORK,J,K,I
K = KO+I-1
DOALL J =1, N
PRIVATE J
WORK (J,K) = J+K
ENDDO
CALL INC1(K)
DOALL J =1, N

PRIVATE J
WORK(J,K) = J*J-K*K
ENDDO
DOJ=1, N
PRIVATE J
A(I) = A(I)+WORK(J,K)+WORK(J,K-1)
ENDDO
ENDDO

END

Figure 8: Parallelized version of RENPARE_2.

In fact, IN and OUT regions could also be used to reduce the set of elements of
array WORK to allocate to each processor, because each iteration only accesses a sub-
array. These regions provide an exact representation of the set of elements that are
actually needed.

References

[1] Béatrice Creusillet. IN and OUT array region analyses. In Fifth International Workshop
on Compilers for Parallel Computers, June 1995.

[2] Béatrice Creusillet and Francois Irigoin. Interprocedural array regions analyses. In Language
and Compilers for Parallel Computing, August 1995.

[3] Frangois Irigoin. Interprocedural analyses for programming environments. In Workshop on
Environments and Tools for Parallel Scientific Computing, September 1992.

[4] Frangois Irigoin, Pierre Jouvelot, and Rémi Triolet. Semantical interprocedural paralleliza-
tion: An overview of the PIPS project. In International Conference on Supercomputing,

June 1991.

10

