
An Empirical Study of Some x86 SIMD Integer
Extensions

Isabelle Hurbain and Georges-André Silber

Centre de recherche en informatique, Mines de Paris, Fontainebleau, France,
Isabelle.Hurbain@ensmp.fr

Abstract. We benchmark 32 SIMD instructions of the x86 ISA that
operate on integers to determine the performance gain that can be ob-
tained for each of them. We show that these instructions can dramati-
cally improve the speed of programs and give for each of them a refer-
ence speedup. Using these results, we check whether the state-of-the-art
C compilers GCC 4.1 and ICC 9.0 are capable of automatically detect
simple cases where those instructions can be used.

1 Introduction

Like several other modern processors, Intel’s Pentium 4 processor provides SIMD
extensions called Streaming SIMD Extensions (SSE), defining a set of 8 named
128-bit wide vector registers, called XMM registers, and a set of component-
wise vector operations on these registers. One typical usage of these extensions
is to add two vectors of 16 bytes to obtain another vector of 16 bytes. Several
papers [2, 4, 3] report a significant speedup when using SSE instructions instead
of general-purpose code. However, the performance of SSE instructions compared
to the performance of the same operation coded with “regular” operations is
not well known. Furthermore, the automatic exploitation of those instructions
by compilers is difficult to verify without looking at the assembly code they
produce.

In this paper, we systematically benchmark the 32 SIMD instructions that
operate on integers to determine the performance gain that can be obtained
for each of these extensions. We show that these extensions can dramatically
improve the speed of programs and give for each of them a reference speedup.
Using these results, we check whether the state-of-the-art C compilers GCC
4.1 and ICC 9.0 are capable of automatically detect simple cases where those
instructions can be used. This check is done by looking at the performance of
the generated code compared to a hand-coded assembly reference code and by
looking at the assembly code generated by the compilers.

2 Overview of SSE instructions

What we are calling SSE in this paper is the Intel SIMD vector architecture that
was deployed over time as a series of four vector extensions to the x86 Instruction

Set Architecture (ISA). The first was MMX, followed by SSE, SSE2, and SSE3.
Each builds on the extension that went before it. There are three major classes
of data on the SSE vector unit: integer, single precision floating point and double
precision floating point vectors, each of which may be serviced by separate parts
of the processor. In this paper, we only describe and study integer operations.

MMX, the first of the vector extensions provides a series of packed integer
operators that utilize eight 64-bit registers. The operations defined by MMX
are, generally speaking, also available in a 128-bit format in SSE2. MMX is
sometimes used as a source of additional register storage area. However, since
the vector arithmetic and logical unit (ALU) is shared with SSE2, there is likely
no throughput advantage to using the two in parallel. SSE and SSE2 adds a
series of packed and scalar single precision floating point operations, and some
conversions between single precision and integer. SSE2 is enabled by default on
GCC 4. In addition, SSE2 replicates most of the integer operations in MMX,
except modified appropriately to fit the 128-bit XMM register size. In addition,
SSE2 adds a large number of data type conversion instructions.

There is a C Programming Interface for SSE: the SIMD vector register is
described in C as a special 128 bit data type (m128i) and a series of function-
like intrinsics are used to do SIMD style operations on those variables. In this
paper, we restrict ourselves to the study of 32 integer instructions. The x86 ISA
defines four sizes of integer data types: bytes, words (16-bits), double words (32-
bits) and quad words (64-bits). Those four types are represented by the letters
b, w, d, and q in the name of the operations: paddq is a parallel addition on
2 quad words, i.e. two 64-bits integers. Each operation has 3 parameters: two
input vectors and one output vector. The integer instructions we studied can
be divided in four families: the simple arithmetic component-wise operations,
the arithmetic component-wise operations with saturation, the component-wise
comparison operations, and the “miscellaneous” operations.

The simple arithmetic component-wise operations are the addition (paddb,
paddw, paddd, paddq), substraction (psubb, psubw, psubd, psubq), multiplication
(pmulhw), and unsigned multiplication operations (pmulhuw). The operations are
available for all the cases of packing in the 128-bit registers. The overflows are
managed by a wrap-around of the values.

The arithmetic component-wise operations with saturation comprise signed
operations (paddsb, paddsw, psubsb, psubsw) and unsigned operations (paddusb,
paddusw, psubusb, psubusw). The overflows are managed by a saturation of the
value.

The component-wise comparison operations take two vectors and produce
a third vector composed of values representing the results of the comparisons
(pcmpeqb, pcmpeqw, pcmpeqd, pcmpgtb, pcmpgtw, pcmpgtd, pmaxub, pmaxsw,
pminub, pminsw).

The “miscellaneous” operations are the component-wise average of two vec-
tors (pavgb, pavgw), the component-wise absolute values of the difference of
16 bytes followed by the sum of those differences in 2 unsigned word integers
(psadbw), and the component-wise multiply and add operations (pmaddwd).

3 Benchmarking SIMD integer instructions

The first step of our work was to design a set of basic SSE benchmarks. Their
principle is simple: for each of the 32 SSE integer instructions, we wrote a se-
quence of “regular” C instructions doing the same operation and a C program
that uses the intrinsic implementing the SSE operation. For instance, considering
the operation paddb that adds two vectors of 16 bytes, we wrote the following
C code

void test_loop_c (char a[16], char b[16], char c[16])
{
int i;
for (i = 0; i < 16; i++)
{
c[i] = a[i] + b[i];

}
}

and this other one that uses the intrinsic mm add epi8:

#include <xmmintrin.h>
void vector_add (__m128i * a, __m128i * b, __m128i * c)
{
*c = _mm_add_epi8 (*a, *b);

}

The intrinsics help the compiler to generate a good assembly code which, in
our case, would be:

pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %eax
movdqa (%eax), %xmm0
movl 12(%ebp), %eax
paddb (%eax), %xmm0
movl 16(%ebp), %eax
movdqa %xmm0, (%eax)
popl %ebp
ret

The second step of our work was to execute those two programs for each
SIMD integer instruction. The C programs with the intrinsics are used as a
reference. For our tests, we use two different C compilers: GCC 4.1.01 and ICC
9.02. All executions have been done on a computer with a 3 GHz Intel Pentium

1 gcc (GCC) 4.1.0 20051015 (experimental)
2 icc 9.0 Build 20050430

4 and 2 Go of RAM. Each program has been executed 10 times and inside each
program, the “regular” and the intrinsic functions are called several million times
to ensure reliable results.

The third step of our work was to determine whether the selected compilers
are capable of automatically vectorize the “regular” C codes and to generate
code with SSE instructions. In fact, we have to help the compilers: the C loops
need some code transformations so that SIMD code can be generated. As a
matter of fact, the code is not vectorized if the data are not explicitly declared
as restrict[6].

4 Results of the benchmarks

In this section, we will give the simplified results of all our benchmarks and detail
two cases: one where the vectorization is detected and achieved, and one where
it is not. The complete report for the benchmarks is also available in [5].

Figure 1 gives the results of all the benchmarks. For GCC, base times are
expressed in seconds and have been obtained by running a code compiled with the
options -O2 -fno-strict-aliasing. For ICC, base times have been obtained
by running a code compiled with the options -O2. The autovect times have been
obtained with the options

-O2 -fno-strict-aliasing -msse2 -ftree-vectorize

for GCC, and with the options

-march=pentium4 -axN -nolib_inline -ip_no_inlining
-O2 -vec_report2

for ICC. The intrinsics columns give the execution time for the C code with
intrinsics compiled with GCC and ICC. The speedup columns are obtained by
dividing the base times with autovect and intrinsics times for GCC and ICC. A
sign 4 in the status columns indicates that the compiler uses SSE instructions
and the sign 8 indicates that it does not.

A “good” case: PADDB. For the benchmark of the instruction paddb, ICC is
able to generate an assembly code that is very similar to the one generated by
the intrinsics. On the contrary, GCC, while being able to detect a vectorization
and generating a paddb instruction, generates a much more cumbersome and a
much longer assembly code (more than 10 times longer) by partly unrolling the
loop before vectorizing it. It is worth noting that, while it is possible to force
the alignment of the data with GCC (using the ((aligned)) attribute), it is to
our knowledge impossible to tell the compiler the data are actually aligned. This
would be useful when the data is defined in a function and used in another one.

When using unaligned data, ICC is able to generate a correct SIMD code.
The loads and store are unaligned (movdqu assembly instruction) and are less
efficient than aligned memory accesses. The impact on the speedup compared to
C code without vectorization stays limited.

For this case, the two compilers are able to detect and apply the vectorization.
However, as we said before, the vectorization achieved by GCC is clearly not
very good – and we can see that in the performances of vectorized code. On
the contrary, ICC’s performances for vectorized code and for intrinsics coding
are very similar. Moreover, we can also see that GCC’s assembly code generated
for intrinsics seems to be more efficient than the one generated by ICC. We can
observe this in all our benchmarks.

A case that is not vectorized: PSADBW. Let us now consider a more complex
assembly instruction, psadbw. Its operating mode is described in the following
schema:

X15 X14

ABS
(X15-Y15)

X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0X13

Y15 Y14 Y12 Y11 Y10 Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0Y13

ABS
(X14-Y14)

ABS
(X13-Y13)

ABS
(X12-Y12)

ABS
(X11-Y11)

ABS
(X10-Y10)

ABS
(X9-Y9)

ABS
(X8-Y8)

ABS
(X7-Y7)

ABS
(X6-Y6)

ABS
(X5-Y5)

ABS
(X4-Y4)

ABS
(X3-Y3)

ABS
(X2-Y2)

ABS
(X1-Y1)

ABS
(X0-Y0)

SRC

DEST

TEMP

00H 00H 00H 00H 00H 00H 00H 00H 00H 00H 00H00HDEST SUM
(TEMP15, ...TEMP8)

SUM
(TEMP7, ...TEMP0)

The corresponding C code is:

void test_loop_c(char a[16], char b[16], short int c[8]) {
int i;
unsigned char tmparray[16];
for(i=0; i<4; i++) {
c[i] = 0;
c[i+4] = 0;

}
for(i=0; i<16; i++) {
tmparray[i] = (abs(a[i] - b[i]));

}
for(i=0; i<8; i++) {
c[0] += tmparray[i];
c[4] += tmparray[8+i];

}
}

This code is not detected as vectorizable by either compiler. This may have
several reasons:

– the pattern is composed of three loops that are not necessarily easily vector-
izable by themselves;

– the type of the input and output data is not homogeneous, which can lead
to recognition problems;

– the operation is mainly a reduction, an operation usually not well handled
by compilers;

– as the operation is complex, the pattern may not be recognized “as is” but
another equivalent one may be. This is especially hard to know for “black-
box” compilers such as ICC.

As we can see, when we ask for vectorization to the compiler, the results are
equivalent to the “regular” code – but the intrinsics code greatly improves per-
formance. It is worth noting that this algorithm is extensively used in multimedia
applications (video encoding in particular).

5 Conclusion

Looking at our results, it is clear that the SSE instructions can dramatically
improve the performance of programs that operate on dense array of integers.
For instance, the instruction psadbw gives a speedup of 21.5 over the “regular”
C code.

For simple vectorization, ICC is a clear winner, even if it needs some help
(with restrict informations). Both compilers fail on more tricky cases, but it
is easier to understand why with an open source software like GCC and it gives
more potential for improvement from the research community than a “black-
box” software like ICC.

For all 32 SIMD integer extensions, GCC generates better assembly code
from the SSE intrinsics. Our study shows than the best way to obtain good
performance is still to use directly the SSE intrinsics. It is an interesting fact for
the research community on parallel compilers because it shows that it is possible
to achieve very good performance with source to source transformations.

References

1. Intel: IA-32 Intel Architecture Software Developer’s Manual (2004)
2. Juyup Lee, Sungkun Moon, Wonyong Sung: H.264 Decoder Optimization Exploiting

SIMD Instructions - IEEE Asia-Pacific Conf. on Circuits And Systems, Dec. 2004,
Vol 2., pp. 1149-1152

3. Xiaosong Zhou, Eric Q. Li, Yen-Kuang Chen: Implementation of H.264 Decoder on
General-Purpose Processors with Media Instructions - SPIE Conf. on Image and
Video Communications and Processing, Jan. 2003, Vol. 5022, pp. 224-235

4. Gang Ren, Peng Wu, David Padua: An Empirical Study On the Vectorization of
Multimedia Applications for Multimedia Extensions - IEEE International Parallel
and Distributed Processing Symposium, 2005

5. Isabelle Hurbain: An Evaluation of the Automatic Generation of Parallel x86 SIMD
Instructions by GCC and ICC - Technical report, 2005. Available at http://www.

cri.ensmp.fr/classement/2005.html.
6. Douglas Walls: How to Use the restrict Qualifier in C - Sun Developer Network, Sun

Microsystems, July 2003. Available at http://developers.sun.com/prodtech/cc/
articles/cc restrict.html.

OPERATION GCC 4.1.0 ICC 9.0

b
as

e
(s

)

au
to

ve
ct

(s
)

sp
e
e
d
u
p

st
a
tu

s

in
tr

in
si
cs

sp
e
e
d
u
p

b
as

e
(s

)

au
to

ve
ct

(s
)

sp
e
e
d
u
p

st
a
tu

s

in
tr

in
si
cs

sp
e
e
d
u
p

paddb 6.79 4.16 1.63 4 1.08 6.26 8.09 2.33 3.48 4 2.29 3.53

paddw 5.70 3.48 1.64 4 0.92 6.18 3.86 1.80 2.14 4 1.81 2.13

paddd 3.05 4.99 0.61 4 1.00 3.04 2.39 1.80 1.32 4 1.72 1.39

paddq 3.10 4.04 0.77 4 1.08 2.88 3.50 1.73 2.03 4 1.80 1.95

psubb 7.25 3.83 1.89 4 1.09 6.68 7.70 2.34 3.28 4 2.14 3.60

psubw 5.57 3.82 1.46 4 0.91 6.12 3.36 1.60 2.10 4 1.66 2.03

psubd 3.15 5.09 0.62 4 1.05 3.01 2.69 1.81 1.49 4 1.87 1.44

psubq 2.59 5.02 0.52 4 1.13 2.29 3.62 1.98 1.83 4 1.98 1.83

pmulhw 10.20 8.73 1.17 8 1.11 9.16 4.78 1.86 2.58 4 1.88 2.55

pmulhuw 6.50 7.24 0.90 8 1.04 6.26 5.31 2.03 2.62 4 2.00 2.65

paddsb 14.56 14.87 0.98 8 1.06 13.79 15.06 2.39 6.29 4 2.01 7.50

paddsw 11.33 10.44 1.09 8 0.91 12.45 9.39 9.65 0.97 8 1.84 5.10

paddusb 10.94 10.20 1.07 8 0.84 12.96 11.96 1.91 6.26 4 1.93 6.19

paddusw 5.96 5.98 1.00 8 1.08 5.50 6.18 1.74 3.55 4 1.73 3.58

psubsb 14.55 13.79 1.06 8 0.96 15.21 14.87 1.85 8.06 4 1.78 8.35

psubsw 15.34 14.09 1.09 8 1.01 15.17 10.21 10.86 0.94 8 1.78 5.73

psubusb 10.48 10.41 1.01 8 1.06 9.86 12.88 2.17 5.94 4 2.16 5.97

psubusw 6.00 5.41 1.11 8 0.94 6.36 4.88 1.60 3.04 4 1.63 3.00

pcmpeqb 15.19 16.26 0.93 8 0.88 17.18 11.23 1.69 6.64 4 1.85 6.07

pcmpeqw 6.14 5.96 1.03 8 0.97 6.36 7.66 1.60 4.80 4 1.66 4.63

pcmpeqd 3.87 3.71 1.04 8 1.02 3.80 3.68 1.62 2.27 4 1.70 2.17

pcmpgtb 17.61 14.26 1.23 8 0.87 20.31 13.05 1.82 7.16 4 1.93 6.75

pcmpgtw 6.13 6.05 1.01 8 0.87 7.08 7.69 2.07 3.71 4 1.91 4.03

pcmpgtd 3.47 3.82 0.91 8 1.00 3.46 3.99 1.67 2.39 4 1.68 2.38

pmaxub 11.36 10.90 1.04 8 0.97 11.74 10.59 11.50 0.92 8 1.94 5.46

pmaxsw 6.76 6.50 1.04 8 1.05 6.42 5.95 1.68 3.55 4 1.75 3.41

pminub 10.60 12.11 0.88 8 1.02 10.41 10.38 11.66 0.89 8 1.82 5.71

pminsw 6.46 5.84 1.11 8 1.04 6.20 6.01 1.85 3.25 4 1.84 3.26

pavgb 9.95 9.79 1.02 8 1.33 7.50 10.98 1.78 6.18 4 1.82 6.04

pavgw 6.18 5.88 1.05 8 0.93 6.62 5.48 2.08 2.63 4 2.11 2.59

psadbw 21.17 22.54 0.94 8 0.99 21.50 14.93 18.37 0.81 8 1.84 8.13

pmaddwd 5.00 5.39 0.93 8 1.22 4.10 4.77 6.39 0.75 8 2.07 2.31

Fig. 1. Summary of the results for 32 SIMD Integer Extensions of the x86 ISA.

