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1. INTRODUCTION AND MOTIVATION

Supercomputing research has produced a wealth of techniques to optimize a pro-
gram and tune code generation for a target architecture, both for uniprocessor and
multiprocessor performance [Wolfe 1996; Allen and Kennedy 2002]. When dealing
with common retargetable compilers for general-purpose and/or embedded architec-
tures, the context is different: the automatic exploitation of parallelism (fine-grain
or thread-level) and the tuning for dynamic hardware components become far more
challenging.

Modern compilers implement some of the sophisticated optimizations introduced
for supercomputing applications [Allen and Kennedy 2002]. They provide perfor-
mance models and transformations to improve fine-grain parallelism and exploit
the memory hierarchy. Most of these optimizations are loop-oriented and assume a
high-level code representation with rich control and data structures: do loops with
regular control, constant bounds and strides, typed arrays with linear subscripts.
Yet these compilers are architecture-specific and designed by processor vendors,
e.g., IBM, SGI, HP, Compaq and Intel. In addition, the most advanced optimiza-
tions are limited to Fortran and C, and performance is dependent on the recognition
of specific patterns in the source code. Some source-to-source compilers implement
advanced loop transformations driven by architecture models and profiling [KAP ].
However, good optimizations require manual efforts in the syntactic presentation of
loops and array subscripts (avoiding, e.g., while loops, imperfect nests, linearized
subscripts, pointers). In addition, the source-to-source approach is not suitable for
low-level optimizations, including vectorization and software pipelining. It is also
associated with pattern-based strategies that do not easily adapt to syntactic varia-
tions in the programs. Finally, these compilers require a huge implementation effort
that cannot be matched by small development teams for general-purpose and/or
free software compilers.

1.1 Loop Transformations on a Low-Level Representation

Several works demonstrated the interest of enriched low-level representation [Amme
et al. 2001; Lattner and Adve 2004]. They build on the normalization and simplic-
ity of three address code, adding data types, Static Single-Assignment form (SSA)
[Cytron et al. 1991; Muchnick 1997] to ease data-flow analysis and scalar opti-
mizations, and control and data annotations (loop nesting, heap structure, etc.).
Starting from version 4.0, GCC [GCC 2005] uses such a representation called GIM-

PLE [Novillo 2003; Merill 2003], a three-address code derived from SIMPLE, the
representation of the McCAT compiler [Hendren et al. 1993]. In a three-address
representation like GIMPLE, subscript expressions, loop bounds and strides are
spread across a number of instructions and basic blocks, possibly far away from the
original location in the source code. This is due to the lowering itself and to in-
termediate optimization phases, such as dead-code elimination, partial redundancy
elimination, optimization of the control flow, invariant code motion, etc. The most
popular techniques to retrieve scalar evolutions [Wolfe 1992; Gerlek et al. 1995; Pot-
tenger and Eigenmann 1995] are not well suited to work on such loosely structured
loops because they rely on classification schemes into a set of predefined forms,
often based on pattern-matching rules. Such rules are sometimes sufficient at the
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source level (for numerical codes), but too restrictive to cover the wide variability of
inductive schemes induced by scalar and control-flow optimizations on a low-level
representation.

To address the challenges of induction variable recognition on a low-level rep-
resentation, we designed a general and flexible algorithm to build closed form ex-
pressions for scalar evolutions. This algorithm can retrieve the array subscripts,
loop bounds and strides lost in the lowering process to three-address code and in-
termediate optimization phases, as well as many other scalar evolution properties
that did not explicitly appear in the source code. We claim that enriched three-
address code representations like GIMPLE have a high potential for the design and
implementation of analyzes of abstract program properties. We demonstrate that
induction-variable recognition and dependence analysis can be effectively imple-
mented at such a low level. We also show that our method is more flexible and
robust than comparable solutions on high-level code, since it retrieves precise de-
pendence information without restrictions on the complexity of the flow of control
and recursive scalar definitions. In particular, unlike [Gerlek et al. 1995; van En-
gelen 2001; van Engelen et al. 2004], our method captures affine and polynomial
closed forms without restrictions on the number and the intricateness of φ nodes.
Finally, speed, robustness of the implementation and language-independence are
natural benefits of using a low-level static single assignment representation.

1.2 Introductory Examples

We recall some SSA terminology to facilitate further discussions, see [Cytron et al.
1991; Muchnick 1997] for details: the SSA graph is the graph of def-use chains in
the SSA representation; φ nodes (or functions) occur at merge points and restore
the flow of values from the renamed variables; the φ arguments are variables listed
in the order of the associated control-flow edges; φ nodes are split into the loop-φ —
nodes whose second argument correspond to a back-edge in the control-flow graph
— and condition-φ categories. We will sometimes note loop1-φ for a loop-φ node
defined in loop 1. Throughout this paper, we will use a “generic” typed three-
address code in SSA form [Cytron et al. 1991]. Its syntax is simplified from the
GIMPLE representation [Merill 2003]. We consider only two control-flow primitives:
a conditional expression if, and a goto expression goto. In addition, we include
a loop annotation discovered from the control-flow graph [Aho et al. 1986]: loop
(ℓk) is the annotation for loop number k, and ℓk denotes the implicit counter
associated with this loop (loop numbers are unique). Loop annotations do not hold
any information on the bounds, and ℓk counters do not correspond to any concrete
variable in the program. Thanks to a loop restructuring pass, we assume that every
loop exits on a single goto controlled by a conditional expression. Although the
number of iterations is not captured by the representation, it is often computed from
the scalar evolution of variables involved in the loop exit conditions; this allows to
recompute precise information lost in the translation to a low-level representation,
but it may also be useful when the source level does not expose enough syntactic
information, e.g., in while loops.

To illustrate the main issues and concepts, we consider several examples. The
closed-form expression for f in Figure 1 is not affine (a second-degree polynomial).
In Figure 2, apart from d, all variables are univariate: they only depend on one
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Fig. 1. First example: polynomial functions. At each step of the
loop, an integer value following the sequence 1, 6, 11, . . . , 126 is as-
signed to d, that is the affine function 5ℓ1+1; a value in the sequence
3, 11, 24, . . . , 1703 is assigned to f , that is a polynomial of degree 2:
5
2
ℓ1

2 + 11
2

ℓ1 + 3.

a = 3
b = 1
loop (ℓ1)
c = loop1-φ (a, f)
d = loop1-φ (b, g)

if (d ≥ 123) goto end
e = d + 7
f = e + c
g = d + 5

end

Fig. 2. Second example: univariate and multivariate functions.
The successive values assigned to c are 3, 17, 31, . . . , 115, that is the
affine univariate function 14ℓ1 + 3. The evolution of x in the loop
follows the values of the sequence 17, 31, . . . , 129 that is the affine
univariate function 14ℓ1 + 17. Finally, the evolution of variable d,
3, 4, 5, . . . , 13, 17, 18, 19, . . . , 129 depends on the iteration number of
both loops: that is the multivariate affine function 14ℓ1 + ℓ2 + 3.

a = 3
loop (ℓ1)
c = loop1-φ (a, x)
loop (ℓ2)
d = loop2-φ (c, e)
e = d + 1
t = d - c
if (t ≥ 9) goto end2

end2
x = e + 3
if (x ≥ 123) goto end1

end1

Fig. 3. Third example: wrap-around. The sequence of val-
ues taken by a is 1, 5, 9, . . . , 101 that can be written in a con-
densed form as 4ℓ1 + 1. The values taken by variable e are
5, 11, 17, . . . , 95, 101, 9, 15, 21, . . . , 95, 101, and generated by the
multivariate function 6ℓ2 + 4ℓ1 + 5. These two variables are used
to define the variable c, that will contain the successive values
1, 5, 11, . . . , 89, 95, 5, 9, 15, . . . , 89, 95: the first value of c in the
loop ℓ2 is the value coming from a, while the subsequent values
are those of variable e, that is the characteristic of wrap-around
variables.

loop (ℓ1)
a = loop1-φ (1, b)
if (a ≥ 100) goto end1
b = a + 4
loop (ℓ2)
c = loop2-φ (a, e)
e = loop2-φ (b, f)
if (e ≥ 100) goto end2
f = e + 6

end2
end1

Fig. 4. Fourth example: periodic affine functions. Both a and
b have affine evolution functions, and they are taking the values
0, 1, 2, . . . , 100 during the execution of the loop ℓ1, because they both
have the same initial value. However, if their initial value is different,
their evolution can only be described by a periodic affine function.

loop (ℓ1)
a = loop1-φ (0, d)
b = loop1-φ (0, c)
if (a ≥ 100) goto end
c = a + 1
d = b + 1

end:

Fig. 5. Fifth example: effects of types on the evolution
of scalar variables. The C programming language de-
fines modulo arithmetics for unsigned typed variables.
In this example, the successive values of variable a are
periodic: 0, 1, 2, . . . , 255, 0, 1, . . ., or in a condensed no-

tation ℓ1 mod 256.

loop (ℓ1)
(unsigned char) a = loop1-φ (0, c)
(int) b = loop1-φ (0, d)
(unsigned char) c = a + 1
(int) d = b + 1
if (d ≥ 1000) goto end
T[b] = U[a]

end
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loop (ℓ1)
(char) a = loop1-φ (0, c)
(int) b = loop1-φ (0, d)
(char) c = a + 1
(int) d = b + 1
if (d > N) goto end

end

Fig. 6. Sixth example: inferring properties from undefined be-
havior. The C programming language does not define the wrap-
ping of signed types: the result of a signed addition is not defined
if it is over the types bounds. In this example, the behavior of

the program is well defined for all the values of a in the se-
quence 0, 1, 2, . . . , 126, and consequently, the valid values of d

are 1, 2, 3, . . . , 127, and finally the loop can be proved to run less
than 127 iterations.

loop counter; d is called multivariate. To compute the evolution of c, x and d in the
second example, one must know the trip count of the inner loop, here 10 iterations.
Yet, to statically evaluate the trip count of ℓ2 one must already understand the
evolutions of c and d. In the third example, Figure 3, variables a and e have simple
affine evolutions, but c is a typical case of wrap-around variable [Wolfe 1992], a
variable that takes a special value at the first iteration and becomes an inductive
variable with a regular evolution in further iterations. Such variables are defined by
loop-φ nodes appearing in strongly-connected components of the SSA graph that
hold other loop-φ nodes. The classification by Wolfe et al. [Gerlek et al. 1995] does
not handle wrap-around variables in nested loops where the initial value is varying
in the outer loops. Indeed, the closed form representation for such multivariate
variables are more complex than the affine, polynomial or exponential cases con-
sidered in [Wolfe 1992; Gerlek et al. 1995]. Here the value of c is reinitialized to
a different value at each iteration of the outer loop: in the first iteration of ℓ1,
its values in the inner loop are 1, 5, 11, 17, then in the second iteration of ℓ1, its
values are 5, 9, 15, 21, . . ., etc. We show the closed form of c in Section 2.3, after the
introduction of a representation that captures such evolutions. Some complex SSA

graphs with multiple loop-φ nodes in a cycle do not match the wrap-around class.
They define more general induction variables that include the periodic or exponen-
tial classes [Wolfe 1992], or may not even have a known closed form.2 Figure 4
presents an example where a and b have a linear closed form but derive from an
intricate inductive definition scheme. Unlike our algorithm, previous works could
not compute this closed form — although it is a linear one — due to the intricate-
ness of the SSA graph. Figure 5 illustrates an unusual data dependence problem.
Variable a is incremented at each iteration of ℓ1, however the unsigned char type
constraints its evolution to the range [0, 255]. When language standards define
modulo arithmetics for a type, the compiler has to handle the effects of wrapping
overflows on induction variables. When the effect of overflowing operations is not
defined by the language as wrapping, then based on the defined part of the domain,
the compiler is allowed to deduce constraints on the values of scalar variables, or
to infer safe bounds for loops, as illustrated in Figure 6.

1.3 Overview of the Paper

In the following, we expose a set of techniques to extract and to represent evolutions
of scalar variables in the presence of complex control flow and intricate inductive
definitions. We focus on designing low-complexity algorithms that do not sacrifice
on the effectiveness of retrieving precise scalar evolutions, using a typed, low-level,

2A complete algebra does not exist for the Turing-complete computation model of scalar evolu-
tions.
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SSA-form representation of the program.
Section 2 introduces the algebraic structure that we use to capture a wide spec-

trum of scalar evolution functions. Section 3 formally presents the translation from
the SSA to the closed form expressions at the semantic level. Section 4 presents an
efficient analysis algorithm to extract closed form expressions for scalar evolutions.
Section 5 integrates our method in a data dependence analysis and loop transfor-
mation framework. Section 6 compares our method to other existing approaches.
Finally, Section 7 concludes and sketches future work.

2. CHAINS AND TREES OF RECURRENCES

In this section, we recall the syntax and semantics of Multivariate (a.k.a. multidi-
mensional) Chains of Recurrences (MCR) [Bachmann et al. 1994; Kislenkov et al.
1998; Zima 2001; van Engelen 2001], a closed-form that captures the evolution of
scalar variables as a function of iteration indices and allows an efficient computa-
tion of values at given iteration points. Then, we introduce Trees of Recurrences
(TREC) that extend the expressive power of MCR by symbolic references. TREC

correspond to a compressed part of the SSA graph uniquely dealing with scalar
constants and symbols. MCR are obtained after an instantiation pass of all the
symbols, defined as an abstraction operator: symbolic evolutions are translated
with loss of information into less precise representations, or directly mapped to the
“don’t know” symbol ⊤. We present abstract envelopes and periodic TREC rep-
resentations that we proposed as target representations for the instantiation pass.
Finally, we propose the peeled TREC, and typed TREC, and we end this section
with a discussion about exponential evolutions.

2.1 Chains of Recurrences

Let F (ℓ1, ℓ2, . . . , ℓm) — or F (~ℓ) for short — represent the evolution of a variable
inside a loop of depth m as a function of ℓ1, ℓ2, . . . , ℓm, the integer-valued loop
indices (numbered from 0). We wish to convert F into a closed form Θ, that can
be statically processed by further analyzes and evaluated efficiently at compile-
time for a given ~ℓ. Informally, the MCR corresponding to F is a binary tree of
bounded depth, where each node is a constant or a MCR. The syntax of a MCR is
inductively defined as: Θ = {Θa, +, Θb}k or Θ = c, where Θa and Θb are MCR

and c is a constant. Subscript k indexes the varying dimension. As a form of
syntactic sugar, {Θa, +, {Θb, +, Θc}k}k may be flattened into {Θa, +, Θb, +, Θc}k,
and likewise for longer right-extended branches subscripted with the same loop k. A
MCR Θ is said univariate when only one loop affects the evolution and multivariate
otherwise.

2.1.0.1 Evaluation of MCR. The value Θ(ℓ1, ℓ2, . . . , ℓm) of a MCR Θ is defined as

follows: if Θ is a constant c then Θ(~ℓ) = c, otherwise, Θ is of the form {Θa, +, Θb}k
and

Θ(~ℓ) = Θa(~ℓ) +

ℓk−1
∑

x=0

Θb(ℓ1, . . . , ℓk−1, x, ℓk+1, . . . , ℓm).

Intuitively, the evaluation of {Θa, +, Θb}k for a given vector ~ℓ matches the induc-
tive updates of a scalar variable across ℓk iterations of loop k, with Θa the initial
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c + {Θa, +,Θb}k = {c + Θa, +,Θb}k

c× {Θa, +,Θb}k = {c×Θa, +, c×Θb}k

{Θa,+,Θb}k + {Θc, +,Θd}k = {Θa + Θc,+,Θb + Θd}k

{Θa,+,Θb}k × {Θc, +,Θd}k = {Θa ×Θc,+, {Θa,+, Θb}k ×Θd

+ {Θc, +,Θd}k ×Θb + Θb ×Θd}k

Fig. 7. Some arithmetic operations on MCR.

value of the variable and Θb the increment for this variable. This definition leads
to an exponential algorithm to evaluate a MCR at a given iteration point, but we
may compute Θ(~ℓ) with a linear time and space complexity [Bachmann et al. 1994].

2.1.0.2 Newton series. Efficient computation of MCR is based on Newton inter-
polation series. Considering a univariate chain of recurrences with c0, c1, c2, . . . ,
cn, constant parameters (i.e., either scalar constants, or symbolic names defined
outside loop k)

{c0, +, c1, +, c2, +, . . . , +, cn}k(~ℓ) =

n
∑

p=0

cp

(

ℓk

p

)

. (1)

This result comes from the following observation: a sum of multiples of bino-
mial coefficients — called Newton series — can represent any polynomial. The
closed form for f in the first example of Figure 1 is the second order polynomial
F (ℓ1) = 5

2ℓ1
2 + 11

2 ℓ1 + 3 which can be represented by the sum of multiples of bi-

nomial coefficients c0

(

ℓ1
0

)

+ c1

(

ℓ1
1

)

+ c2

(

ℓ1
2

)

, with c0 = 3, c1 = 8 and c2 = 5. This
corresponds to the MCR {3, +, 8, +, 5}1. The coefficients of a MCR derive from a
finite differentiation table: for example, the coefficients for the MCR associated with
5
2ℓ1

2 + 11
2 ℓ1 + 3 can be computed either by differencing the successive values taken

by the scalar variable in successive loop iterations, and construct the differentia-
tion table like Haghighat and Polychronopoulos [Haghighat and Polychronopoulos
1996]:

ℓ1 0 1 2 3 4
c0 3 11 24 42 65
c1 8 13 18 23
c2 5 5 5
c3 0 0

or, avoid the construction of this differentiation table, by directly extracting the co-
efficients from the code [van Engelen 2001]. We present our algorithm for extracting
MCR coefficients from a classic SSA representation in Section 4.

2.1.0.3 Arithmetic operations. Arithmetic operations on MCR can be defined as
rewriting rules as illustrated in Figure 7. For a complete table of rewriting rules on
MCR we refer to [van Engelen 2001].

2.1.0.4 Evaluation example. Considering the second introductory example (see
Figure 2), the evolution of d can be represented by the affine equation F (ℓ1, ℓ2) =
14ℓ1 + ℓ2 + 3. An affine MCR for d is Θ(ℓ1, ℓ2) = {{3, +, 14}1, +, 1}2, that can be
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evaluated for ℓ1 = 10 and ℓ2 = 15 as follows:

Θ(10, 15) = {{3, +, 14}1, +, 1}2(10, 15)

= {3 + 14

(

10

1

)

, +, 1}2(15) = {143, +, 1}2(15)

= 143 +

(

15

1

)

= 158

2.2 Trees of Recurrences

We extended the MCR by allowing symbolic expressions instead of scalar coefficients
that are loop invariant. We called the resulting representation Trees of Recurrences
(TREC), as coefficients may contain tree expressions as in abstract syntax trees.
We keep the same syntax and the same semantics for the TREC:

{a, +, expr}k(x) = a +

x−1
∑

i=0

expr(i).

TREC captures a larger class of scalar evolutions than MCR, because TREC may
contain symbols referring to other scalar evolutions, and potentially self references.
As an example of TREC that is not a MCR, consider the Fibonacci sequence that
defines the simplest case of the class of mixers: fib→ {0, +, 1, +, f ib}k. Optimiza-
tions such as symbolic propagation could handle such difficult constructs, however
they can lead to problems that are difficult to solve in practice (e.g. determining the
number of iterations of a loop whose exit edge is guarded by a Fibonacci sequence).
Another difficulty linked to the self referring TREC is that the efficient evaluation
based on Newton interpolation series cannot be used, since the self referring TREC

correspond to differentiation tables of infinite length.

2.2.0.5 Instantiation of TREC. Because a large class of optimizers and analyzers
are expecting simpler cases, TREC information is filtered using an instantiation
pass. Several abstraction functions can be defined, such as mapping parametric
evolutions to ⊤, or mapping non affine functions to ⊤.

2.2.0.6 Abstract envelopes. In some cases, it is natural to map uncertain values
to an abstract value. We have experimented instantiations of TREC with intervals,
in which case we obtain a set of possible evolutions that we call an envelope. Al-
lowing the coefficients of TREC to contain abstract scalar values is a more natural
extension than the use of maximum and minimum functions over MCR as proposed
by [van Engelen et al. 2004] because it is then possible to define other kinds of
envelopes using classic scalar abstract domains, such as polyhedra, octagons [Miné
2001], or congruences [Granger 1991].

2.3 Peeled Trees of Recurrences

A common case, quite frequently used by programmers consists in variables that
contain a value used during the first iteration of a loop, that is replaced by the
values of another induction variable for the rest of iterations. We have chosen to
represent these variables by explicitly listing the first value that they contain, and
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ℓ1 0 1 2 3 4

c0 3 11 24 42 65
c1 8 13 18 23
c2 5 5 5
c3 0 0

ℓ1 0 1 2 3 4 5

c0 0 3 11 24 42 65
c1 3 8 13 18 23
c2 5 5 5 5
c3 0 0 0

Fig. 8. Adding a new column to the differentiation table of the chain of recurrence {3,+, 8,+, 5}1
leads to the chain of recurrence {0, +, 3,+, 5}1.

then the evolution function that they follow. The peeled TREC are described by
the syntax (a, b)k whose semantics is given by:

(a, b)k(x) =

{

a if x = 0,

b (x - 1) for x ≥ 1,

where a is a TREC with no evolution in loop k, b is a TREC that can have an
evolution in loop k, and x is indexing the iterations in loop k. Most closed forms
for wrap-around variables [Wolfe 1992] are peeled TREC. Indeed, back to the third
introductory example (see Figure 3), the closed form for c can be represented
by a peeled multivariate affine TREC: ({1, +, 4}1, {{5, +, 4}1, +, 6}2)2. A peeled
TREC describes the first values of a closed form chain of recurrence. In some
cases it is interesting to replace it by a simpler MCR, and vice versa, to peel some
iterations out of a MCR. For example, the peeled TREC (0, {1, +, 1}1)1 describes the
same function as {0, +, 1}1. This last form is a unique representative of a class of
TREC that can be generated by peeling one or more elements from the beginning.
Simplifying a peeled TREC amounts to the unification of its first element with the
function represented in the right-hand side of the peeled TREC. A simple unification
algorithm tries to add a new column to the differentiation table without changing
the last element in that column. Since this first column contains the coefficients of
the TREC, the transformation is possible if it does not modify the last coefficient
of the column. This is illustrated in Figure 8. Unifying nested peeled TREC can be
done incrementally from the innermost outwards.

Finally, we formalize the notion of peeled TREC equivalence class: given integers
v, a1, . . . , an, a MCR c = {a1, +, . . . , +, an}1, a peeled TREC p = (v, c)1, and a MCR

r = {b1, +, . . . , +, bn−1, +, an}1, with the integer coefficients b1, . . . , bn−1 computed
as follows: bn−1 = an−1 − an, bn−2 = an−2 − bn−1, . . ., b1 = a1 − b2, we say that r

is equivalent to p if and only if b1 = v.
The importance of this method is illustrated by the number of cases that occur

in benchmarks: in the SPEC CPU2000 we have found 29 wrap around loop-φ that
can be unified, on the GCC code itself we have found 337 unification opportunities,
and on the JavaGrande benchmarks we have found 5 occurrences. In all these cases,
the subsequent passes that are using an instantiated form of TREC are ineffective
if the unification is not performed: they conservatively reject difficult constructs
such as the wrap around evolutions.

2.4 Periodic Trees of Recurrences

Periodic sequences may be generated by flip-flop operations as illustrated in Fig-
ure 4, that are special cases of self referenced peeled TREC. Variables in a flip-flop
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exchange their initial values over the iterations, for example:

a→ (3, 5, a)k(x) = [3, 5]k(x) =def

{

3 if x = 0 mod 2,

5 if x = 1 mod 2.

Periodic sequences may also be generated by the wrapping semantics of overflow-
ing typed variables, as illustrated in Figure 5.

2.5 Typed Trees of Recurrences

Induction variable analysis in the context of typed operations is not new: all the
compilers that have loop optimizers for typed intermediate representations have
solved this problem. However there is little literature that describes the problems
and solutions [Warren 2003]: these details are often considered too low level, and
language dependent. However, as illustrated in the fifth introductory example, in
Figure 5, the analysis of data dependences has to correctly handle the effects of
overflowing on variables that are indexing the data.

The C and C++ programming languages define wrapping semantics on overflow
for the unsigned types, and leave the semantic of overflowing signed types undefined.
The Java programming language defines wrapping semantics on overflow for signed
and unsigned types. A compiler can propose a flag for extending the wrapping
semantics to all the types, as for example the option -fwrapv of GCC. It is this
wrapping behavior that has to be preserved during a conversion of a variable to
another type, and on any arithmetic operation. One of the solutions is to type
the TREC and to map the effects of types from the SSA representation to the
TREC representation. For example, the conversion from unsigned char to unsigned
int of TREC {(uchar)100, +, (uchar)240}1 is {(uint)100, +, (uint)0xfffffff0}1.
0xfffffff0 is the only possible value for the step in the range of unsigned int that
keeps the original sequence unchanged (100, 84, 68, . . .). This conversion has to be
performed carefully with respect to the number of iterations of loop 1 in order to
ensure that the original TREC does not wrap. If the number of iterations in loop 1
is greater than 6, the converted TREC should also contain a wrap modulo 256, as
illustrated by the first values of the sequence: 100, 84, 68, 52, 36, 20, 4, 244, 228, . . ..
When it is impossible to prove that an evolution cannot wrap, it is safe to assume
that it wraps, and keep the cast: (uint)({(uchar)100, +, (uchar)240}1). Another
possible solution is to use periodic TREC, but this does not seem to be practical
because all the values of a period have to be listed. As we have seen in the previous
example we would have to store only 15 values. Using periodic TREC for sequences
wrapping over narrow types can seem practical, but for wider types this method is
not practical: for a type of size 2n the maximal period is 2n that corresponds to
the sequence generated by the affine evolution {0, +, 1}1.

2.6 Exponential Trees of Recurrences

The exponential MCR [Bachmann et al. 1994] used by [van Engelen 2001] and then
extended by [van Engelen et al. 2004] to handle sums or products of polynomial and
exponential evolutions are useless in compiler technology for characterizing typed
integer sequences. This is mainly due to the fact that integer typed arithmetic limits
the definition domain, and any operation whose result is not in the defined domain
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causes an overflowing effect that either have defined modulo wrapping semantics, or
the result of overflowing is left undefined by the programming language standard.
The longer exponential integer sequence that can exist for an integer type of size
2n is n− 1, that corresponds to the left shifting of the first bit n− 2 times. Storing
exponential evolutions as peeled TREC seems to be efficient, because in general
n ≤ 64, and because exponential evolutions are not very common in codes. We
have not yet used this translation in a real experiment.

We acknowledge that exponential MCR can have applications in compiler tech-
nology for floating point evolutions, but we have intentionally excluded floating
point evolutions from our analysis because floating point arithmetic has even more
subtleties than typed integer arithmetic.

The next section will present the semantics of some scalar SSA constructs that
are defined in loop structures. We establish the link between the TREC and a
subset of the SSA at the semantic level, before exposing an efficient algorithm that
translates a part of the SSA representation to TREC in Section 4.

3. SEMANTIC LINK BETWEEN TREC AND A SUBSET OF THE SSA

In the following, we note:

—S[[e]] for the semantics of an expression e,

—loopx − φ(b, c) for an SSA φ node defined in loop x, where b is defined outside
the loop x, and c is defined in loop x,

—[n← v] when the value v is assigned to the variable name n in the environment,

—ℓx for the integer-valued indices of loop x numbered from 0,

—a(ℓx) for the value of variable a at iteration ℓx.

We give the denotational semantics for a subset of the SSA expressions contained
in an innermost loop x:

S[[a = loopx − φ(b, c)]] =

[

a(ℓx)←

{

b, if ℓx = 0;
c(ℓx − 1), otherwise.

]

S[[d = e]] = [d(ℓx)← e(ℓx)]

S[[f = g + h]] = [f(ℓx)← g(ℓx) + h(ℓx)]

S[[i = j ∗ k]] = [i(ℓx)← j(ℓx) ∗ k(ℓx)]

Knowing the semantics of only these SSA expressions is enough for targeting all
the TREC constructs. Following the definition of the updating expression c(ℓx− 1)
in the semantics of loop-φ nodes, it is possible to distinguish the following cases:

—c is defined by an expression that is independent of a,

—c is defined by a sum expression that contains a single reference to a,

—c is defined by a sum expression that contains several references to a, or a appears
in a product,

—c is transitively dependent on a in general.

For each of these cases, Figure 9 presents the equivalent SSA and TREC notations
when they exist.
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SSA syntax conditions TREC syntax
a = loopx-φ (b, c) c independent on a a = (b, c)x (peeled TREC)
a = loopx-φ (b, a + e) e independent on a a = {b, +, e}x (polynomial MCR)
a = loopx-φ (b, k*a + e) e independent on a, k > 1 a = {b, +, (k − 1) ∗ a + e}x (or see

the exponential MCR syntax)
a = loopx-φ (b, c) c transitively dependent on a mixers not represented in general

Fig. 9. Link between some SSA and TREC constructs.

The next section will present an algorithm that extracts a subset of the SSA to
the TREC. The crux of the algorithm stands in the gathering of the information that
is spread across the whole program, followed by a filtering of difficult constructs to
an appropriate abstraction level that can be handled by optimization passes.

4. ANALYSIS OF SCALAR EVOLUTIONS

We now present an algorithm to compute closed-form expressions for inductive
variables.3 The interface to our analyzer is designed as an interface to a database
that contains, for a given variable definition, its evolution function under the form
of a TREC. For example, when the data dependence analyzer needs the evolution
function of a variable that indexes an array, it simply queries the database that
either returns the cached previously computed evolution function, or otherwise
triggers the analysis of the asked variable, triggering the analysis of all the variables,
loop counts, etc., needed to determine the evolution function.

Several constraints have led the design of our analyzer. First, our algorithm
does not assume a particular control-flow structure and makes no restriction on the
recursive intricate variable definitions. It however fails to detect any meaningful
induction variable on irreducible control flow graphs that cannot be analyzed into
natural loop structures [Aho et al. 1986]. For all the variables defined in one of the
basic blocks of an irreducible region, the answer of our analyzer will be the value ⊤
that stands for an uncomputable evolution. Another characteristic of this algorithm
is that it does not use the syntactic information of the analyzed SSA representation.
In other words, it makes no distinction between the names of variables defined in
the source code and those that are introduced by the lowering to three-address
code, or by other optimizers. Furthermore, the algorithm is able to delay a part
of the analysis until more information is known, by leaving symbolic names in
the representation. The representation that is obtained from AnalyzeEvolution

function is the most instantiated with respect to the instantiation context, that
is, no early approximations have been performed. Based on this representation,
symbolic solvers, as for example the computation of the number of iterations in
a loop, may produce safe and precise informations that improve the information
available in the instantiation context. The last constraint that is important for the
inclusion of an implementation of the algorithm in a production compiler is that
the analyzer should be linear in time and space. In order to satisfy this constraint
and to allow further possible refinements, an interface provides views of different
levels of abstractions. This can practically be implemented by several procedures
that instantiate TREC.

3Interested readers can find an implementation in GCC: tree-scalar-evolution.c.
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Analyze Evolution BuildUpdateExprInstantiateEvolutionComputeLoopPhiEvolutions

Fig. 10. Bird’s eye view of the analyzer

Algorithm: ComputeLoopPhiEvolutions

Input: SSA representation of the procedure
Output: a TREC for every variable defined by loop-φ nodes

For each loop l in a depth-first traversal of the loop nests
For each loop-φ node n in loop l

InstantiateEvolution(AnalyzeEvolution(l,n), l)

Fig. 11. Driver application.

The structure of our algorithm is quite complex because it is based on a double
recursion as sketched in Figure 10. It presents similarities with the algorithm for
linear unification [Paterson and Wegman 1976], where the double recursion is hidden
behind a single recursion with a stack structure.

4.1 Algorithm

Figure 11 presents a driver application ComputeLoopPhiEvolutions, that com-
putes a TREC for every variable whose value is alive across loop iterations. In
practice, the computation of closed form expressions are triggered by applications
like the dependence analysis or the evaluation of loop-trip count. As illustrated
in this driver, the applications call the analyzer AnalyzeEvolution, presented
in Figure 12, for a given loop and a variable name. The results are then filtered
through an abstraction function InstantiateEvolution presented in Figure 14.

The first step of AnalyzeEvolution is a query to the database for the evolution
function of the analyzed variable. The database is only visible to the AnalyzeEvo-

lution function and is accessed using the construct, Evolution[n], for an SSA

name definition n. The value contained initially in the database for a non analyzed
variable name is ⊥. The database ensures that the analysis is performed only once
for a given variable name. The main part of the analyzer consists in a pattern
matching of five common expressions occurring in a three-address SSA representa-
tion, with the corresponding associated action. The first pattern, “v = constant”,
is the simplest one: the resulting evolution is constant. The second pattern, “v =

a”, propagates the evolution function by copy. If the analyzer is restricted to these
two patterns, the analyzer has the same role and expressive power as a constant
propagation pass. To these basic patterns is added an interpreter, the third pat-
tern ”v = a ⊙ b”, that maps the arithmetic operations of the source language
onto the arithmetic operations of the target language. Note that cast operations
can be implemented as part of this interpreter, but are not presented in Figure 12
for simplifying the presentation. With this extension, the analyzer is slightly more
expressive than the classic constant propagation because it is also able to fold some
of the arithmetic expressions into constants.

The cornerstone of the analyzer is in the fourth pattern, ”v = loop-φ(a, b)”,
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Algorithm: AnalyzeEvolution(l, n)
Input: l the current loop, n the definition of an SSA name
Output: TREC for the variable defined by n within l

v ← variable defined by n

ln ← loop of n

If Evolution[n] 6= ⊥ Then
res ← Evolution[n]

Else If n matches ”v = constant” Then
res ← constant

Else If n matches ”v = a” Then
res ← AnalyzeEvolution(l, a)

Else If n matches ”v = a ⊙ b” (with ⊙ ∈ {+,−, ∗}) Then
res ← AnalyzeEvolution(l, a) ⊙ AnalyzeEvolution(l, b)

Else If n matches ”v = loop-φ(a, b)” Then
(notice a is defined outside loop ln and b is defined in ln)
Search in depth-first order a path from b to v:
(exist,update) ← BuildUpdateExpr(n, definition of b)
If (not exist) (i.e., if such a path does not exist) Then

res ← (a, b)l

Else If update is ⊤ Then
res ← ⊤

Else
res ← {a,+,update}l

Else If n matches ”v = condition-φ(a, b)” Then
eva ← InstantiateEvolution(AnalyzeEvolution(l, a), ln)
evb ← InstantiateEvolution(AnalyzeEvolution(l, b), ln)
If eva = evb Then

res ← eva

Else
res ← ⊤

Else
res ← ⊤

Evolution[n] ← res

Return Eval (res, l)

Fig. 12. Main analyzer.

that analyses φ nodes whose arguments are defined at different loop levels. The
recursively defined expression is searched and reconstructed from the low level three-
address SSA representation using BuildUpdateExpr. This algorithm is presented
in Figure 13 and it corresponds to a depth-first search algorithm in the SSA graph
with each step composed of a look-up of an SSA definition, and then followed by a
recursive call of the search algorithm on the symbolic operands. The search halts
when the starting loop-φ node is reached. When analyzing an assignment whose
right-hand side is a sum, the search algorithm examines the first operand, and if
the starting loop-φ node is not reachable through this path, it examines the second
operand. When one of the operands contains a path to the starting loop-φ node,
the other operand of the sum is added to the update expression, and the result
is propagated to the lower search steps together with the reconstructed update
expression. If the starting loop-φ node cannot be found by depth-first search, i.e.,
when BuildUpdateExpr returns (false, ⊥), the definition does not belong to a
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Algorithm: BuildUpdateExpr(h, n)
Input: h the halting loop-φ, n the definition of an SSA name
Output: (exist, update), exist is true if h has been reached,
update is the reconstructed expression for the overall effect in the loop of h

If (n is h) Then
Return (true, 0)

Else If n is a statement in an outer loop Then
Return (false, ⊥),

Else If n matches ”v = a” Then
Return BuildUpdateExpr(h, definition of a)

Else If n matches ”v = a + b” Then
(exist, update) ← BuildUpdateExpr(h, a)
If exist Then Return (true, update + b),
(exist, update) ← BuildUpdateExpr(h, b)
If exist Then Return (true, update + a)

Else If n matches ”v = loop-φ(a, b)” Then
ln ←loop of n

(notice a is defined outside ln and b is defined in ln)
If a is defined outside the loop of h Then

Return (false, ⊥)
s ← Apply(ln, InstantiateEvolution(AnalyzeEvolution(ln, n), ln),

NumberOfIterations(ln))
If s matches ”a + t” Then

(exist, update) ← BuildUpdateExpr(h, a)
If exist Then

Return (exist, update + t)
Else If n matches ”v = condition-φ(a, b)” Then

(exist, update) ← BuildUpdateExpr(h, a)
If exist Then Return (true, ⊤)
(exist, update) ← BuildUpdateExpr(h, b)
If exist Then Return (true, ⊤)

Return (false, ⊥)

Fig. 13. SSA walker: reconstructs symbolic update expressions from a three-address SSA code.

cycle of the SSA graph: a peeled TREC is returned.
The overall effect of an inner loop may only be computed when the exit value

of the variable is a function of the entry value. In such a case, the whole loop is
behaving as a macro-increment operation. When the exit condition depends on
affine TREC only, function NumberOfIterations computes the number of iter-
ations of the loop by solving a constraint system. As a practical implementation,
one can choose the Omega solver [Pugh 1992], but it is also possible to use a solver
restricted to univariate affine constraint systems for avoiding any exponential be-
havior. Then, Apply is used to evaluate the overall effect of the inner loop. Apply

implements the efficient evaluation scheme for MCR based on Newton interpolation
series (see Section 2.1). Once the overall effect of an inner loop on a scalar variable
has been computed, the information is propagated after the loop, extending the
limits of a classic constant propagation engine after loop structures.

Finally, in the last pattern of AnalyzeEvolution and BuildUpdateExpr,
”v = condition-φ(a, b)”, it is possible to plug the TREC envelope extension.
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Fig. 14. A possible filter function.

Algorithm: InstantiateEvolution(trec, l)
Input: trec a symbolic TREC, l the instantiation loop
Output: an instantiation of trec

If trec is a constant c Then Return c

Else If trec is a variable v Then
If v has not been instantiated

Mark v as instantiated
Return AnalyzeEvolution(l, v)

Else v is in a mixer structure: Return ⊤
Else If trec is of the form {e1,+, e2}x Then

i1 ← InstantiateEvolution(e1, l)
i2 ← InstantiateEvolution(e2, l)
Return {i1,+, i2}x

Else If trec is of the form (e1, e2)x Then
i1 ← InstantiateEvolution(e1, l)
i2 ← InstantiateEvolution(e2, l)
Return UnifyPeeled((i1, i2)x)

Else Return ⊤

Although we implemented this extension, there are no optimization or analysis
application that uses this extension yet, and thus we will not present this extension
of the algorithm in this paper. However, we present in Figure 12 a simple case
where both branches have the same evolution functions.

InstantiateEvolution substitutes symbolic parameters in a TREC. It com-
putes their statically known value, i.e., a constant, a periodic function, or an approx-
imation with intervals, possibly triggering other computations of TREC in the pro-
cess. The call to InstantiateEvolution is postponed until the end of the depth-
first search, ensuring termination of the recursive nesting of depth-first searches,
and avoiding early approximations in the computation of update expressions. Com-
bined with the introduction of symbolic parameters in the TREC, postponing the
instantiation alleviates the need for a specific ordering of the computation steps.

The termination and complexity of this algorithm are presented in the next sub-
section, then we give two illustration examples in Section 4.3. Section 4.4 proposes
an extension to the interprocedural case, and finally Section 4.5 presents experi-
mental results.

4.2 Termination and Complexity of the Algorithm

When analyzing the code of the algorithm, we can briefly sketch its call graph, as
shown in Figure 10. The algorithm is initiated by a call to AnalyzeEvolution,
then finishes with the analysis of all the symbols left in the representation, by
calling InstantiateEvolution. An overview of the ideas that lead to the proof
of the termination consists in remarking that:

—AnalyzeEvolution does not analyze twice the same variable, because after
each complete analysis, the evolution is stored in a database that is checked on
entry of AnalyzeEvolution,

—InstantiateEvolution does not instantiate twice the same variable, otherwise
a mixer is detected, and the recursion is stopped either by returning ⊤ as in Fig-
ure 14, or by translating the mixer in an appropriate abstraction, like a periodic
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function,

—BuildUpdateExpr terminates once it has reached its halting loop-φ node, or
once it has walked over all the SSA edges connected to the starting loop-φ node,
in the limits of the analyzed loop.

Consequently, in the worst case, the analyzer stops after having analyzed once all
the variables of the program. For giving an idea of the worst case complexity of
the analyzer, we will describe with more details the termination process. We will
consecutively consider the worst case complexity of each of the building blocks
of the algorithm. We deduce from this the overall complexity of the algorithm
in the worst case, then the termination of the algorithm in terms of number of
basic operations. Figure 15 sketches the computational patterns behind each of the
components of the algorithm.

op0 op1

1

AE

2

3

IE: expr
2

31

loop−phi node BUEAE:
loop−phi node

1

2BUE:

Fig. 15. Computational patterns of InstantiateEvolution (IE), AnalyzeEvolution (AE), and
BuildUpdateExpr (BUE).

4.2.1 Complexity of InstantiateEvolution. The worst case for Instanti-

ateEvolution corresponds to an expression with n operands, and among them
appear all the SSA names defined in the program. Let m stand for the number of
SSA names in the program. In the worst case n > m. The total cost of instantiat-
ing such an expression involves a recursive visit of each leaf: that produces n steps,
then for each leaf, a call to AnalyzeEvolution. The total number of operations is
equal to n decompositions of the given expression, n calls to AnalyzeEvolution,
followed by n− 1 folds of the obtained subexpressions: the total amounts to 3n− 1
basic operations.

4.2.2 Complexity of AnalyzeEvolution. The cost of AnalyzeEvolution

for a constant is equal to 1. For a SSA name, the cost is equal to the look-up
in the database plus, when the scalar variable was not yet analyzed, the cost of
its analysis. Because the first part of this algorithm consists in walking up the
definitions to known values or to loop-phi nodes, the algorithm may end as soon as
all the needed scalar definitions have values already computed.

In the worst case, the total number of steps is equal to 5m: at each analysis of a
SSA name there are at most 3 reads in the database: for a = b op c, a read for a,
then supposing that the variable has not yet been analyzed, a read for each of the
operands, then a fold operation on the TREC of the operands, and finally a write
of the result in the database.

Because in the worst case n > m, the difference n−m corresponds to the number
of queries from InstantiateEvolution that hit the cached value in the database.
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Thus the total number of basic operations for AnalyzeEvolution is equal to
4m + n.

When AnalyzeEvolution ends on a loop-φ node whose evolution is not yet
analyzed, AnalyzeEvolution calls BuildUpdateExpr.

4.2.3 Complexity of BuildUpdateExpr. BuildUpdateExpr is called only
from AnalyzeEvolution, when analyzing a loop-φ node. The loop-φ edge ex-
iting the loop is left under a symbolic form, while the edge pointing in the loop
is the one followed by BuildUpdateExpr in a depth first search order until the
starting loop-φ node is reached. The number of operations triggered by one call to
BuildUpdateExpr is equal to the number of edges explored during this depth first
search. Once all the paths reachable by following SSA edges in the analyzed loop
are explored and the halting loop-φ node is still not found, BuildUpdateExpr

ends by returning a peeled TREC.
In the particular case where the SSA edges enter an inner loop, the analysis of the

definition in the inner loop is triggered. But because we are computing the total
number of steps in the worst case, we have already counted these definitions in the
input expression to InstantiateEvolution. Thus we can consider all these parts
already analyzed, and their cost to the BuildUpdateExpr function is equal to a
read in the database, if we count the cost of computing the number of iterations
for all the loops separately.

BuildUpdateExpr is called only on the loop-φ nodes not yet analyzed, in other
words, once per loop-φ node. Thus in the worst case, the overall complexity of
BuildUpdateExpr is equal to

∑

i∈loop−φ ei, where ei is the number of SSA edges
reachable from the analyzed loop-φ , not exiting the loop.

4.2.4 Cost of the whole algorithm. Putting all together, we obtain the following
worst case complexity:

4n− 1 + 4m +
∑

i∈loop−φ

ei + l

—n is the number of basic components in TREC to be instantiated,

—m is the number of SSA names in the program,

—ei is the number of SSA edges reachable from the analyzed loop-φ, and not exiting
the loop,

—l is the number of steps required to solve the constraint systems for determining
the number of iterations for all the loops. l is linear if the solver is restricted to
uniquely deal with univariate affine evolutions. In the case of the Omega solver
[Pugh 1992], l is exponential in the worst case.

We have proved that the algorithm is terminating on any input SSA represen-
tation, and we have analyzed the worst case complexity of the analysis algorithm.
The overall cost of the analyzer highlights its structure: it is composed of two pre-
processing passes followed by the analysis of the loop-φ nodes. The complexity of
the algorithm depends on the quality of the expected answer: using an exact solver
for constraint systems might not be practical for production compilers. However,
we plan to use exact solvers for improving the overall quality of the compiler by
assessing regressions with respect to an optimal behavior.
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a = 3
b = 1
loop (ℓ1)
c = loop1-φ(a, f)
d = loop1-φ(b, g)
if (d ≥ 123)
goto end

e = d + 7
f = e + c
g = d + 5

end

(1) Initial value edge

a = 3
b = 1
loop (ℓ1)
c = loop1-φ(a, f)
d = loop1-φ(b, g)
if (d ≥ 123)
goto end

e = d + 7
f = e + c
g = d + 5

end

(2) Searching for “c”

a = 3
b = 1
loop (ℓ1)
c = loop1-φ(a, f)
d = loop1-φ(b, g)
if (d ≥ 123)
goto end

e = d + 7
f = e + c
g = d + 5

end

(3) Found the halting phi

a = 3
b = 1
loop (ℓ1)

c = loop1-φ(a, f)
d = loop1-φ(b, g)
if (d ≥ 123)
goto end

e = d + 7
f = e + c
g = d + 5

end

(4) On the “return path”

Fig. 16. Application to the first example

4.3 Application of the Analyzer to the Introductory Examples

We illustrate the analysis of scalar evolutions algorithm on the first two introductory
examples in Figures 1 and 2. In addition to clarifying the depth-first search and
instantiation phases of the algorithm, this will exercise the recognition of polynomial
and multivariate evolutions.

4.3.0.1 First example. The depth-first search is best understood with the anal-
ysis of c = loop1-φ(a, f) in the first example. The SSA edge of the initial value
exits the loop, as represented in Figure 16.(1). Here, the initial value is left in a
symbolic form, but GCC would replace it by 3 through constant propagation. To
compute the parametric evolution function of c, the analyzer starts a depth-first
search algorithm, as illustrated in Figure 16.(2). The update edge c→f is followed
to the definition of f in the loop body: assignment f = e + c. The depth-first
algorithm follows the first operand, f→e, reaching the assignment e = d + 7, and
finally follows the edge e→d that leads to a loop-φ node of the same loop. Since this
is not the loop-φ node from which the analyzer has started the depth-first search,
the search continues on the other operands that were not yet analyzed: back on e

= d + 7, operand 7 is a scalar and there is nothing more to do, then back on f =

e + c, the edge f→c is followed to the starting loop-φ node, as illustrated in Fig-
ure 16.(3). At this point, the analyzer has found the strongly connected component
that corresponds to the path of iterative updates. Following this path in execution
order, as illustrated in Figure 16.(4), the analyzer builds the update expression as
an aggregation of the operands that are not on the updating path: in this example,
the update expression is just e. As a result, the analyzer assigns to the definition
of c the parametric evolution function {a, +, e}1. The instantiation of {a, +, e}1
starts with the substitution of the first operand: a = 3, then the analysis of e

is triggered. First the assignment e = d + 7 is analyzed, and since the evolution
of d is not yet known, the edge e→d is taken to the definition d = loop1-φ(b,

g). Since this is a loop-φ node, the depth-first search algorithm is used as before
and yields the evolution function of d, {b, +, 5}1, and after instantiation, {1, +, 5}1.
Finally the evolution of e = d + 7 is computed: {8, +, 5}1, and replacing e with
its evolution finishes the instantiation of the TREC of c that yields {3, +, 8, +, 5}1.
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4.3.0.2 Second example. We will now compute the evolution of x in the second
example, Figure 2, to illustrate the recognition of multivariate induction variables
and the computation of the trip count of a loop. The first step consists in following
the SSA-edge to the definition of x. Consider the right-hand side of the definition:
since the evolution of e along loop 1 is not yet analyzed, the edge e→d is followed
to its definition in loop 2, ending on the definition of a loop-φ node. At this point,
d is known to be updated in loop 2. The initial value c is kept under a symbolic
form, and the iteration edge d→e is followed in the body of loop 2. The depth-first
search algorithm starts from right-hand side of the assignment e = d + 1: the edge
e→d is followed to the loop-φ node from which the search has started. Back on
the path d→e→d, the analyzer gathers the evolution of d along the whole loop,
an increment of 1, and ends on the following symbolic TREC: {c, +, 1}2. From the
evolution of d in the inner loop, the analyzer determines the overall effect of loop
2 on d, that is the evaluation of function f(i) = c + i for the number of iterations
of loop 2. Fortunately, the exit condition is the simple expression t>=9, and the
TREC for t (or d - c) is {0, +, 1}2, an affine (non-symbolic) expression. It comes
that 10 iterations of loop 2 will be executed for each iterations of loop 1. Calling
Apply(2, {c, +, 1}2, 10) yields the overall effect d = c + 10. The analyzer does
not yet know the evolution function of c, and consequently it follows the SSA-edge
to its definition: c = loop1-φ(a, x). Since this is a loop-φ node, the analyzer
must determine its evolution in loop 1. The edge to the initial value is ignored, and
the update edge is taken, searching for a path from c to itself. First, edge c→x

leads to the statement x = e + 3, then following the SSA-edge x→e, ending on a
statement of the loop 2. Again, edge e→d is followed, ending on the definition of d
that has already been analyzed: {c, +, 1}2. The depth-first search selects the edge
d→c, associated with the overall effect statement d = c + 10 that summarizes the
evolution of the variable in the inner loop. Finally, the starting loop-φ node c is
reached. From this point, the path is walked back gathering the stride of the loop:
10 from the assignment d = c + 10, then 1 from the assignment e = d + 1, and
3 from the last assignment on the return path. The symbolic TREC of c has been
computed: {a, +, 14}1. The last step consists in propagating this information from
the loop-φ node of c to the node where the computation has started: x. Back from
c to d, the TREC for d can partially be instantiated: d→ {{a, +, 14}1, +, 1}2. Then
back to e = d + 1, e → {{a + 1, +, 14}1, +, 1}2; and finally back to x = e + 3,
x→ {a+ 14, +, 14}1. A final instantiation yields x→ {17, +, 14}1

As can be seen in these examples, the scalar evolution information gathered on
demand is reused several times, and for this reason it is stored in a cache for avoiding
the computation in later queries. This is an important practical design because the
scalar evolution information is used by all the loop nest optimizers, from the scalar
variable optimizations to the data dependence analyzers whose results are later used
in auto-vectorization or loop transforms. A drawback of using a database is that
a part of the information might be invalidated by the loop optimizers: when one
of the variables is removed or renamed in the SSA graph, all the scalar evolutions
that contain this name have to be invalidated and analyzed again. In practice,
it is faster to erase all the results and to start the analysis again. This is not a
final result, and we probably will use incremental updates for saving results more
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void F1 () {
a = 2
loop (ℓ1)
b = loop1-φ(a, c)
F2 (b)
c = b + 3
if (b > 10) goto end1

end1
}

void F2 (int x) {
d = 0
loop (ℓ2)
e = loop2-φ(d, f)
A[x + e] = . . .
f = e + 1
if (e > 100) goto end2

end2
}

Fig. 17. Interprocedural example

difficult to obtain, as for example the results of an interprocedural extension of the
analyzer.

4.4 An Interprocedural Extension

The interprocedural algorithm is based on an extension of the instantiation mech-
anism of our analyzer. Instead of stopping the instantiation when analyzing a
function parameter, the instantiation continues to follow up the link into the caller
bodies. If the analyzer detects several callers, the instantiation values are merged
into a single TREC. This TREC is then registered as the initial value of the param-
eter in the callee.

We illustrate the algorithm on a simple example given in Figure 17. In this
example, the loops are uniquely labeled; the analysis of array A triggers the analysis
of variable e: e→ {0, +, 1}2; then it triggers the analysis of x, mapped to argument
b in the call to function F2. The parameter is then analyzed in the calling context,
and since there is a unique point from where F2 is called, the parameter x is
identified as the value of b, i.e. b→ {2, +, 3}1. Finally after the instantiation step,
the access function of array A is recognized to be {{2, +, 3}1, +, 1}2. When the
function F2 is called in several contexts, the value of parameter x is obtained by
merging the information contained in all these contexts.

4.5 Empirical Study

To show the robustness and language-independence of our implementation, and to
evaluate the accuracy of our algorithm, we determine a compact representation
of all variables defined by loop-φ nodes in the SPEC CPU2000 [Spec 2000] and
JavaGrande [JavaGrande 2000] benchmarks.

Figure 18 summarizes our experiments: affine univariate variables are very fre-
quent because well structured loops are most of the time using simple constructs,
affine multivariate are also quite frequent because they are used for iterating over
multi dimensional arrays. As one could expect, difficult to understand (or even to
read) constructs such as polynomials of degree greater or equal to two occur very
rarely: we have detected only three occurrences in SPEC CPU2000, and none in
JavaGrande. Even if their detection does not involve more computation, it makes
the compiler more complex with no profit, leading to code maintaining problems.
We plan to restrict the analyzer included in the production compiler to only deal
with affine evolutions. The remaining cases have to be refined following the needs
of optimizations or analyzers.

The last four columns in Figure 18 show the precision of the detector of the num-
ber of iterations. For the moment, only the single-exit loops are exactly analyzed,
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CINT2000 Total AU AM OP CE ⊤ Loops Trip ≤ ⊤

164.gzip 1138 285 0 119 144 590 223 90 4 55

175.vpr 4084 1384 0 321 575 1804 505 109 0 207

176.gcc 18403 2835 4 1646 1636 12282 3506 663 25 982

181.mcf 80 21 0 7 38 14 72 2 0 32

186.crafty 2503 513 6 101 386 1497 464 119 13 192

197.parser 2220 564 0 120 450 1086 786 67 22 308

252.eon 2115 601 0 164 146 1204 541 186 6 49

253.perlbmk 8048 919 1 791 380 5957 993 155 0 297

254.gap 26913 3782 9 3051 1115 18956 2143 350 10 773

255.vortex 3106 479 0 308 278 2041 332 19 2 81

256.bzip2 42 26 0 4 2 10 14 2 0 4

300.twolf 10536 1577 0 895 849 7215 1014 47 0 699

CFP2000 Total AU AM OP CE ⊤ Loops Trip ≤ ⊤

168.wupwise 235 94 0 12 123 6 84 70 0 1

171.swim 191 84 0 26 22 59 32 25 1 0

172.mgrid 962 165 0 420 157 220 71 58 0 0

173.applu 1808 645 5 630 199 329 184 150 0 12

177.mesa 10308 4100 1 1304 1123 3780 1158 689 34 124

179.art 496 213 2 72 64 145 100 38 0 33

183.equake 1212 438 2 104 102 566 105 52 1 24

188.ammp 1632 649 6 102 286 589 546 169 14 34

189.lucas 1901 250 0 425 121 1105 109 68 1 31

191.fma3d 6759 3691 14 593 1112 1349 2835 1971 17 493

200.sixtrack 8549 1723 17 2298 781 3730 1109 563 0 274

301.apsi 3986 1087 5 1190 785 919 387 284 0 15

JavaGrande Total AU AM OP CE ⊤ Loops Trip ≤ ⊤

section1 777 93 0 0 396 288 201 79 0 77

section2 311 121 0 20 19 151 107 2 0 3

section3 567 120 0 2 18 427 173 3 0 6

Fig. 18. Scalar induction variables and loop trip count in SPEC CPU2000 and Jav-

aGrande benchmarks. Break-down of scalar evolutions into: “AU” affine univariate,
“AM” affine multivariate, “OP” other kinds of polynomials, “CE” other compound
expressions containing determined components, such as casts that cannot be fur-
ther reduced, and “⊤” undetermined evolutions. Last columns describe: “Loops”
the number of natural loops, “Trip” the number of single-exit loops whose trip
count is successfully analyzed, “≤” the number of loops for which an upper bound
approximation of the trip count is available.

excluding a big number of loops that contain irregular control flow (probably con-
taining exception exits) such as in the case of Java programs. The effectiveness of
the loop transforms is reduced because a large number of loops are not correctly
analyzed. In some cases an approximation of the loop count can enable aggressive
loop transformations as is the case of the 171.swim test in SPEC CPU2000: the
size of data accessed in the loop is used to provide an upper bound estimation of
the number of iterations, allowing the dependence analyzer to correctly refine the
dependence relations, and the loop interchange to be performed. Further refine-
ments of this analyzer will either provide more hints for approximating the number
of iterations, or use an integer programming solver, such as Pugh’s Omega solver
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[Pugh 1992], for precisely computing or approximating the number of iterations in
multiple-exit loops.

5. APPLICATIONS

5.1 Data dependence analyzer

Our scalar evolution algorithm is integrated in a dependence analysis pass of GCC

applied to scalar loop optimizations, vectorization [Eichenberger et al. 2004; Naish-
los 2004], and a generic framework for high level loop transformations [Li and Pin-
gali 1994; Berlin et al. 2004]. These dependence-based transformations use uniform
dependence vectors [Banerjee 1992], but our method for identifying conflicting ac-
cesses between TREC is applicable to the computation of more general dependence
abstractions as well. We implemented an extended Banerjee test [Banerjee 1992],
and for validating the results of this first data dependence analyzer, we adapted
the integer linear programming solver Omega written by William Pugh [Pugh 1992]
to solve affine dependence systems. Tests for periodic, polynomial, exponential or
envelope TREC are also applicable to our framework, but we did not include them
in our current experiments for lack of a robust and scalable implementation.

In order to show the effectiveness of the data dependence analyzer as used in an
optimizer, we have measured the compilation time of the vectorization pass that
make use of the data dependence information. For SPEC CPU2000 benchmarks, the
vectorization pass does not exceed 1 second per compiled file, nor 5 percent of the
compilation time per file, showing that the dependence analyzer is fast in practice.
The experiments were performed on a Pentium4 2.40 GHz with 512 Kb of cache,
2 GB of RAM, on a Debian Sarge with a Linux kernel 2.6.8. Our implementation
performs the analysis on demand: a reduced part of the information is computed
when loop transformations or code motion requires dependence information. Yet, to
illustrate the scalability and accuracy of the analysis, we computed all dependences
between pairs of references — both of them addressing the same array — in every
function. Figure 19 shows an evaluation of the precision of the information provided
by the analyzer while computing the data dependence relations for all the array
accesses in a function. Trivial dependence tests, such as when independence is
deduced from accesses to different arrays, are not included in this table. First
column is the name of the benchmark, the second column gives the total number
of dependence tests. Following columns give: the number of tests that have been
classified as dependent, independent, undetermined (either because the analyzer is
too weak, or because the test is not decidable at compile time). Following columns
split the dependence tests into zero induction variable “ZIV” tests (i.e. both array
are referenced by constant functions with respect to the analyzed loop nest), single
induction variable “SIV” tests and multiple induction variables “MIV” tests [Allen
and Kennedy 2002]. We have to stress that this last evaluation is quite artificial
because an optimizer, such as the vectorizer, would focus the data dependence
analysis only on a few loop nests. The number of dependence tests and the MIV

column witness the stress on the dependence analyzer: an important number of tests
involve arrays accessed in different loops, that could be successive loops separated by
an important number of statements. Even with these extreme test conditions, our
data dependence analyzer catches an important number of dependence relations,
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CINT2000 # tests d i u ZIV SIV MIV

164.gzip 2130 228 301 1601 380 53 43

175.vpr 1465 362 452 651 542 147 69

176.gcc 91493 29022 30040 32431 52955 2041 2783

181.mcf 147 6 1 140 2 2 1

186.crafty 38387 5967 8544 23876 12354 1210 705

197.parser 1609 296 40 1273 103 45 44

252.eon 97386 34474 62080 832 96369 1078 19

253.perlbmk 12345 733 534 11078 993 32 693

254.gap 35084 1273 1798 32013 3065 495 725

255.vortex 15303 129 70 15104 138 10 7

256.bzip2 13 1 0 12 0 0 0

300.twolf 7873 689 1404 5780 2041 188 45

CFP2000 # tests d i u ZIV SIV MIV

168.wupwise 818 6 0 812 0 0 6

171.swim 677 212 57 408 9 29 197

172.mgrid 2014 39 20 1955 23 17 0

173.applu 32786 3312 9109 20365 450 1074 13081

177.mesa 302103 14414 19600 268089 26379 5705 38411

179.art 168 51 19 98 49 6 8

183.equake 845 417 216 212 308 176 210

187.facerec 9185 284 102 8799 206 76 25

188.ammp 19578 3443 8846 7289 10899 1170 692

189.lucas 93946 221 31 93694 74 86 26

191.fma3d 54013 14841 18448 20724 19874 6867 4029

200.sixtrack 130773 9657 41939 79177 46935 2260 3518

301.apsi 8149 1006 295 6848 223 434 340

JavaGrande v2.0 # tests d i u ZIV SIV MIV

section1 73028 9247 63767 14 72999 0 14

section2 1926 386 430 1110 212 411 83

section3 12185 3724 3169 5292 3043 2230 819

Fig. 19. Classification of data dependence tests in SPEC CPU2000 and JavaGrande.
Columns “d”, “i” and “u” correspond to the number of tests that have been classified
as dependent, independent, and undetermined. Last columns split the dependence
tests into zero induction variable “ZIV”, single induction variable “SIV” and multiple
induction variable “MIV”.

and the worst case of computation time for SPEC CPU2000 is 15 seconds and 70
percent of the compilation time.

5.2 Evaluation of existing optimizations

Based on our induction variable analysis, several scalar optimizations have been
contributed by Zdeněk Dvořák from SuSE: strength reduction, induction variable
canonicalization and elimination, loop invariant code motion [Aho et al. 1986] en-
abled by default with the option -O2. In order to use the vector units, the “simdiza-
tion” pass [Eichenberger et al. 2004] recognizes loop patterns that can be rewritten
using SIMD instructions for Altivec, SSE or MMX. This pass is enabled with the op-
tion -ftree-vectorize and has been contributed by Dorit Naishlos [Naishlos 2004]
from IBM Haifa. A linear loop transformation framework has been contributed by
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Daniel Berlin from IBM Research and Sebastian Pop, but for the moment only the
loop interchange transformation is supported [Berlin et al. 2004], and a pass of value
range propagation [Novillo 2005] enabled by default at -O2 has been contributed
by Diego Novillo from Red Hat.

We have experimented with these transformations on SPEC CPU2000 bench-
marks and MiBench benchmarks [Guthaus et al. 2001], using for the base com-
piler the options: -O2 -msse2 -fno-tree-loop-optimize, such that all the op-
timizations based on the scalar evolutions analyzer are disabled, and we com-
pared these results to the peak compiler where we have used the following op-
tions: -O2 -msse2 -ftree-vectorize -ftree-loop-linear. The only signifi-
cant speedup for the moment is for the SPEC CPU2000 171.swim benchmark, for
which a critical loop is interchanged: on peak it obtains 1320 points compiled with
-O2 -ftree-loop-linear compared to the base compiled with -O2 at 796 points
represents a 65.83% benefit.

The main problems for evaluating the potential of this new infrastructure are
linked to the fact that all the optimization passes are not tuned enough: the heuris-
tic functions are either too coarse, or not implemented yet. For example, the vec-
torizer has code that performs loop versioning without having any cost model based
on which it could evaluate the profitability of the transformation. The vectorization
pass could generate larger codes that slow the execution. In this context we can see
the need of an automatic technique to assess regressions of heuristics. We present
such a technique in the next subsection.

5.3 Assessing Heuristics Regressions

A heuristic is an analyzer that produces a more abstract representation than an
exact solver: a part of the information that would have been extracted by an exact
solver is not reached by the heuristic solver. In practice, we speak about heuristics
as being exact solvers with cutoff mechanisms based on some features of the solver,
such as the time taken to execute the solver, used space, or any other feature that
can quantify the behavior of the solver. Also note that the representation of the
exact answer might be too costly to be handled in practice, and thus an abstract
view might be more practical.

The questions that we want to answer are related to the static evaluation of
regressions caused by the use of a heuristic instead of an exact solver. The following
questions might be seen as the heart of our problem: Is it possible to define a
lattice structure for the set of heuristics? What is the most abstract heuristic that
is optimal for a given training set? This question can be reformulated in terms
of condensing abstract domains: how do we build a heuristic that is condensing
[Giacobazzi et al. 2005] with respect to a given training set? Answering by an
algorithm to these questions has practical results in compiler technology, because
searching in the heuristics lattice for the most abstract heuristic that is optimal
with respect to the training set amounts to search for the most efficient solver that
will provide the same quality of answers as an exact solver for a given training set.

Intuitively, the precision of a heuristic can be measured by comparing its output
to the answer of an exact solver. Then, based on the precision of the results of
heuristic functions, it is possible to define an order on heuristic functions, and
finally a structure of lattice in which the bottom element corresponds to a heuristic
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whose answer is invariably “don’t know”, while the top element of the heuristics
lattice corresponds to the exact solver. Using these remarks, we give the following
definitions:

Definition 5.1 Regression of a heuristic. Let h be a heuristic function, and ω its
associated exact solver from A → B. The regression of h with respect to ω is the
set of answers for which h differs from ω. We note: h \ ω = {y ∈ B | ∀x ∈ A, y =
h(x), h(x) 6= ω(x)} for the regression of h with respect to ω.

Definition 5.2 Amplitude of a regression. The cardinal of a regression set is also
called the amplitude of the regression.

Definition 5.3 Order on heuristics. Let h1 and h2 be two heuristic functions,
and ω the associated exact solver. The order h1 ≤H h2 is defined by the relative
amplitudes of the regressions with respect to ω as: h1 ≤H h2 if card(h1 \ ω) ≤
card(h2 \ ω).

Definition 5.4 Lattice of heuristics. Let

—H be the set of heuristic functions ordered by ≤H,

—∧ the meet operator defined by: given two heuristics h1 and h2,

h1 ∧ h2 =

{

h1 if h1 ≤H h2,

h2 otherwise,

—∨ the join operator defined by: given two heuristics h1 and h2,

h1 ∨ h2 =

{

h2 if h1 ≤H h2,

h1 otherwise,

—⊥ the heuristic that invariably answers “don’t know”,

—⊤ the exact solver.

(H,≤H,∨,∧,⊥,⊤) is the lattice of heuristics.

This leads to the following algorithm for assessing the regressions of a heuristic
h1 with respect to the results of a heuristic h2: evaluate the set of all the possible
inputs through h1, then through h2. If the output of heuristic h1 is less precise than
the output of h2, then h2 is preferable. This algorithm is not realizable in practice,
because the set of possible inputs may be infinite. For making the algorithm work
in practice for compiler technologies, we have to restrict the input:

Definition 5.5 Training set. Let h be a heuristic from A → B. A subset of the
input set A is called a training set.

Definition 5.6 Optimal heuristic for a training set. A heuristic is said optimal
for a training set if it produces the same results as an exact solver.

The engineering of a compiler production version of a heuristic would have to
minimize or to maximize several parameters in accordance. It is possible to envision
the need of another level of static analysis for extracting information about the
behavior of the heuristic, but in the end, a dynamic evaluation on some training
set is expected at some abstraction level.
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for (i = 0; i < N; i+=1) { ... };
for (; i < M; i+=2) { ... }; Fig. 20. Two sequential loops

As we have described in this subsection, it is possible to use static analysis
techniques for an automatic design of heuristics, and for assessing the effectiveness
of heuristic functions with respect to optimal exact solvers. In a future work, we
will use these techniques for automatically building the missing heuristic functions
for which exact solvers are known. We will use these techniques for improving
the heuristics of GCC, and in order to guarantee that no future regression will be
introduced, we will build a test harness for some of the heuristics used in GCC.

6. COMPARISON WITH THE MOST CLOSELY RELATED WORKS

Induction variable detection has been studied extensively in the past because of
its central role in loop optimizations. Our target closed form expressions is an
extension of the chains of recurrences algebra described first by Bachman, Wang
and Zima [Bachmann et al. 1994], then used by van Engelen [van Engelen 2001;
van Engelen et al. 2004]. The representation analyzed by our algorithm is closer to
the one used in the Open64 compiler [Gerlek et al. 1995; Liu et al. 1996], but our
algorithm avoids the syntactic case distinctions made in [Liu et al. 1996] that have
severe consequences in terms of generality (when analyzing intricate SSA graphs)
and maintainability.

Syntactic information is altered by the translation to low-level representations,
or by earlier optimizations that may insert new variables or eliminate redundancies
in array subscript expressions. Pattern matching at a low level may lead to an
explosion of the number of cases to be recognized; e.g., if a simple recurrence is
split across two variables, its evolution would be detected as a wrap around if
not handled correctly in a special case; in practice the analysis would have to
approximate the result by not handling these special cases [Liu et al. 1996].

Path-sensitive approaches have been proposed [van Engelen et al. 2004; Rus et al.
2004] to increase precision in the context of conditional variable updates. These
techniques may lead to an exponential number of paths, and although interesting,
seem not yet suitable for a production compiler, where even quadratic space com-
plexity is unacceptable on benchmarks like GNU Go [GNUGO 2005]. However, we
consider to adapt this kind of techniques in experimental branches of development,
such that we can assess the benefits of having a more precise solver.

Our work is based on the previous research results presented by Robert van En-
gelen in the early paper [van Engelen 2001]. We have experimented with similar
algorithms and dealt with several restrictions and difficulties that remained un-
solved in his later papers. For example, loop sequences as illustrated in Figure 20
are not correctly handled. The analysis of the first loop yields i → {0, +, 1}1.
Then, analyzing the second loop, the initial value is i → {0, +, 1}1, leading to a
MCR: i → {{0, +, 1}1, +, 2}2. However producing this chain of recurrence for two
sequential — not nested — loops is violating the semantics of the chains of re-
currences. This case cannot be correctly handled without inserting at the end of
each loop an assignment for each scalar variable that is modified in the loop and
then used after the loop, as is the case in the loop closed SSA form. Because van
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Engelen is using a representation that is not in SSA form, he has to deal with all
the difficulties of building an “SSA-like” form. With some minor changes, as the
one described above, their algorithm can be seen as a translation from an unstruc-
tured list of instructions to a weak SSA form, that is a restriction of the original
program to operations on scalars. Constructing a weak SSA form could be of great
interest for representations that cannot efficiently be translated to a classic SSA

form (for example the RTL representation of GCC). Another interesting result for
their algorithm would be a proof that constructing a weak SSA representation is
faster than building the classic SSA representation. However, they have not pre-
sented experimental results on real codes or standard benchmarks for showing the
effectiveness of their approach.

In contrast, our algorithm is analyzing a classic SSA representation, and instead
of worrying about the expressiveness power of the intermediate representation, we
are more concerned about a completely opposite question: how to limit the ex-
pressiveness of the SSA representation in order to provide the optimizers and the
analyzers the right level of abstraction that they can process. It might well be
argued that a new representation is not necessary for concepts that can already be
expressed in the SSA representation. This point is well taken. We acknowledge that
we could have presented the current algorithm as a transformer from SSA to an ex-
tended version of the SSA containing abstract elements. However, we deliberately
have chosen to present the analyzer producing trees of recurrences for highlighting
the sources of our inspiration and for presenting the extensions that we proposed to
the chains of recurrences. Finally, we wanted the algorithm presented in this paper
to reflect the underlying implementation in GCC.

7. CONCLUSION AND PERSPECTIVES

We introduced trees of recurrences, a formalism based on multivariate chains of
recurrences [Bachmann et al. 1994; Kislenkov et al. 1998], with symbolic and alge-
braic extensions, such as the peeled chains of recurrences. These extensions increase
the expressiveness of standard chains of recurrences and alleviate the need to resort
to intractable exponential expressions to handle wrap-around and mixer induction
variables. We extended this representation with the evolution envelopes that handle
abstract elements as approximations of runtime values.

We also presented a novel algorithm for the analysis of scalar evolutions. This
algorithm is capable of traversing an arbitrary program in Static Single-Assignment
(SSA) form, without prior classification of the induction variables. The algorithm
is proven by induction on the structure of the SSA graph. Unlike prior works, our
method does not attempt to retrieve more complex closed form expressions, but
focuses on generality: starting from a low-level three-address code representation
that has been seriously scrambled by complex phases of data- and control-flow op-
timizations, the goal is to recognize simple and tractable induction variables whose
algebraic properties allow precise static analysis, including accurate dependence
testing. We have implemented and integrated our algorithm in a production com-
piler, showing the scalability and robustness of an implementation of our algorithm.

This algorithm is well suited for the recognition of piecewise affine and poly-
nomial evolutions. Our framework is implemented in a production compiler the
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GNU Compiler Collection (4.0): it is the basis for several optimizations being de-
veloped, including vectorization, loop transformations and modulo-scheduling. We
presented experimental results on the SPEC CPU2000 and JavaGrande benchmarks,
with an application to dependence analysis. Our results show no degradations in
compilation time. Independently of the algorithmic and formal contributions to
induction variable recognition, this work is part of an effort to bring competitive
loop transformations to the free production compiler GCC.
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