
A case-study of design space exploration
for embedded multimedia applications on SoCs∗

Isabelle Hurbain, Corinne Ancourt, François Irigoin
École des Mines de Paris

F-77300 Fontainebleau, FRANCE

Michel Barreteau, Juliette Mattioli
THALES Research & Technology

F-91404 Orsay,FRANCE

Fréd́eric Pasquier
THOMSON R&D France

F-35576 Cesson-Śevigńe, FRANCE

Abstract

Embedded real-time multimedia applications usually im-
ply data parallel processing. SIMD processors embedded
in SOCs are cost-effective to exploit the underlying par-
allelism. However, programming applications for SIMD
targets requires data placement and operation scheduling
which have been proven to be NP-complete problems and
beyond present compiler abilities.

In this paper we show how our tool (based on concurrent
constraint programming) can be used to explore the design
space of a kernel in H.264 standard (video compression).
Different cost functions are considered (e.g. execution time,
memory occupancy, chip cost ...) to derive different source
codes from the same functional specification. Future work
includes model refinement as well as full code generation
for rapid prototyping of such hardware and software inten-
sive systems.

1. Introduction

Embedded real-time multimedia applications usually im-
ply data parallel processing. Indeed image processing in-
volves vectors or matrices of pixels for instance. Moreover
they are often (statically) predictable and well-structured in
such a way that the potential parallelism can be extracted at
compile time. More than 80% of the execution time is spent
in loop nests that consume and produce arrays. Efficiently
performing these regular computations obviously is a key
issue.

0This work is funded by the RNTL DREAM-UP project.
URL:http://www.telecom.gouv.fr/rntl/projet/Posters-PDF/RNTL-Poster-
DREAM-UP-Thomson.pdf
Corresponding author: isabelle.hurbain@ensmp.fr

SIMD (Single Instruction Multiple Data Stream) archi-
tectures are well suited for this multimedia application
domain because they naturally take advantage of stream-
oriented parallelism. Even if architecturally speaking this
technology can be seen as an old-fashioned one, it remains
easily scalable and can be exploited in addition to other
techniques. Such SIMD units are now embedded in SoCs
and GPPs (e.g. AltiVec technology from Motorola [2] and
MultiMedia eXtensions from Intel [1]).

Programming such domain-specific applications for
these targets requires data placement and operation schedul-
ing which have been proven to be NP-complete problems
and beyond present compiler abilities. Constraint technol-
ogy [5] enables to the efficient exploration of the combi-
natorial space of tiling and scheduling. This article does
not present our APOTRES tool or its underlying constraint
technology [3, 8] but focuses on a case study to show how
easily design space is explored.

The next section describes the application and the archi-
tecture. Section 3 introduces constraint-based models such
as tiling and scheduling, which define the solution space.
Then several optimization criteria are considered such as
execution time (5) and machine size (6) with technological
or real time constraints (7,8). Results are compared in Sec-
tion 9.

2. Application and Target Machine

2.1. Application Description

We use a fractional sample interpolation of the H.264
standard [10] as running example. In Figure 1 the grey
squares represent existing pixels. Pixeli is the desired out-
put. A vertical convolution produces pixels such ascc, dd,
h, m, ee, ff. An horizontal one producesj from these pixels.
Finally, i is derived fromh andj.



Figure 1. Fractional sample interpolation

For our application we compute8 × 8 pixels i with the
following equations:

H[i, j] = conv(X[i − 2 : i + 3, j])

K[i, j] = conv(H[i, j − 2 : j + 3])

Y [i, j] = K[i, j] + H[i, j]

whereX is the13 × 13 input matrix,H is a8 × 13 inter-
mediary matrix,K is a8 × 8 intermediary matrix,Y is the
8 × 8 output matrix, andconv is a 6-tap convolution filter.

2.2. Application Code

The code, derived from the equations defining H,K,Y, is
composed of parallel loops and is in a single assignment
form.

float X[0:12][0:12], Y[0:7][0:7], H[0:7][0:12],
K[0:7][0:7], OUTPUT[0:7][0:7];

for(i0=0; i0<13; i0++)
for(j0=0; j0<13; j0++)
X[i0][j0] = input();

for(i1=0; i1<8; i1++)
for(j1=0; j1<13; j1++)
H[i][j] = conv(X[i1:i1+5][j1]);

for(i2=0; i2<8; i2++)
for(j2=0; j2<8; j2++)
K[i2][j2] = conv(H[i2][j2:j2+5]);

for(i3=0; i3<8; i3++)
for(j3=0; j3<8; j3++)
Y[i3][j3] = K[i3][j3] + H[i3][j3];

for(i4=0; i4<8; i4++)
for(j4=0; j4<8; j4++)
OUTPUT[i4][j4] = Y[i4][j4];

The loop nests are calledT0, T1, T2, T3 andT4.

2.3. The Target Architecture

The architecture has up to 16 processors, each with a
local memory of 256, 512 or 1024 bytes. These parameters
are entered as constraints in APOTRES.

A pipelined multiply-add is used and task durations are
respectively 1, 9, 9, 4 and 1 cycles.

3. Placement Models

The mapping of applications onto the architecture uses
different interacting models: tiling, scheduling, data flow
dependences, memory capacity and data communication
models. We introduce the main constraints of these mod-
els which are used concurrently by the solver to find the set
of solutions.

3.1. Tiling

For each loop, the tiling partitions the iteration set and
distributes it on three dimensions: (1) a cyclic temporal di-
mension, (2) a “processor” dimension, (3) a local dimension
which exploits the local memory.

The tiling is formally defined in [9]. LetI be the loop
nest iteration set (withn loops) contained inZn defined by
I = {0, . . . , b1−1}×· · ·×{0, . . . , bn−1} where1 ≤ k ≤
n, bk ∈ N

∗. Let P andL ben × n square diagonal integer
matrices with non-null determinant. Then for each pointi

of I, there exists one and only one triplet(c, p, l) of points
of I such as:

i = LPc + Lp + l (1)

with

∀l, 0 ≤ L−1l < 1 (2)

∀p, 0 ≤ P−1p < 1 (3)

∀i ∈ I, 0 ≤ i < b

det(L) 6= 0

det(P ) 6= 0 andP diagonal

The associated triplet(c, p, l) can be interpreted as follow-
ing: at a logic timec, each processorp runsl iterations.

P and L define a tiling of the iteration domain. The
solver must find the numerical values of their elements.

3.2. Scheduling

Schedules are computed with respect to tilings. For each
loop nest, an affine function represents the schedule. A
schedule is legal if it respects the data flow dependence con-
straints. A schedule function isd(c) = α.c + β wherec is
the index of a computation block,α is a line vector of the
same dimension asc, . is the standard scalar product andβ

is an integer. The solver selects values for allα andβ.

2



3.3. Data Flow Dependence

If a block c′ uses a value defined by a blockc, block c

must be executed first. This is called a data flow depen-
dence. If there is a data flow dependence between two com-
putation blocksc andc′, then any legal schedule meets the
constraintd(c) < d(c′).

3.4. Memory Capacity

A simple capacitive memory model is used. As each pro-
cessor executes the same code, the required memory size is
the same for each processor. Each task is allocated an input
buffer, but all tasks share a common output buffer. As soon
as they are computed, results are sent to all input buffers of
tasks using them. The output buffer is sized to fit the out-
put of any task and to support a flip-flop mechanism used
to overlap computations and communications. The size of a
task input buffer is the sum of the spaces required for each
argument multiplied by the maximal number of live itera-
tions. Liveness information is carried by the dependences
and the schedule.

The memory constraints are linked to the partitioning,
dependence and scheduling parameters. An example of
code with memory allocation is given in Section 7.

3.5. Communications

Different communication models have been imple-
mented in our tool. However, to simplify the presentation,
we choose not to take data communications into account.

4. Optimization criteria

To show the characteristics of our tool, we present in the
next four sections, various placements of the application de-
pending on four different optimization criteria:

• execution time minimization (Section 5),

• cost minimization (Section 6),

• cost minimization under memory constraint (Sec-
tion 7),

• cost minimization under execution time con-
straint(Section 8).

5. Execution Time Minimization

5.1. Tilings for Minimal Execution Time

To minimize the execution time, APOTRES selects the
following tilings:

Task # blocks # processors # local iterations

T0 13 13 1
T1 8 13 1
T2 4 2 × 8 1
T3 4 2 × 8 1
T4 4 2 × 8 1

Table 1. Tilings for Execution Time Minimiza-
tion

All 16 processors are used to exploit the parallelism
available in tasksT3 andT4.

As explained in Section 3.1, tilings map loop nests on
the time, processor and local memory dimensions.

As an example, let us consider the(3, 6) iteration of the
T1 loop nest. To know on which processor it is mapped,
Equation 1 is instantiated with the coefficients given by our
tool:

(

3
6

)

=

(

1 0
0 1

)(

1 0
0 13

) (

c1

c2

)

+

(

1 0
0 1

)(

p1

p2

)

+

(

l1
l2

)

which gives us the following equations:
{

c1 + p1 + l1 = 3
13c2 + p2 + l2 = 6

Condition 2 implies thatl1 = l2 = 0, while Condition 3
gives us thatp1 = 0 andp2 < 13. This also indicates us
that 13 processors are used in the tiling of this application.

Consequently we havec1 = 3, c2 = 0 and p2 = 6.
The iteration(3, 6) of the T1 loop nest is executed on the
processor mapped to the(0, 6) processor.

The tiled solution is expressed by the following paral-
lelized code:

float X[0:12][0:12], Y[0:7][0:7], H[0:7][0:12],
K[0:7][0:7], OUTPUT[0:7][0:7];

for(c=0; c<13; c++)
forall(p=0; p<13; p++)
X[c][p] = input();

for(c=0; c<8; c++)
forall(p=0; p<13; p++)
H[c][p]=conv(X[c:c+5][p]);

for(c1=0; c1<4; c1++)
forall(p1=0;p1<2;p1++)
forall(p2=0; p2<8; p2++)
K[2*c1+p1][p2]=

conv(H[2*c1+p1][p2:p2+5]);

3



for(c1=0; c1<4; c1++)
forall(p1=0;p1<2;p1++)
forall(p2=0; p2<8; p2++)
Y[2*c1+p1][p2]=

K[2*c1+p1][p2]+H[2*c1+p1][p2];

for(c1=0; c1<4; c1++)
forall(p1=0;p1<2;p1++)
forall(p2=0; p2<8; p2++)
OUTPUT[2*c1+p1][p2]=Y[2*c1+p1][p2];

Note thatl does not appear becauseL = I (identity ma-
trix) for each task.

5.2. Schedule for Minimal Execution Time

The schedule solution, represented in Figure 2 in which
tasks are colored (red, blue, black, green, purple), is:

dT0
(c) = 5.c

dT1
(c) = 5.c + 61

dT2
(c) = 10.c + 67

dT3
(c) = 10.c + 68

dT4
(c) = 10.c + 69

All initializations are done first. The other tasks are
pipelined.

Note that nothing happens at some time steps. For in-
stance, at time 4, no iteration is scheduled. The logical du-
ration in Figure 2 is 33 events, although the final date is 99.

The execution time, computed by the solver, is 141 cy-
cles. Each of the 33 events lasts between one and nine cy-
cles depending on the computation performed.

The schedule reorders the tiled code shown in Sec-
tion 5.1. The main transformation is the fusion of thec
loops:

float X[0:12][0:12], Y[0:7][0:7], H[0:7][0:12],
K[0:7][0:7], OUTPUT[0:7][0:7];

for(c=0; c<13; c++)
forall(p=0; p<13; p++)
X[c][p] = input();

for(c1=0; c1<4; c1++){

for(c2=0; c2<2; c++)
forall(p=0; p<13; p++)
H[2*c1+c2][p]=

conv(X[2*c1+c2:2*c1+c2+5][p]);

forall(p1=0;p1<2;p1++)
forall(p2=0; p2<8; p2++)
K[2*c1+p1][p2]=

conv(H[2*c1+p1][p2:p2+5]);

forall(p1=0;p1<2;p1++)
forall(p2=0; p2<8; p2++)
Y[2*c1+p1][p2]=

K[2*c1+p1][p2]+H[2*c1+p1][p2];

forall(p1=0;p1<2;p1++)
forall(p2=0; p2<8; p2++)

OUTPUT[2*c1+p1][p2]=Y[2*c1+p1][p2];
}

5.3. Memory Capacity

The memory capacity required per processor is 59 bytes.
It is derived by the solver using the longest data dependence
arc and the schedule period [9] which together define data
liveness. The total memory capacity for 16 processors is
944 bytes.

6. Cost Minimization

The cost of SoCs is important for industrial exploitation.
It depends on the cost of a single processor, on the cost of a
memory unit, and on the number of processors and memory
units that are required by the application.

6.1. Tilings

APOTRES selects a one-processor target machine, as
could be expected.

Task # blocks # processors # local iterations

T0 13 1 13
T1 8 1 13
T2 8 1 8
T3 8 1 8
T4 8 × 8 1 1

Table 2. Tilings for Cost Minimization

6.2. Schedule for Cost Minimization

APOTRES provides a scheduleas soon as possible, rep-
resented in Figure 3:

dT0
(c) = 5.c

dT1
(c) = 5.c + 26

dT2
(c) = 5.c + 27

dT3
(c) = 5.c + 28

dT4
(c) = 40.c1 + 5.c2 + 29

The logical duration is 465, and the execution time is
2001 cycles, while the memory capacity is 574 bytes.

7. Cost Minimization Under Memory Con-
straint

Here we consider that the maximum memory for a pro-
cessor is not 1024 bytes anymore, but 512 bytes. The previ-
ous solution cannot then be used.

4



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

t_1
t_0

t_2
t_3
t_4

Figure 2. Schedule for execution time minimization

Figure 3. Schedule for Cost Minimization

7.1. Tilings

The best solution found by APOTRES uses 2 processors:

Task # blocks # processors # local iterations

T0 13 1 13
T1 13 1 8
T2 2 × 8 2 2
T3 2 × 2 2 4 × 2
T4 8 × 4 2 1

Table 3. Tilings Under Memory Constraint

7.2. Schedule

The schedule, represented in Figure 4, is specific. Tasks
T0 andT1 are coupled. Although the constant coefficients
(β) are non contiguous, it still is a schedule as soon as pos-
sible:

dT0
(c) = 5.c

dT1
(c) = 5.c + 1

dT2
(c) = 40.c1 + 5.c2 + 27

dT3
(c) = 40.c1 + 20.c2 + 43

dT4
(c) = 40.c1 + 10.c2 + 44

The logical duration is 369, and the execution time is
1553 cycles.

In order to understand how memory allocation is per-
formed, the scheduled code is given below:

float X[0:12][0:12], Y[0:7][0:7], H[0:7][0:12],
K[0:7][0:7], OUTPUT[0:7][0:7];

for(c=0; c<13; c++)
for(l=0; l<13; l++)

X[l][c] = input();

for(c=0; c<13; c++)
for(l=0; l<8; l++)
H[l][c]=conv(X[l:l+5][c]);

for(c1=0; c1<2; c1++)
for(c2=0; c2<8; c2++)
forall(p=0;p<2;p++)
for(l=0; l<2; l++)
K[2*c1+2*p+l][c2]=

conv(H[2*c1+2*p+l][c2:c2+5]);

for(c1=0; c1<2; c1++)
for(c2=0; c2<2; c2++)
forall(p=0;p<2;p++)
for(l1=0; l1<4; l1++)

for(l2=0; l2<2; l2++)
Y[4*c1+l1][4*c2+2*p+l2]=

K[4*c1+l1][4*c2+2*p+l2]+
H[4*c1+l1][4*c2+2*p+l2];

for(c1=0; c1<8; c1++)
for(c2=0; c2<4; c2++)
forall(p=0;p<2;p++)
OUTPUT[c1][2*c2+p]=Y[c1][2*c2+p];

7.3. Memory capacity for minimal execution time

This section presents the resulting code after memory al-
location.

The output buffer isB_W. It is doubled to allow the flip-
flop mechanism used to overlap communications and com-
putations. The integer modulos are not simplified, to show
the number of allocated buffers for each used array.

Every buffer is indexed by

1. the number of the virtual processor on which the com-
putation is executed,

2. the index number of the tiled computation block that is

5



Figure 4. Schedule for cost minimization under memory const raint

Figure 5. Schedule for cost minimization under execution ti me constraint

executed,

3. the executed local iteration indices, that also reference
the elements of the local buffers.

With this information, the communication code can
be automatically generated using the techniques presented
in [4].

float B_W[0:0][0:1][0:12],B_X_1[0:0][0:0][0:12],
B_H_2[0:0][0:13][0:11], B_H_3[0:0][0:3][0:7],
B_K_3[0:0][0:0][0:7], B_Y_4[0:0][0:25][0:0]

for(c=0; c<13; c++)
for(l=0; l<13; l++)
B_W[p][c%2][l] = input();

for(c=0; c<13; c++)
for(l=0; l<8; l++)
B_W[p][c%2][l] = conv(B_X_1[p][c%1][l:l+5])

for(c1=0; c1<2; c1++)
for(c2=0; c2<8; c2++)

for(l=0; l<2; l++)
B_W[p][(8*c1+c2)%2][l]=
conv(B_H_2[p][(8*c1+c2)%14][6*l:6*l+5]);

for(c1=0; c1<2; c1++)
for(c2=0; c2<2; c2++)

for(l1=0; l1<4; l1++)
for(l2=0; l2<2; l2++)

B_W[p][(2*c1+c2)%2][4*l2+l1]=
B_K_3[p][(2*c1+c2)%1][4*l2+l1]
+B_H_3[p][(2*c1+c2)%4][4*l2+l1];

for(c1=0; c1<8; c1++)
for(c2=0; c2<4; c2++)

l=0
B_W[p][(4*c1+c2)%2][l]=

B_Y_4[p][(4*c1+c2)%26][l];
}

The memory capacity per processor is 273 bytes. The
total memory capacity is 546 bytes.

8. Cost Minimization under Execution Time
Constraint

Multimedia applications often must meet real-time con-
straints. Here we wish to set the execution time to a value
strictly less than the 1553 cycles found in the previous so-
lution.

8.1. Tilings

To reduce the execution time, APOTRES has to increase
the number of processors from two to four.

Task # blocks # processors # local iterations

T0 13 1 13
T1 13 2 4
T2 2 × 8 4 1
T3 2 × 2 4 4
T4 8 × 2 4 1

Table 4. Tilings under Execution Time Con-
straint

8.2. Schedule

The schedule, represented in Figure 5, is nearly the same
as the previous one:

dT0
(c) = 5.c

dT1
(c) = 5.c + 1

dT2
(c) = 40.c1 + 5.c2 + 27

dT3
(c) = 40.c1 + 20.c2 + 43

dT4
(c) = 40.c1 + 20.c2 + 44

6



Cost Function # procs Duration Local memory Total memory Efficiency

Execution time 16 141 59 944 0.89
Machine cost 1 2001 574 574 1.00
Machine cost under memory constraint 2 1553 273 546 0.64
Machine cost under execution time constraint 4 861 171 684 0.58

Table 5. Comparative table for the 4 solutions

The logical duration is 269, and the execution time is 861
cycles. The memory capacity per processor is 171 bytes.
The total memory capacity is 684 bytes.

9. Discussion

Table 5 summarizes the different solutions depending of
the cost function used and on additional constraints, hard-
ware or software. Typically, to minimize the silicium area
of a SoC, the two main components to take into account are
the number of processors and the memory size attributed to
each processor. Only considering these two criteria yields
the solution with 1 processor and 574 bytes of local mem-
ory. Unfortunately, this solution is disastrous in terms of
number of cycles for a real-time embedded application such
as video decoding. So the number of cycles should also be
considered. Furthermore, decreasing the number of cycles
required to execute an application will allow to decrease the
SoC frequency and thus to reduce the SoC surface by tight-
ening the layers. The best solution seems to be four proces-
sors with 171 bytes memory.

The current search heuristics used by APOTRES fails
sometimes. Two and four processors should be allocated to
TaskT1 in Tables 3 and 4.

10. Conclusion

This article shows how a multimedia application can be
rapidly prototyped onto a SIMD architecture: Our map-
ping tool is able to explore the tiling and scheduling spaces
among the combinatorial space of solutions according to
different criteria. It enables to find quickly (the tool runsin a
few minutes) the best trade-off depending on the embedded
real-time constraints. APOTRES is connected to PIPS [7], a
tool that automatically analyzes and transforms codes writ-
ten in a Fortran. Another potential input is ANSI-C code
whose functional results can be checked (by THOMSON).
Hence our prototyping chain is nearly seamless in the sense
that a multimedia code can be parallelized from any stan-
dard specification (sometimes not parallel at all) translated
“ à la Fortran” or from a C sequential code.

To make APOTRES more useful, some improvements
are needed in three different axes: memory capacity, data

communication and code generation (control, allocation,
communication). The current memory model is not flex-
ible enough to support the variety of memory allocation
schemes used by programmers. Communications have to
be modelled with respect to the communication resources.
APOTRES generates integer values which are interpreted
as mapping directives. We are currently studying control
generation using CLooG [6], which generates an efficient
pseudo-code (in C for instance) from a description of itera-
tion domains and schedules. APOTRES uses a heuristic to
search the design space. It should be tuned according to the
target architecture.

References

[1] http://www.intel.com/design/intarch/mmx/docsmmx.htm.
[2] http://www.simdtech.org/altivec.
[3] C. Ancourt, D. Barthou, C. Guettier, F. Irigoin, B. Jeannet,

J. Jourdan, and J. Mattioli. Automatic data mapping of sig-
nal processing applications.IEEE International Conference
on Application Specific Systems, Architectures and Proces-
sors, pages 350–362, 1997.

[4] C. Ancourt, F. Coelho, F. Irigoin, and R. Keryell. A linear
algebra framework for static hpf code distribution. InFourth
Workshop on Compilers for Parallel Computers, CPC’93,
Delft, Pays-Bas, 1993.

[5] K. R. Apt. Principles of Constraint Programming. Cam-
bridge University press, 2003.

[6] C. Bastoul. Efficient code generation for automatic paral-
lelization and optimization. InISPDC’2 IEEE International
Symposium on Parallel and Distributed Computing, pages
23–30, Ljubjana, october 2003.

[7] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interpro-
cedural parallelization: an overview of the pips project. In
ACM International Conference on Supercomputing, ICS’91,
Cologne, Allemagne, June 1991.

[8] J. Mattioli, N. Museux, J. Jourdan, P. Savéant, and
S. de Givry. A constraint optimization framework for map-
ping a digital signal processing application onto a parallel
architecture. InPrinciples and Practice of Constraint Pro-
gramming, 2000.

[9] N. Museux. Aide au placement d’applications de traitement
du signal sur machines paralleles multi-spmd, 2001.

[10] T. Wiegand, G. Sullivan, and A. Luthra. Itu-t rec. h.264 —
iso/iec 14496-10 avc - final draft. Technical report, Joint
Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG,
May 2003.

7


