
Time-Indexed Formulations and a Large Neighborhood Search
for the Resource-Constrained Modulo Scheduling Problem

Benôıt Dupont de Dinechin
STMicroelectronics STS/CEC

12, rue Jules Horowitz - BP 217. F-38019 Grenoble
benoit.dupont-de-dinechin@st.com

The resource-constrained modulo scheduling problem is motivated by the 1-periodic cyclic instruc-
tion scheduling problems that are solved by compilers when optimizing inner loops for instruction-
level parallel processors. In production compilers, modulo schedules are computed by heuristics,
because even the most efficient integer programming formulation of resource-constrained modulo
scheduling by Eichenberger and Davidson appears too expensive to solve relevant problems.

We present a new time-indexed integer programming formulation for the resource-constrained
modulo scheduling problem and we propose a large neighborhood search heuristic to make it
tractable. Based on experimental data from a production compiler, we show that this combination
enables to solve near optimally resource-constrained modulo scheduling problems of significant size.
We also show that our large neighborhood search benefits to a lesser extent the resource-constrained
modulo scheduling integer programming formulation of Eichenberger and Davidson.

Keywords: Cyclic Scheduling, Modulo Scheduling, Instruction Scheduling, Time-Indexed Formula-
tion, Large Neighborhood Search, Adaptive Margins

1 Introduction

Modulo scheduling is the cyclic instruction scheduling framework used by highly optimizing com-
pilers to schedule instructions of innermost program loops [1]. Modulo scheduling is an effective
optimization for instruction-level parallel processors [15], especially the Very Long Instruction Word
(VLIW) processors that are used for media processing in embedded devices such as set-top boxes,
mobile phones, and DVD players. An example of modern VLIW architecture is the Lx [9], which
provides the basis of the successful STMicroelectronics ST200 VLIW processor family.

The modulo scheduling framework is distinguished by its focus on 1-periodic cyclic schedules
with integral period, which leads to simplifications compared to the classic formulation of cyclic
scheduling [10]. In the modulo scheduling framework, the period is called initiation interval and
is the main indicator of the schedule quality. A resource-constrained modulo scheduling problem
(RCMSP) is a modulo scheduling problem where the resource constraints are adapted from the
renewable resources of the resource-constrained project scheduling problem [2].

Optimal solutions to the resource-constrained modulo scheduling problem can be obtained by
solving the classic integer programming formulations by Eichenberger and Davidson [8]. However,
solving such formulation is only tractable for modulo scheduling problems that comprise less than
several tenth of operations1. While developing the ST200 production compiler at STMicroelec-
tronics [6], we found that modulo scheduling heuristics appeared to loose effectiveness beyond such
problem sizes, according to the lower bounds on the period obtained by relaxations.

1An operation is an instance of an instruction in a program text. An instruction is a member of the processor
instruction set architecture (ISA).

+3

2*

1+

for (i=2; i<n; i++) {

 a[i] = x+c[i-2];

 b[i] = a[i]*f;

 c[i] = a[i]+b[i];

}

start stopa 0,0i
ib

ic
1,0

1,0

3,0

0,0

1,2

Figure 1: Sample cyclic instruction scheduling problem.

In order to build high-quality modulo schedules for instruction scheduling problems of significant
size, our contributions are as follows: we show that for any assumed period λ, the RCMSP appears
as a resource-constrained project scheduling problem with maximum time lags (RCPSP/max) and
modulo resource constraints (Section 2); we present a new time-indexed integer programming for-
mulation for the RCMSP, by adapting the time-indexed integer programming of Pritsker et al.
[13] for the RCPSP/max (Section 3); we propose a large neighborhood search (LNS) heuristic
for the RCMSP, based on the adaptive reduction of margins and the resolution of the resulting
time-indexed integer programming formulations by implicit enumeration (Section 4).

2 The Resource-Constrained Modulo Scheduling Problem

2.1 Resource-Constrained Cyclic Scheduling Problems

A basic cyclic scheduling problem [10] assumes a set of generic operations {Oi}1≤i≤n to be executed
repeatedly, thus defining a set of operation instances {Ok

i }k>0
1≤i≤n, k ∈ lN. We call iteration k the set

of operation instances {Ok
i }1≤i≤n. For any i ∈ [1, n] and k > 0 ∈ lN, let σk

i denote the schedule date
of operation instance Ok

i . Basic cyclic scheduling problems are constrained by uniform dependences
denoted Oi

θj
i ,ωj

i−→ Oj , where the latency θj
i and the distance ωj

i are non-negative integers:

Oi
θj
i ,ωj

i−→ Oj =⇒ σk
i + θj

i ≤ σ
k+ωj

i
j ∀k > 0

In this work, we are interested in resource-constrained cyclic scheduling problems, whose re-
source constraints are adapted from the resource-constrained project scheduling problems (RCPSP)
[2]. Precisely, we assume a set of renewable resources, also known as cumulative resources, whose
availabilities are given by an integral vector ~B. Each generic operation Oi requires ~bi resources
for pi consecutive cycles and this defines the resource requirements of all the operation instances
{Ok

i }k>0. For the cyclic scheduling problems we consider, the cumulative use of the resources by
the operation instances executing at any given time must not exceed ~B.

To illustrate the resource-constrained cyclic scheduling problems that arise from instruction
scheduling, consider the inner loop source code and its dependence graph displayed in Figure 1.
The dummy operations O0 and On+1 are labeled start and stop. To simplify the presentation, we did
not include the memory access operations. Operation O3 (c[i]=a[i]+b[i]) of iteration i must execute
before operation O1 (a[i]=x+c[i-2]) of iteration i+2 and this creates the uniform dependence with
distance 2 between O3 and O1 (arc ci in Figure 1).

Assume this code is compiled for a microprocessor whose resources are an adder and a multiplier.
The adder and the multiplier may start a new operation every cycle. However, due to pipelined
implementation, the multiplier result is only available after 3 cycles. This resource-constrained
cyclic scheduling problem is defined by p1 = p2 = p3 = 1, ~B = (1, 1)t, ~b1 = ~b3 = (0, 1)t, ~b2 = (1, 0)t.

The dependences are O1

1,0
≺ O2, O1

1,0
≺ O3, O2

3,0
≺ O3, O3

1,2
≺ O1.

2.2 Resource-Constrained Modulo Scheduling Problem Statement

A modulo scheduling problem is a cyclic scheduling problem where all operations have the same
processing period λ ∈ lN, also called the initiation interval. Compared to cyclic scheduling problems,
a main simplification is that modulo scheduling problems only need to consider the set of generic
operations {Oi}1≤i≤n. Precisely, by introducing the modulo schedule dates {σi}1≤i≤n such that
∀i ∈ [1, n],∀k > 0 : σk

i = σi + (k − 1)λ, the uniform dependence constraints become:

Oi
θj
i ,ωj

i−→ Oj =⇒ σk
i + θj

i ≤ σ
k+ωj

i
j =⇒ σi + θj

i − λωj
i ≤ σj

Let {σi}1≤i≤n denote the modulo schedule dates of a set of generic operations {Oi}1≤i≤n. A
resource-constrained modulo scheduling problem (RCMSP) is defined by [6]:

• Uniform dependence constraints: for each such dependence Oi
θj
i ,ωj

i−→ Oj , a valid modulo sched-
ule satisfies σi+θj

i −λωj
i ≤ σj . The dependence graph without the dependences whose ωj

i > 0
is a directed acyclic graph (DAG).

• Modulo resource constraints: each operation Oi requires ~bi ≥ ~0 resources for all the time
intervals [σi +kλ, σi +kλ+pi−1], k ∈ ZZ and the total resource use at any time cannot exceed
a given availability ~B. The integer value pi is the processing time of Oi.

The primary objective of resource-constrained modulo scheduling problems is to minimize the
period λ. The secondary objective is usually to minimize the iteration makespan. In contexts where
the number of processor registers is a significant constraint, secondary objectives such as minimizing
the cumulative register lifetimes [5] or the maximum register pressure [7] are considered. This is
not the case for the ST200 VLIW processors, so we shall assume the makespan minimization.

2.3 Solving Resource-Constrained Modulo Scheduling Problems

Most modulo scheduling problems cannot be solved by classic machine scheduling techniques, as the
modulo resource constraints introduce operation resource requirements of unbounded extent. Also,
the uniform dependence graph may include circuits (directed cycles), unlike machine scheduling
precedence graphs that are acyclic. Even without the circuits, some modulo dependence latencies
θj
i −λωj

i may also be negative. Thus, the resource-constrained modulo scheduling problem appears
as a Resource-Constrained Project Scheduling Problem with maximum time-lags (RCPSP/max)
and modulo resource requirements.

In practice, building modulo schedules with heuristics is much easier that building RCPSP/max
schedules. This is because the maximum time-lags of RCMSPs always include a term that is a
negative factor of the period λ. Such constraints can always be made redundant by increasing λ
enough. A similar observation holds for the modulo resource constraints.

In the classic modulo scheduling framework [14, 11, 16], a dichotomy search for the minimum
λ that yields a feasible modulo schedule is performed, starting from λmin

def= max(λrec, λres) with:

λrec
def= maxC

⌈ ∑
C

θj
i∑

C
ωj

i

⌉
: C dependence circuit

λres
def= max1≤r≤R

⌈∑n

i=1
pib

r
i

Br

⌉
: R = dim(~B)

That is, λrec is the minimum λ such that there are no positive length circuits in the dependence
graph and λres is the minimum λ such that the renewable resources ~B are not over-subscribed.

3 Time-Indexed Integer Programming Formulations

3.1 The Non-Preemptive Time-Indexed RCPSP Formulation

Due to its ability to describe the RCPSP with general temporal constraints and other extensions,
the non-preemptive time-indexed formulation by Pritsker, Watters and Wolfe in 1969 [13] provides
the basis for many RCPSP solution strategies. In this formulation, T denotes the time horizon and
{0, 1} variables {xt

i} are introduced such that xt
i

def= 1 if σi = t, else xt
i

def= 0. In particular σi =∑T−1
t=1 txt

i. The following formulation minimizes the makespan Cmax by minimizing the completion
time of a dummy operation On+1 that is dependent on all the other operations:

T−1∑
t=1

t xt
n+1 : minimize (1)

T−1∑
t=0

xt
i = 1 ∀i ∈ [1, n + 1] (2)

T−1∑
s=t

xs
i +

t+θj
i−1∑

s=0

xs
j ≤ 1 ∀t ∈ [0, T − 1],∀(i, j) ∈ Edep (3)

n∑
i=1

t∑
s=t−pi+1

xs
i
~bi ≤ ~B ∀t ∈ [0, T − 1] (4)

xt
i ∈ {0, 1} ∀i ∈ [1, n + 1],∀t ∈ [0, T − 1] (5)

The equations (2) ensure that any operation is scheduled once. The inequalities (3) describe
the dependence constraints, as proposed by Christofides et al. [3]. Given (2), the inequalities (3)
for any dependence (i, j) ∈ Edep are equivalent to:

∑T−1
s=t xs

i ≤
∑T−1

s=t+θj
i

xs
j ∀t ∈ [0, T − 1] and this

implies σi ≤ σj − θj
i . Finally, the inequalities (4) enforce the cumulative resource constraints for

pi ≥ 1. The extensions of the RCPSP with time-dependent resource availabilities ~B(t) and resource
requirements ~bi(t) are described in this formulation by generalizing (4) into (6):

n∑
i=1

t∑
s=0

xs
i
~bi(t− s) ≤ ~B(t) ∀t ∈ [0, T − 1] (6)

3.2 The Classic Modulo Scheduling Integer Programming Formulation

The classic integer programming formulation of the RCMSP is from Eichenberger and Davidson
[8]. This formulation is based on a λ-decomposition of the modulo schedule dates, that is, ∀i ∈
[0, n + 1] : σi = λφi + τi, 0 ≤ τi < λ. Given an operation Oi, φi is its column number or stage
number and τi is its row number. The formulation of Eichenberger and Davidson introduces the
time-indexed variables {yτ

i }
0≤τ≤λ−1
1≤i≤n for the row numbers, where yt

i
def= 1 if τi = t, otherwise yt

i
def= 0.

In particular, τi =
∑λ−1

τ=0 τyτ
i ∀i ∈ [1, n]. On the other hand, the column numbers {φi}1≤i≤n are

directly used in this formulation:

λ−1∑
τ=0

τyτ
n+1 + λφn+1 : minimize (7)

λ−1∑
τ=0

yτ
i = 1 ∀i ∈ [1, n] (8)

λ−1∑
s=τ

ys
i +

(τ+θj
i−1) mod λ∑

s=0

ys
j + φi − φj ≤ ωj

i − b τ+θj
i−1
λ c+ 1 ∀τ ∈ [0, λ− 1],∀(i, j) ∈ Edep (9)

n∑
i=1

pi−1∑
r=0

y
(τ−r) mod λ
i

~bi ≤ ~B ∀τ ∈ [0, λ− 1] (10)

yτ
i ∈ {0, 1} ∀i ∈ [1, n],∀τ ∈ [0, λ− 1] (11)

φi ∈ lN ∀i ∈ [1, n] (12)

In this formulation, λ is assumed constant. Like in classic modulo scheduling, it is solved as the
inner step of a dichotomy search for the minimum value of λ that allows a feasible modulo schedule.

3.3 A New Time-Indexed Formulation for Modulo Scheduling

We propose a new time-indexed formulation for RCMSP, based on the time-indexed formulation of
RCPSP/max of Pritsker et al. [13]. First consider the modulo resource constraints. Each operation
Oi requires ~bi resources for the dates in [σi + kλ, σi + kλ + pi − 1],∀k ∈ ZZ (§ 2.2). The resource
requirement function ~bi(t) of Oi is written

∑
k∈ZZ(t ∈ [kλ, kλ + pi − 1])~bi, so (6) become:

n∑
i=1

∑
k∈ZZ

t∑
s=0

xs
i (t− s ∈ [kλ, kλ + pi − 1])~bi ≤ ~B ∀t ∈ [0, T − 1]

=⇒
n∑

i=1

∑
k∈ZZ

t∑
s=0

xs
i (s ∈ [t + kλ− pi + 1, t + kλ])~bi ≤ ~B ∀t ∈ [0, T − 1]

=⇒
n∑

i=1

∑
k∈ZZ

t+kλ∑
s=t+kλ−pi+1

xs
i
~bi ≤ ~B ∀t ∈ [0, T − 1]

=⇒
n∑

i=1

bT−1
λ

c∑
k=0

t+kλ∑
s=t+kλ−pi+1

xs
i
~bi ≤ ~B ∀t ∈ [0, λ− 1]

To complete this new RCMSP formulation, we minimize the schedule date of operation On+1

and we adapt the dependence inequalities (3) to the dependence latencies of θj
i − λωj

i . This yields:

T−1∑
t=1

t xt
n+1 : minimize (13)

T−1∑
t=0

xt
i = 1 ∀i ∈ [1, n + 1] (14)

T−1∑
s=t

xs
i +

t+θj
i−λωj

i−1∑
s=0

xs
j ≤ 1 ∀t ∈ [0, T − 1],∀(i, j) ∈ Edep (15)

n∑
i=1

bT−1
λ

c∑
k=0

t+kλ∑
s=t+kλ−pi+1

xs
i
~bi ≤ ~B ∀t ∈ [0, λ− 1] (16)

xt
i ∈ {0, 1} ∀i ∈ [1, n + 1],∀t ∈ [0, T − 1] (17)

4 A Large Neighborhood Search Heuristic

4.1 Variables and Constraints in Time-Indexed Formulations

The time-indexed formulations for the RCMSP (and the RCPSP/max) involve variables and con-
straints in numbers that are directly related to any assumed earliest {ei}1≤i≤n and latest {li}1≤i≤n

schedule dates. The number of variables is
∑n

i=1 li − ei + 1. Most of the constraints are the depen-
dence inequalities (15), and e

def= |Edep| non transitively redundant dependences appear to generate
eT inequalities with T

def= max1≤i≤n li + pi. However, the first sum of (15) is 0 if t > li. Likewise,
the second sum of (15) is 0 if t + θj

i − λωj
i − 1 < ej . So (15) is actually equivalent to:

T−1∑
s=t

xs
i +

t+θj
i−λωj

i−1∑
s=0

xs
j ≤ 1 ∀t ∈ [ej − θj

i + λωj
i + 1, li],∀(i, j) ∈ Edep (18)

So (18) is redundant whenever ej − θj
i + λωj

i ≥ li (ej − θj
i ≥ li in case of the RCPSP/max).

The time-indexed formulation for the RCMSP (and the RCPSP/max) is therefore likely to
become more tractable after reducing the possible schedule date ranges σi ∈ [ei, li]. The basic
technique is to initialize ei = ri and li = di−pi, with {ri}1≤i≤n and {di}1≤i≤n being the release dates
and the due dates, then propagate the dependence constraints using a label-correcting algorithm.
More elaborate techniques have been proposed for the RCPSP [4]. Ultimately, all these margins
reduction techniques rely on some effective upper bounding of the due dates {di}1≤i≤n.

4.2 A Large Neighborhood Search Heuristic for Modulo Scheduling

In case of the RCMSP, the primary objective is period minimization. Heuristics build modulo
schedules at some period λ that is often greater than the lower bound λmin

def= max(λrec, λres).
When this happens, the feasibility of modulo scheduling at period λ − 1 is open. Moreover, it is
not known how to bound the makespan at period λ− 1 given a makespan at period λ. This means
that effective upper bounding of the due dates in RCMSP instances is not available either.

To compensate for the lack of upper bounding, we propose a large neighborhood search (LNS)
for the RCMSP, based on adaptive margins reduction and implicit enumeration of the resulting
time-indexed integer programs (using a MIP solver). The LNS [17] is a meta-heuristic where a
large number of solutions in the neighborhood of an incumbent solution are searched by means of
branch and bound, constraint programming, or integer programming. The large neighborhood is
obtained by fixing some variables of the incumbent solution while releasing others.

In the setting of time-indexed formulations, we consider as the neighborhood of an incumbent
solution {σi}1≤i≤n some schedule date ranges or margins {ei, li : σi ∈ [ei, li]}1≤i≤n, which are made
consistent under dependence constraint propagation. For each xσi

i = 1, we fix variables xri
i . . . xei−1

i ,
xli+1

i . . . xdi−pi
i to zero and release variables xei

i . . . xli
i . The fixed variables and the dependence

constraints (18) found redundant given the margins are removed from the integer program.
We adapt the generic LNS algorithm of [12] by using margins to define the neighborhoods and

by starting from a heuristic modulo schedule. The period λ is kept constant while this algorithm
searches increasingly wider margins under a time budget in order to minimize the makespan. The
key change is to replace the diversification operator of [12] by a decrement of the period to λ − 1
while keeping the schedule dates. This yields a pseudo-solution that may no longer be feasible due
to the period change. Computational experience shows that a new solution at period λ−1 can often
be found in the neighborhood of this pseudo-solution, whenever the problem instance is feasible at
period λ− 1. In case a solution at period λ− 1 is found, go back to minimize the makespan.

4.3 Experimental Results from the ST200 Production Compiler

We implemented the two time-indexed formulations of RCMSP described in Section 3 in the pro-
duction compiler for the STMicroelectronics ST200 VLIW processor family [6], along with the
proposed LNS heuristic, and use the CPLEX 9.0 Callable Library to solve the resulting MIPs.

The table below reports experimental data for the largest loops that could not be solved with
these formulations, assuming a timeout of 300s and a time horizon of 4λmin. Column #O,#D gives
the number of operations and of non-redundant dependences. Column Heuristic λ, M displays the
period and makespan computed by the ST200 production compiler insertion scheduling heuristic [6].
The column groups Formulation 300, Formulation 30, Eichenberger 300 correspond to the proposed
LNS using our RCMSP formulation and Eichenberger and Davidson formulation for timeout values
of 300s, 30s, 300s. In each group, column #V,#C gives the number or variables and constraints of
the integer program sent to CPLEX 9.0. In all these cases, the Formulation LNS reached the λmin.

Heuristic Formulation 300 Formulation 30 Eichenberger 300
Loop #O,#D λ̄, M̄ λ, M #V,#C λ, M #V,#C λ, M #V,#C
q plsf 5.0 215 231,313 81,97 75,77 1114,1236 75,78 1873,2042 *,* 18942,25989
q plsf 5.0 227 121,163 42,92 39,46 982,1228 39,46 1378,1685 39,47 4840,6673
q plsf 5.0 201 124,168 42,92 40,47 1086,1340 40,65 1197,1421 41,50 5208,7217
q plsf 5.2 11 233,317 82,100 75,78 1113,1216 75,79 1897,2045 *,* 19339,26637
subbands.0 196 130,234 44,65 35,49 718,906 35,48 1008,1248 *,* 5850,10778
transfo.IMDCT L 232,370 71,109 58,58 1133,1075 58,58 1985,1961 70,74 16472,26482

5 Summary and Conclusions

The resource-constrained modulo scheduling problem (RCMSP) is a resource-constrained cyclic
scheduling problem whose solutions must be 1-periodic of integral period λ. The primary min-
imization objective of the RCMSP is the period and the secondary objective is the makespan.
Given any period λ, the RCMSP appears as a resource-constrained project scheduling project with
maximum times lags (RCPSP/max) and so-called modulo resource constraints.

Based on the RCPSP/max integer programming formulation of Pritsker et al. [13] and the
strong dependence equations of Christofides et al. [3], we present a new time-indexed integer
programming formulation for the RCMSP. This formulation differs from the classic time-indexed
integer programming formulation of the RCMSP by Eichenberger and Davidson [8].

Both formulations of the RCMSP are impractical to solve for problems that comprise over
several tenths of operations, so we propose a large neighborhood search (LNS) heuristic based
on solving those integer programming formulations by implicit enumeration after adapting the
operation margins. Experiments show this LNS heuristic is quite effective to find a solution at
period λ − 1 given an incumbent solution at period λ, even for RCMSP instances that comprise
hundreds of operations. To our knowledge, this is the first application of LNS to cyclic scheduling.

References

[1] V. H. Allan, R. B. Jones, R. M. Lee, S. J. Allan: Software Pipelining . ACM Computing
Surveys, 27(3):367–432, 1995.

[2] P. Brucker, A. Drexl, R. Möhring, K. Neumann, E. Pesch: Resource-Constrained
Project Scheduling: Notation, Classification, Models, and Methods. European Journal of Oper-
ational Research 112, 1999.

[3] N. Christofides, R. Alvarez-Valdés, J. M. Tamarit: Project Scheduling with Resource
Constraints: A Branch and Bound Approach. European Journal of Operational Research 29,
1987.

[4] S. Demassey, C. Artigues, P. Michelon: Constraint-Propagation-Based Cutting-Planes:
An Application to the Resource-Constrained Project Scheduling Problem. INFORMS Journal on
Computing, 17, 1, 2005.

[5] B. Dupont de Dinechin: An Introduction to Simplex Scheduling . 1994 International Confer-
ence on Parallel Architecture and Compiler Techniques – PACT’94, 1994.

[6] B. Dupont de Dinechin: From Machine Scheduling to VLIW In-
struction Scheduling . ST Journal of Research vol. 1, no. 2, 2004.
http://www.st.com/stonline/press/magazine/stjournal/vol0102/

[7] A. E. Eichenberger, E. S. Davidson, S. G. Abraham: Optimum Modulo Schedules for
Minimum Register Requirements. International Conference on Supercomputing – ICS, 1995.

[8] A. E. Eichenberger, E. S. Davidson: Efficient Formulation for Optimal Modulo Schedulers.
SIGPLAN Conference on Programming Language Design and Implementation – PLDI’97, June
1997.

[9] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, F. Homewood: Lx: a Technology
Platform for Customizable VLIW Embedded Processing . 27th Annual International Symposium
on Computer Architecture – ISCA’00, June 2000.

[10] C. Hanen, A. Munier: A Study of the Cyclic Scheduling Problem on Parallel Processors.
DAMATH: Discrete Applied Mathematics and Combinatorial Operations Research and Com-
puter Science, 57, 1995.

[11] M. Lam: Software Pipelining: an Effective Scheduling Technique for VLIW Machines. SIG-
PLAN Conference on Programming Language design and Implementation – PLDI’88, June
1988.

[12] M. Palpant, C. Artigues, P. Michelon: LSSPER: Solving the Resource-Constrained
Project Scheduling Problem with Large Neighborhood Search. Annals of Operations Research
131, 2004.

[13] A. A. B. Pritsker, L. J. Watters, P. M. Wolfe: Multi-Project Scheduling with Limited
Resources: A Zero-One Programming Approach. Management Science 16, 1969.

[14] B. R. Rau, C. D. Glaeser: Some Scheduling Techniques and an Easily Schedulable Hor-
izontal Architecture for High Performance Scientific Computing . 14th Annual Workshop on
Microprogramming – MICRO-14, Dec. 1981.

[15] B. R. Rau, J. A. Fisher: Instruction-Level Parallel Processing: History, Overview, and
Perspective. Journal of Supercomputing, 7(1-2):9–50, May 1993.

[16] B. R. Rau: Iterative Modulo Scheduling . The International Journal of Parallel Processing, 24,
1, Feb 1996.

[17] P. Shaw: Using Constraint Programming and Local Search Methods to Solve Vehicle Routing
Problems. Proc. of 4th International Conference Principles and Practice of Constraint Program-
ming - CP98, Oct. 1998.

