
Corrector, a web interface for practice session

with immediate feedback

Rapport A/377/CRI

Fabien Coelho
fabien.coelho@ensmp.fr

Centre de Recherche en Informatique, École des mines de Paris
35, rue Saint-Honoré, 77305 Fontainebleau cedex, France

19 avril 2006

Résumé

Corrector est une application Web client-serveur qui donne à l’étudiant
en séance pratique des retours immédiats en validant automatiquement
les réponses proposées. L’enseignant n’a plus besoin d’intervenir que
pour résoudre les problèmes de compréhension rencontrés avec des ex-
plications limpides. Corrector est particulièrement adapté à l’enseigne-
ment du langage SQL utilisé dans les bases de données relationnelles.
En effet, certaines questions admettent de nombreuses requêtes SQL
équivalentes comme réponses valides. La correction automatique résout
ce problème en comparant le résultat de l’exécution de la requête à
celui d’une requête référence. D’autres modes de correction sont pro-
posés qui abordent la modification des données ou du schéma de la
base, utilisent des preuves de succès cryptographiques ou des expres-
sions régulières. Cet article décrit l’interface et son fonctionnement,
puis rapporte et discute le résultat de deux ans d’expériences auprès
de plus de 150 étudiants avec Corrector.

Abstract

Corrector is a client-server web application which provides imme-
diate feedback to students during practice sessions by automatically
validating the proposed answers. The teacher needs only focus on
solving comprehension problems with clever explanations. Corrector
is especially well fitted to help teaching SQL, the language used in re-
lational database systems. Indeed, some questions admit many equiv-
alent SQL queries as valid answers. The automatic correction solves
this issue by comparing the result of the student query execution to the
result of a reference query. Other correction modes are available that
deal with modifying data contents or structures, use cryptographic

1



-- number of books per collection
SELECT cnom, COUNT(*) AS nb
FROM collection
JOIN oeuvre USING(cid)
GROUP BY cnom
UNION
SELECT cnom, 0 AS nb
FROM collection
LEFT JOIN oeuvre USING(cid)
WHERE titre IS NULL
ORDER BY nb DESC, cnom ASC;

-- number of books per collection
-- with COUNT(NULL) = 0 extension
SELECT cnom, COUNT(fid)
FROM collection
LEFT JOIN oeuvre USING(pid)
GROUP BY cnom
ORDER BY COUNT(fid) DESC, cnom ASC;

Figure 1: Two equivalent queries with PostgreSQL

proof-of-success tokens or regular expressions. This paper describes
the interface and its internals, then reports and discusses the result of
two years of experiments with Corrector and more than 150 students.

1 Introduction

Teaching computer science becomes harder as self-motivation seems to drive
less students to such technical fields. The western society highlights suc-
cesses quickly acquired through business or arts, often making science and
technical subjects not so attractive to students. Improving the attractivity
of our courses is thus necessary.

Relational database [3] and SQL [4], the Structured Query Language
designed to manipulate them, is such a technical subject with an algebraic
background which requires abstraction efforts from the students. SQL allows
data to be selected, inserted, updated or deleted into relational databases,
as well as structures to be created, dropped or altered and access rights to
be granted or revoked.

Teaching SQL involves presenting the underlying relational model and
the language syntax. A simple traditional class organization is to alternate
theoretical blackboard (or white board) presentations with practice sessions
hands-on to solve problems with the tools discussed. During practice ses-
sions, students are asked to develop queries to answer variously challenging
questions on a database. In the relational model, many queries are equiva-
lent. For instance, Figure 1 shows two widely differing queries that computes

2



the number of books for all collections. Moreover is it often unclear to a
student whether a query gives the expected answer, especially for advanced
questions. Thus either the students ask for a direct validation from the
teacher during the session, what is time consuming and makes less time
available for helping them understand the subtilities involved, or the vali-
dation is postponed to a later stage but then students may miss the point
and only be told so much later, after the teacher has processed hundreds of
answers which look right but may not be valid.

Corrector is a web interface based on the PostgreSQL database. It val-
idates proposed answer interactively, thus students do not need any help
from the teacher for this purpose. All queries are executed on the database
by the tool. For selects, the result is compared to the result of a reference
query. For inserts, updates, deletes, creates, drops and alters, transactional
database features are used to rollback the student changes at the end of the
validation. The validation itself is performed by specially tailored queries
to check whether the intended transformations were performed, before can-
celling them. Performances issues are also addressed, as a badly crafted
student request can easily submerge the database or web server. This tool
enables teachers to focus on comprehension problems encountered by stu-
dents, and students to have direct feedback about their progress during the
sessions.

Section 2 briefly describes the choice of tool and exercises for our course.
Sections 3 and 4 outlines the web interface and its internal organization.
Section 5 details the automatic correction modes available. Section 6 dis-
cussed various aspects of the interface before leading to the conclusion in
Section 7.

2 Software and Exercises

The PostgreSQL [1] free software is an object-relational database manage-
ment system, with many interfaces and high extensibility. It includes ad-
vanced features uniquely available for a software in its price category, such
as transaction with MVCC, roles, triggers, integrity constraints, and an SQL
implementation very close to the standard. It is the database of choice for
a serious course.

Having a good exercise base on top of a good tool is also paramount to
help students learn quickly and effectively new concepts. As far as SQL is
concerned, this requires a set of questions to be answered which cover the
various aspects of the language and the difficulty of which is progressive.
However, this is not enough.

Figure 2 shows the database of my comics used for practicing SQL. This
very deep and introspective subject helps to motivate students. Indeed,
although queries to answer what is the average salary in the marketing de-

3



eid
enom

editeur

lid
lnom

langue

eid
oid
xid

exemplaire

cid
cnom

collection

oid
titre
annee
cid
lid

oeuvre

aid
oid

a_ecrit
aid
nom
prenom
pseudo

auteur

Figure 2: Comics Database Outline

partment and what is the average number of pages of comics published by
Delcourt editions may have both the very same structure, the later question
is more attractive to students, even at a late stage of their studies.

The first practices use a simplified view which collapses actual books
(exemplaire) that I own and conceptual books (œuvre) that I know exists
but that are not in my library. Such distinction is only useful for advanced
questions with SQL which require relational operators such as union, inter-
section or difference.

3 Web Interface

A simple prototype web client-server architecture based on standard free
(open source and inexpensive) softwares and interfaces such pas HTML [5],
Apache [2], CGI [6], Perl [10, 11], PostgreSQL [1] has been developed.

Figure 3 outlines the student and teacher interfaces: each page is gen-
erated by a script. It presents a dynamically generated contents based on
the user identity and additional parameters provided by the urls followed by
the user. Users are authenticated through the standard HTTP basic login
password scheme by apache, and the identity is passed to all pages.

Students are restricted to the upper interface. They can access their
list of active practice sessions. Each session points to its list of questions
for which the student can suggest answers. The list of all questions can be
detailed with the answer already provided by the student.

The teacher and administrator interface includes many more pages to
manage the application. New users can be added and managed in classes.
New exercises can be created, new sessions and questions added to an exer-
cise. The management of a session allows to define its schedule and status:
when is the access is open or closed, whether it is visible, and so on. All data
can be modified if the user has enough privileges in the application. Finally,
a teacher can check students answers and alter the points automatically

4



Figure 3: Interface architecture

given to the student by the correction system.

4 Corrector Internals

Figure 4 outlines the corrector internal database schema accessed by the
pages. Users may belong to classes. Exercises are composed of questions,
which may be corrected by different means and using different database
connections. A session for an exercise is open to users, and they can provide
answers to questions, although only the last one given is important. The
interface is optimized for the common case, for instance by automatically
switching to the next question on success, and asking for another answer on
failure.

The student answer table quickly becomes the largest of all application
tables as users keep suggesting new answers till they are given the pass mark
and go on to the next question. It is critical that the queries used in the
corresponding page are executed efficiently. A PostgreSQL partial index is
very useful in this context, so as to index only the last answer for every
question and every user.

Access control is implemented both by apache and the page scripts.
The apache side requires only a valid user to be able to access a page. The
authentication password may be fetched directly from the corrector database

5



exercice

session

connection

correctiontype

userinsession

question

class
userinclass

users

answer

idusr
idque
idans

insertedon
islast
answer
point
corrected
comment

idusr
login
passwd
issuperuser
isteacher
firstname
lastname
info

idcls
idusr

idcls
name
admin

idcon
idcor

idexe
idque

number
title
descr
weight
answer

cordata

idusr
idses

idcor
ctname
ctdescr

idcon
param
login
passwd

idexe
idses

descr
admin
starton
stopon
readable
writeable
corrected

idexe
title
descr
admin

Figure 4: Corrector Data

6



by the used of the mod auth pgsql [7] module or stored anywhere apache
can get it. At the beginning of each page, depending on the provided user
identity, the available rights are assessed. It is necessary to do so because
what can or cannot be done by the user is defined dynamically within the
application itself: what sessions are currently open to a student, who is a
teacher, and so on. The security enforcement is programmed rather than
declared, because the available security models in apache do not allow the
fine grain adjustments necessary to the application.

All database interactions issues such as connections and SQL queries
are encapsulated in a common module shared by all pages. The needed
configurations such as database host, login, password and so are managed
from the apache configuration file and passed by the mean of environment
variables. Thus it is not necessary to edit the page sources to configure the
application.

The application is internationalized [9], that is all messages displayed to
the user can be adapted to any language, thus it can be localized for any
language if a translation is provided into a standard PO (Portable Object)
file. At the time, both English and French are available. Handling the
localization choices in the dynamic pages require some tweaking: indeed,
the choice is not fixed and can be altered by the student. This can be done
by several mean: the user may specify a preferred language in its browser
configuration transported by the HTTP accept-language header; However
very few users know about these configuration details and use it, so the
application can also be localized by clicking on a link which sets a cookie
holding the user preference.

Even on a local network with controlled students the scripts potential
security issues. As the automatic correction will execute student provided
queries to check for their validity, the student may break something: for
instance a massive cross join can put down the database server or the ma-
chine running the page script. In order to avoid such issues, a timeout is
set to the database for the student queries, and result sizes are also lim-
ited. The queries provided must be carefully escaped before being passed
to the database. Within it the student can do whatever is available in the
database. This last point is not significant an issue as the student already
has a direct access to the database during the practice, so there is no more
harm that what can be done directly.

5 Automatic Correction

A key point of the corrector application, after which it was named, is its
ability to provide an immediate feedback to students. This greatly improves
the learning experience of the students as well as the life of their teacher,
as direct intervention during the practice sessions is only required to solve

7



comprehension or technical problems encountered by the students, and not
to validate good answers. In this section, we describe the different basic
and advanced correction modes available, their internal working and their
pitfalls. . .

First, the application allows a question to be simply stored into the
system to be looked at later by the teacher and be corrected manually.
Thus, no feedback at all is provided. One of the teacher page shows all
answers to a question for a given session, which can be corrected at once
in a single step. The manual correction involves giving a mark and writing
a comment, which in our experience is very rarely if ever looked at by the
students.

Second, a set of correction modes compares the provided answer with
a target string. The several comparison variants include regular expression
matches, possible case insensitiveness, prior answer string case and space
normalization, and whether the comparison is performed for part of the
answer or for the whole. These corrections modes have been added as their
need arise for new practice sessions. They have been proven hard to be
highly effective, as discussed in the next section.

Third, the select correction mode allows to compare a select SQL query
given by a student to a reference query provided by their mighty teacher. As
the relational algebra and many SQL functions makes many queries equiv-
alent, it is not possible to compare them directly. Exploring the class of
algebraic equivalence would be difficult if not impossible, as semantic de-
tails can contribute to the equivalence of queries in a given schema. Thus
a simple and effective approach is followed, which consists of comparing the
relations resulting from the execution of both queries. If they match in size
and contents, then it is okay. Otherwise, the first difference, whether the
number of tuples or attributes or the differing item is reported to the student
as a clue.

Fourth, three correction modes rely on a select query the result of which
must be either empty or non empty, or lead to a boolean true response after
the execution of the student response. This allows to test working inserts
and updates for the first form, and deletes for the second one, and for the
last the existence of some objects and their properties, for instance to check
that a view is defined by the student as requested.

Fifth, a cryptographic token-based shared secret correction mode is also
provided. The idea is shown in Figure 5. The student interacts with a
helper application, say a web server in a practice about the HTTP protocol.
When the interaction succeeds, the helper application releases a proof of
success token which involves a public information, such as the login name
of the student obtained by the ident protocol, a description of the exercise
undertaken or the day and time of the event, and the cryptographic hash of

8



Figure 5: Cryptographic validation

this public information and a question specific secret.

token = info:h(info:secret)

When receiving the token, the correction modes recomputes the hash from
the provided information and the secret it knows in order to validate it.
Later the teacher can check that the information provided to identify stu-
dents that would use credentials obtained by another student in its re-
sponse. . .

6 Discussion

A common issue of the SQL oriented correction modes is that they involve
executing a query on the database. These queries may modify the data, ei-
ther by accident or by intent when insertions, updates or deletions are asked
for. A possible solution would be to use a read-only connection. Although
this is fine for SQL selects, it would fail for more advanced commands which
must modify the contents or even the schema. Thus all queries performed
by the corrector application are enclosed within a transaction which is roll-
backed at the end instead of being committed. The isolation level provided
by the MVCC (Multi View Concurrency Control) available in PostgreSQL
insures that simultaneous connections do not interfere. As all control, def-
inition and manipulation commands are subject to being rollbacked by a
transaction, this approach works as well with schema alteration or granted
privileges.

Crafting questions suitable to the corrector interface is not straightfor-
ward. There is a communication problem, as there must be only one possible
response from the student. Indeed, the automatic correction cannot deal
with good alternate answers to ambiguous questions and attribute points
to them. Thus all SQL query questions must tell precisely the attributes
expected as well as the order in which the results must be presented, thus
requiring full order by clauses in all answers.

9



Students often use the web interface as an interface to the database, not
bothering to try the queries first on the database before submitting them to
corrector. Although this works well for simple queries, the interface is not as
friendly as the different text or graphical database interfaces when dealing
with user syntax or semantical errors. Moreover, the HTML text input
is very basic: no syntax highlighting or automatic indentation is provided
which helps them for advanced questions.

Most students never get back to the interface to have a look at the
expected answers after the practice, once the corrections are available. Thus
entering comments to explain why their answer was not right and what
misunderstanding lays behind looks like a loss of time. Some approach
should be devised that would push the relevant information to them, possibly
through a simple mail pointing to a web summary page for instance. Student
time is a scarce resource.

Some students tend to develop clever strategies to get rid of the practice
as quickly as possible while still getting the positive feedback from the in-
terface. A yes/no answer would often result in trying both answers without
giving a thought to the question. For a number, they would try all integers
from 0 till they get the point. Keyword oriented corrections may result in
large responses provided by copy-pasting a dictionary or a large file instead
of extracting the answer from the raw data. Some SQL query questions
result in empty result sets: At the first error the student would figure that
out from the 0 row size hinted by the interface, and the next answer may be
whatever query returns an empty result. Some students take their teacher
for a low-power light bulb.

Keyword or regular expression automatic corrections do not work well.
Students are often much more imaginative than foreseen when it comes to
providing the right answer to very simple questions: an American student
would keep responding in English, because the interface is localized in his
language, but unluckily the automatic correction is not! A number could be
provided in numeral 1 or with letters one. . .

Although a teacher interface is available to create new exercises directly,
it is seldom used. Indeed, it is often useful to have a paper version of
the exercise to distribute. For that purpose, an importation script takes a
LATEX file with the exercise and special comments to feed it to the Corrector
system. This allow to have both paper and online versions very easily. On
the other hand, the teacher interface is often used to fix on the fly questions
and correction parameters during the session when students stumble upon
problems or ambiguities.

10



7 Conclusion

More than 150 students have passed through the Corrector prototype on
lessons about databases, network protocols and cryptography. Its constant
feedback has helped them to reach a better comprehension of the subjects
involved, and their teacher to focus on giving explanations that help them
towards this goal.

The teacher’s time spent on preparing and performing lessons has not
been tremendously reduce with Corrector. However the quality of the stu-
dent experience is greatly improved, as well as the teacher motivation.
Crawling through bunches of student SQL queries after the practice ses-
sion to check them was very unattractive. More time now is spend on the
preparation and the configuration, and less time on the correction phase as
most of the work is already done.

I intend to distribute Corrector as a free software at some stage. How-
ever it requires a precise documentation, especially on the system installa-
tion issues which involve careful database and web server configuration, and
which is yet to be written. Future works also involve new features, such as
an examination mode which does not report the points to the student. A
redevelopment in python [8] is also considered.

References

[1] PostgreSQL. www.postgresql.org, 1996–2006.

[2] Apache Software Foundation. Apache. httpd.apache.org, 1995–2006.

[3] Edgar F. Codd. A relational model for large shared databanks. Communica-
tions of the ACM, 13(6):377–387, June 1970.

[4] ISO/IEC. Information technology - database languages - SQL, 2003. Standard
9075.

[5] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 Specification.
W3C Recommendation on www.w3c.org, December 1999.

[6] David R. T. Robinson and Ken A. L. Coar. Common Gateway Interface version
1.1. W3C RFC 3875, October 2004.

[7] Adam Sussman, Matthias Eckermann, and Giuseppe Tanzilli. Apache pgsql
authentication module. www.giuseppetanzilli.it, 1996–2005.

[8] Guido van Rossum. Python programming language. www.python.org, 1991–
2006.

[9] Phillip Vandry. Locale::gettext perl module. www.cpan.org.

[10] Larry Wall. Perl. www.perl.org, 1987–2006.

[11] Larry Wall, Jon Orwant, and Tom Christiansen. Programming Perl. O’Reilly,
July 2000.

typeset with LATEX, document revision 946

11


