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Abstract
Streaming applications are based on a data-driven approach where
compute components consume and produce unbounded data vec-
tors. Streaming oriented systems have become dominant in a wide
range of domains, including embedded applications and DSPs
However, programming efficiently for streaming architectures is a
very challenging task, having to carefully partition the computation
and map it to processes in a way that best matches the underlying
multi-core streaming architectures, as well as having to take into
account the needed resources (memory, processing, real-time re-
quirements, etc.) and communication overheads (processing and
delay) between the processors.

These challenges have led to a number of suggested solu-
tions, whose goal is to improve the programmer’s efficiency in
developing applications that process massive streams of data on
programmable, parallel embedded architectures. StreamIt is one
such example. Another more recent approach is that developed by
the ACOTES (Advanced Compiler Technologies for Embedded
Streaming) project. The ACOTES approach for streaming appli-
cations consists of compiler-assisted mapping of streaming tasks
to highly parallel systems in order to maximize cost-effectiveness,
both in terms of energy and in terms of design effort. The analysis
and transformation techniques automate large parts of the partition-
ing and mapping process, based on the properties of the application
domain, on the quantitative information about the target systems,
and on programmer directives.

This paper presents the outcomes of the ACOTES project, a 3-
year collaborative work of industrial (NXP, ST, IBM, Silicon Hive,
NOKIA) and academic (UPC, INRIA, MINES ParisTech) partners,
and advocates the use the Advanced Compiler Technologies that we
developed to support Embedded Streaming.

1. Introduction
Streaming applications which dominantly process large amounts of
data have increasing demands for processing power. This demand
stems from several requirements: on the one hand, the amount of
processing per data element increases because of higher quality re-
quirements of the result (e.g. video processing). On the other hand,
the amount of data per unit of time also increases (e.g. higher com-
munication speeds in wireless networks). This, in fact, calls for
higher silicon efficiency, a demand that was met up to a few years
ago by designing Application Specific Integrated Circuits (ASICs).
The time to design such ASICs is, however, proportional to the
complexity of the ASIC; as the complexity of the ASIC grows ex-
ponentially, their design becomes economically infeasible. Design-
ers have thus shifted their focus toward programmable platforms,
thereby potentially amortizing the design cost across several ap-
plications, or even application domains. Programmable platforms
however were traditionally unable to meet high throughput require-
ments, as they were mostly designed for general purpose computa-
tion, offering limited opportunities for parallelism.

Several recent architectures do expose parallelism to the appli-
cation programmer. This, however, shifts the problem of managing

1 2009/3/9



8x

Reader

Writer

FM_QD_Demod

FFD 1,407FFD 1,407 FFD 1,813 FFD 1,813

FFD 8,407

SubMultSq

FFD 8,407

Figure 1. FMradio filters structure

complexity partly from the hardware designer to the software ap-
plication developer. Exploiting available parallelism optimally re-
quires intimate knowledge of both the application and the target
platform. Automating the extraction of parallelism from sequential
algorithmic descriptions has proven to be an extremely complex
task in general.

In 2006, IBM, Philips (later: NXP Semiconductors), STMi-
croelectronics, NOKIA, INRIA and UPC initiated the ACOTES
project to advance the support of application programmers in par-
allelising applications on highly parallel architectures. They were
later joined by Silicon Hive, and MINES ParisTech. The ACOTES
project concentrates on developing tools to assist the application
programmer in achieving optimal parallelism. From the outset
we decided to use a mainstream language (C), an existing com-
piler framework (the GNU Compiler Collection - GCC), focus on
the data streaming application domain, and target three distinct
state-of-the-art multicore architectures (Cell Broadband Engine,
xSTream processor, and Ne-XVP). This way we were able to con-
centrate our efforts on support for parallelization across several
levels. Data streaming applications typically contain potential for
both coarse-grain task-level parallelism across threads, fine-grain
data-level parallelism residing inside nested loops of SIMD-like
computations, and also memory-level parallelism to optimize data
transfers.

1.1 Applications
The ACOTES project focuses on the data-streaming application
domain. In this paper we present experimental results using three
applications from this domain: FM-radio, H264 and Gamma-
correction. The project, however, uses several other streaming ap-
plications to drive the developments in the project.

FMradio. The FM-radio application was extracted and adapted
from the GNU Radio project (4). It contains about 500 lines of
code. The application receives an input stream, applies a number
of filters to it, and finally writes an output stream. Several of the
filters apply the same transformation with different configuration
parameters. The structure of the filters is shown in Figure 1. The
FFD filter is the most time consuming one.

H.264. The H.264 application is part of the MPEG-4 stan-
dard (28). It consists of a video and audio coder and decoder,
achieving high levels of compression, for improved transmission
and storage of streaming media files. In this paper we use a subset
of the internal algorithms to demonstrate the vectorization capabil-
ities introduced in the GCC compiler.

Gamma Correction. The Gamma correction algorithm depicted
in Figure 2 appears often as one of the last phases in a typical im-
age signal processing pipeline. The current customer requirement
from the Gamma correction algorithm calls for pixel throughtput
of about 4 cycles-per-pixel for the whole image signal processing

Figure 2. Image Signal Processing Algorithm Pipeline.

pipeline. As we show below, a straight-forward scalar implementa-
tion of Gamma correction takes 154 cycles-per-pixel.

The Gamma correction algorithm concentrates on a triple nested
loop scanning over the pixels of a 2D image. For each pixel, it
searches through an array of thresholds until it finds the thresh-
old interval (plotted along the X-axis of Figure 3) within which the
colour value x lies. The offset, gradient, and threshold of that in-
terval are used to calculate the new pixel value. This application il-
lustrates the potential of outer loop vectorization, developed within
ACOTES.

Figure 3. Gamma Correction Filter.

1.2 Compiler Structure
GCC, the GNU Compiler Collection is a compiler framework sup-
porting several mainstream programming languages as well as a
large array of target processors. The framework is actively main-
tained by the GCC project of the Free Software Foundation, super-
vised by the GCC steering committee.

The project consists of a mainstream development part, which
results in regular releases, and several development parts often
dubbed development branches. The mainstream development is
closely supervised by the GCC steering committee delegating
responsibilities to leading developers. Results from development
branches are incorporated into the mainstream only after scrutiny
and approval by designated maintainers. This setup allows for the
simultaneous development of a production quality compiler and a
set of new and experimental developments.

The structure of GCC is that of a traditional compiler: a front-
end for language parsing and semantics checking, a “middle-end”
for target-independent optimisations, and a back-end for code gen-
eration and target-specific optimisations. It is this combination of
support for mainstream languages and targets, industrial main-
stream quality, the ability to experiment freely in parallel to the
main line of development without interference, a vibrant supporting
community and its adoption by a vast number of users that makes
GCC an ideal choice for a project such as ACOTES.

1.3 ACOTES Project Structure
The ACOTES project is divided into a set of subtopics:

• Abstract Streaming Machine. In order to target several dis-
tinct architectures, we developed an abstract machine model
that captures the streaming characteristics of the platforms in
a common model called the Abstract Streaming Machine, or
ASM.
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• Streaming Programming Model. In order to use the C-
language as the starting point, we developed a number of exten-
sions that express parallelism opportunities in the source, col-
lectively referred to as the Streaming Programming Model, or
SPM. As an extra requirement, these language extensions had
to be neutral with respect to the core C language. The pragma
mechanism is ideal for this purpose. This decision, however,
surfaced a shortcoming of GCC, which is not very well suited
for experimenting with pragmas in the front-end. This prompted
the project to turn to Mercurium (2) as a prototyping tool for
implementing the SPM.

• Middle-end optimisations. Streaming applications are charac-
terised by nested loops of computations. Often, considerable
performance improvements can be gained by applying optimi-
sations to these loops. The project concentrated its effort on
the polyhedral model for high-level loop optimisations in the
middle-end.

• Back-end optimisations. Modern architectures often contain
SIMD-like instructions, also called vector instructions. As these
instructions are target specific, opportunities for applying them
are detected in the back-end of the compiler.

• Code generation. Although the code generation is specific for
each architecture and outside the scope of the ACOTES project,
we decided to concentrate our effort on common back-end
algorithms and on common back-end formats.

Apart from these topics, the project has a separate activity
to disseminate the project results, part of which is maintaining
contact with the GCC-project and HiPEAC network of excellence
communities.

This paper describes the implementation of the parallelising
support developed in the ACOTES target tool-chain and presents
experimental results. Section 2 describes related work, sections 3
and 4 present the Abstract Streaming Machine (compilation target)
and the Streaming Programming Model in the compiler front end
(extensions to the C-language). Section 5 presents the automatic
loop nest optimisations and vectorisation, and the interaction be-
tween them. Section 6 describes the target platforms and the code
generation phase of the compiler for these architectures. Section 7
presents results, and section 8 concludes.

2. Related Work
Since the ACOTES project takes a holistic approach to parallel
stream-programming, it spans over the whole flow of compilation
down to the runtime system. It has connections with a huge list
of related work. This section compares our approach with the
most closely related progresses and results in the field of high-
performance embedded computing.

StreamIt is a long running project with a source language, pub-
licly available compiler, and benchmark suite. The StreamIt (50)
language imposes a hierarchical structure on the program, which
must be composed of filters, pipelines, split-joins and feedback
loops. It requires the developer to structure the program into sep-
arate work functions per filter, in contrast to using pragmas. The
StreamIt compiler (26) targets the Raw Architecture Workstation,
symmetric multicore architectures, clusters of workstations, and the
Cell BE, where aggressive task-level optimizations are performed
automatically (31). There is no general purpose machine model
similar to the ACOTES ASM, and the ACOTES SPM is much more
expressive than the cyclostatic data-flow model of computation un-
derlying StreamIt (12), while still allowing compilation-time task-
level optimizations (19; 44) Compared to StreamIt, our approach
involves a tight coupling of task- and loop-level optimizations, al-
lowing for more relevant decisions to be taken about adaptation of
synchronization, communications, levels of parallelism and local-
ity. The optimization relies on iterative search, we are able to find
interesting tradeoffs inaccessible to compilation flows separating
those problems into different representations and passes (46). We
will illustrate this design on the interplay between task-level and
loop-level optimizations, including automatic vectorization.

Sequoia is a well known data parallel language exploiting the
structure of data-centric algorithms (18). It severely restricts the
model of computation to hierarchical fork-join parallel sections, but
allows the programmer to state data affinity to portions of iteration
space. For each hardware platform, the application programmer
must supply a mapping that takes the “abstract” hierarchy defined
in the application, and assigns pieces of it onto specific hardware.
This approach requires more effort from the application provider
and requires them to learn the memory characteristics of each
hardware platform, but it is certainly a pragmatic solution that
could be added as an optional feature of the ACOTES programming
model.

The new specification of OpenMP (43; 14), version 3.0, sup-
ports task parallelism using the new task directive. This directive
specifies that the serial code within it can be executed by another
thread inside the scope of a parallel region. In OpenMP, every
time the task directive is reached a new task is created to execute
its body. In the ACOTES SPM, all the inner tasks are created once
when the taskgroup directive is reached, and a value is sent on
each input stream each time the task directive is reached. This is
a form of synchronization that does not exist in the OpenMP 3.0
proposal. However, there are other proposals for OpenMP that add
synchronization between threads. Gonzalez et al. (24; 25) propose
three new directives: PRED, SUCC and NAME. The NAME direc-
tive labels a worksharing, and this label can be used by PRED and
SUCC directives, to specify synchronization. Another approach us-
ing annotated C is Cell Superscalar (CellSs) (3), which uses a task
directive to express what are the inputs and outputs at a function
level. Each time the function is called, a new task is created and the
runtime system takes care of the possible dependencies it may have
with other tasks.

StarPU features a stream-oriented model of computation, yet
does not involve any language extension (38). Based on multi-
versionned kernels, it automates the dynamic balancing and map-
ping of tasks and data over heterogeneous, accelerator-centric par-
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allel architectures. It would be an interesting target to map code
generated by GCC and to port the ACOTES runtime system.

StreamRoller (30) is a stream compiler for the Cell Broadband
Engine, which uses the SGMS algorithm to split stateless kernels,
partition the graph, and statically schedule. Task fission and fusion
is translated into an Integer Linear Programming (ILP) problem,
which is solved using the commercial CPLEX solver (27).

Gedae is a proprietary graphical programming environment for
streaming signal processing applications in the defense industry.
Unlike ACOTES, the developer specifies the mapping of the pro-
gram onto the target, and the compiler generates the executable ac-
cording to this mapping (34).

We selected GNU Radio as our motivating example (4). It is a
framework developed in C++ and Python. GNU Radio allows to ex-
press graphs of filters and connections described using Python. Fil-
ters are usually constructed as C++ classes. GNU Radio comes with
its own task scheduler and the system can be deployed on multiple
architectures, even including FPGAs. GNU Radio provides more
than 100 different basic blocks that can be combined to achieve
the goal of the application. New blocks may be added to add new
functionality. Both StreamIt and GNU Radio are designed for sig-
nal processing applications, and require the program to be written
specifically in terms of streaming blocks.

3. ASM
The Abstract Streaming Machine (8; 9) is the compiler’s descrip-
tion of the target multiprocessor system. The ASM defines the
search space for the compiler’s partitioning and allocation algo-
rithm by specifying the system topology and performance charac-
teristics, and providing constraints on the mapping; e.g. memory
sizes.

We have implemented the ASM in a coarse-grain simulator,
which estimates the performance of a candidate mapping on the
given target without requiring compilation or execution. In addition
to improving the speed of the compiler, the simulator allowed us to
start work on the search algorithm before the compiler’s transfor-
mation infrastructure was complete, and is repeatable because there
is no experimental error.

Figure 5 shows the structure of the ACOTES compiler, includ-
ing the ASM simulator. The compilation flow is iterative, with a
heuristic search algorithm determining a candidate mapping, which
is compiled using Mercurium (2) and GCC. The mapping is pro-
vided to GCC through a plugin using the Interactive Compilation
Interface (ICI) (20).

3.1 The ASM machine model
The topology of the target platform is given by an unstructured
bipartite graph H = (V,E) where V = P ∪ M ∪ I is the set
of vertices, a disjoint union of processors, P , and memories, M ,
in one partition and interconnects, I , in the other. The edges, E,
serve only to define the topology. Figure 6 shows two example
targets: (a) a Cell processor, and (b) a four-core shared memory
machine. Each processor, interconnect, and memory is defined
using the parameters summarized in Figure 7, and described in
detail below. Figure 7(a) and 7(b) give the machine descriptions
for the example targets, measured on Cell and estimated for a 4-
processor SMP. The ASM defines the machine characteristics that
are visible to software, including the ACOlib runtime system, so
it may not exactly match the physical hardware. For example, the
Operating System in a Playstation 3 makes only six of eight SPEs
available to software, and the mapping from virtual to physical core
is not known. We assume that any processors available to the stream
program will not be time-shared with other applications while the
stream program is running.

source +
pragmas

Task fusion
Allocation

Mercurium

source +
acolib

Blocking gcc ICI plugin

executable

trace

Search
algorithm

ASM
simulator

Figure 5. The feedback loop of the ACOTES compiler: a heuristic
search algorithm controls Mercurium and GCC

Each processor is defined using the parameters in Figure 7(a).
The ASM supplements the compiler’s back-end machine descrip-
tion, so the details of the processor’s ISA and micro-architecture
are not duplicated in the ASM. The addressSpace and hasIO pa-
rameters provide constraints on the mapping, but are not required
to estimate the performance of a valid mapping. The former de-
fines the local address space of the processor; i.e. which memories
are directly accessible through ordinary load-store instructions, and
where they appear in virtual memory, and is used to place stream
buffers. The latter defines which processors can perform system
IO, and is a simple way to ensure that tasks that need system IO are
mapped to an appropriate processor.

Each memory is defined using the parameters in Figure 7(b).
The latency and bandwidth figures may be used by the compiler
to refine the estimate of the execution time of each task, but are
not used directly by the coarse-grain simulator. The memory sizes
are used to determine where to place communications buffers, and
provide constraints on the blocking factors.

Each interconnect is defined using the parameters shown in Fig-
ure 7(c). The graph topology is given by the elements parameter,
which lists the processors and memories that are adjacent to the
bus. Each interconnect is modelled as a bus with multiple channels,
which has been shown to be a good approximation of the perfor-
mance observed in practice when the processors and memories on
a single link are equidistant (23). Each bus has a single unbounded
queue to hold the messages ready to be transmitted, and one or
more channels on which to transmit them. Streams are statically al-
located onto buses, but the choice of channel is made at runtime.
The interfaceDuplex parameter defines for each processor or
memory whether it can simultaneously read and write on different
channels. The bandwidth and latency of each channel is controlled
using four parameters: the start latency (L), start cost (S), band-
width (B) and finish cost (F ). In transferring a message of size n
bytes, the latency of the link is given by L+ S + d n

B
e and the cost

incurred on the link is S + d n
B
e + F . This is a natural model for

distributed memory machines, and is equivalent to the assumption
of cache-to-cache transfers on shared memory machines.

The ASM simulator assumes that the only significant traffic
on an interconnect is the transfer of messages related to streams.
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Hence each processor should have some private memory — either
a local store or a cache. If it is a local store, the compiler must
allocate the stream buffers in this local store. If it is a cache, the
ASM assumes that it is sufficiently effective so that the cache miss
traffic on the interconnect is low.

Hardware routing is controlled using the interfaceRouting
parameter, which defines for each processor whether it can route
messages from this interconnect onto another interconnect that it
is adjacent to. Each entry can take the value storeAndForward,
cutThrough, or None.

3.2 The ASM program model in the simulator
The coarse-grain simulator models the stream program as a directed
graph G = (T, S) where T is the set of vertices representing tasks
and S is the set of edges representing streams. The graph does not
have to be acyclic, but it must be connected.

Note that a task may have irregular data-dependent behaviour.
We therefore divide tasks into subtasks, which are the basic unit
of sequencing. A subtask pops a fixed number of elements from
each input stream and pushes a fixed number of elements into
each output stream. In detail, the work function for a subtask is
divided into three consecutive phases: first, the acquire phase calls
Iport acquire or Oport acquire for each stream to obtain the
next set of full input buffers and empty output buffers. Second, the
processing phase works locally on these buffers, and is modelled
using a fixed or normally-distributed processing time. Finally, the
release phase calls Iport pop to discard the input buffers, and
calls Oport push to send the output buffers, releasing the buffers
in the same order they were acquired. This three-stage model is
not a fundamental requirement of the ASM, and was introduced
as a convenience in the implementation of the simulator, since the
ACOTES compiler will generate subtasks of this form.

Streams are defined by the size of each element, the location
and the length of the distinct producer and consumer buffers (dis-
tributed memory) or the single shared buffer (shared memory).
These buffers do not have to be the same length. Streams are point-
to-point, so each stream has exactly one producer task and one con-
sumer task, but those tasks may access the same stream from more
than one subtask.

3.3 Definition and sequencing of irregular tasks
The coarse-grain simulator uses the sequential semantics of the
SPM program to control the sequencing of subtasks in the stream
program. A task is controlled by its subtask tree, which is built up

from subtasks, If nodes and While nodes. Each If or While node is
associated with a similar statement in the sequential program.

When the simulator is to be executed in the trace-driven mode,
the executable is instrumented to record the outcome each time
a control statement is executed. A control statement is an if or
while statement in the original SPM program that controls one or
more subtask trees. The resulting sequence of outcomes is known
as a control variable, and takes the values 1 or 0 for an if statement,
or the non-negative iteration count for a while statement. When
the simulator is used in the trace-driven mode, the program model
is driven by the set of control variables taken from the trace.

The set of control variables may be reused with a different
partition or allocation. It usually cannot be reused with a different
blocking factor, or after compiler transformations such as loop
interchange or distribution.

4. SPM and the Front-End Compiler
The Streaming Programming Model (SPM) designed in the context
of the ACOTES project is implemented using extensions to the
C language. It consists of a set of pragmas extending the serial
code semantics. The main requirements of the SPM are: to be
easy to learn, easy to use and reuse, and to support task and data
parallelism. We think that OpenMP (43) can therefore serve as a
good basis to develop our SPM: OpenMP can be learned, applied,
and tested incrementally, which is convenient for new programmers
in the streaming field.

4.1 Elements in the SPM
The SPM adds three basic elements to OpenMP: streaming tasks,
streams, and ports. These elements are grouped together in taskgroups,
the only compound abstraction. Applications are represented in the
SPM as multiple tasks connected via point-to-point data streams.
Each task may be viewed as an independent process with all its
data being private. Communication and synchronization among
tasks happens only via streams. A stream is directed, and we refer
to its two end points (ports from now on) from the point of view
of the task, so that the producer has an output port to generate
data into the stream, and the consumer has an input port to read
data from the stream. The two ends are permanently connected
together. The consumer task blocks when it tries to read from an
empty input stream, and the producer blocks when it tries to write
to a full output stream.

Using the scheme described above, task parallelism is supported
in a traditional way with the addition of having communication
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Parameter Type Description Cell SMP

name String Unique name in platform namespace ’SPEn ’ ’CPUn ’

clockRate Fixed pt. Clock rate, in GHz 3.2 2.4

hasIO Bool True if the processor can perform IO False True

addressSpace List List of the physical memories in the system that are addressable by
this processor and their virtual address

[(’LSn ’,0)] [(’Mem’,0)]

pushAcqCost Int Cost, in cycles, of acquiring a producer buffer (before waiting) 448 20

pushSendFixedCost Int Fixed cost, in cycles, of pushing a block (before waiting) 1104 50

pushSendUnit Int Number of bytes per push transfer unit 16384 0

pushSendUnitCost Int Incremental cost, in cycles, to push pushUnit bytes 352 0

popAcqFixedCost Int Fixed cost, in cycles, of popping a block (before waiting) 317 50

popAcqUnit Int Number of bytes per pop transfer unit 16384 0

popAcqUnitCost Int Incremental cost, in cycles, to pop popUnit bytes 0 0

popDiscCost Int Cost, in cycles, of discarding a consumer buffer (before waiting) 189 20

(a) Definition of a processor

Parameter Type Description Cell SMP

name String Unique name in platform namespace ’LSn ’ ’Mem’

size Int Size, in bytes 262144 2147483648

clockRate Fixed pt. Clock rate, in GHz 3.2 0.4

latency Int Access latency, in cycles 2 4

bandwidth Int Bandwidth, in bytes per cycle 128 8

(b) Definition of a memory

Parameter Type Description Cell SMP

name String Unique name in platform namespace ‘EIB’ ’FSB’

clockRate Fixed pt. Clock rate, in GHz 1.6 0.4

elements [String] List of the names of the elements (processors and memories) on the
bus

[’PPE’,

’SPE0’, · · · ,
’SPE7’]

[’CPU0’, · · · ,
’CPU3’]

interfaceDuplex [Bool] If the bus has more than one channel, then define for each processor
whether it can transmit and receive simultaneously on different
channels

[True, · · · ,
True]

[False, · · · ,
False]

interfaceRouting [Enum] Define for each processor the type of routing from this bus: store-
AndForward, cutThrough, or None

[None, · · · ,
None]

[None, · · · ,
None]

startLatency Int Start latency, L, in cycles 80 0

startCost Int Start cost on the channel, S, in cycles 0 0

bandwidthPerCh Int Bandwidth per channel, B in bytes per cycle 16 16

finishCost Int Finish cost, F , in cycles 0 0

numChannels Int Number of channels on the bus 3 1

multiplexable Int False for a hardware FIFO that can only support one stream True True

(c) Definition of an interconnect

Figure 7. Parameters of the Abstract Streaming Machine and values for two example targets (measured on Cell and estimated for a four-core
SMP)
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int main()
{
        char c;

#pragma acotes taskgroup
        while (fread(&c, sizeof(c), 1, stdin)) {

#pragma acotes task input(c) output(c)  // 1
                if ('A' <= c && c <= 'Z') c= c  'A' + 'a';

#pragma acotes task input(c)                  // 2
                fwrite(&c, sizeof(c), 1, stdout);

        }

        return 0;
}

fread

if ('A'...

fwrite

taskgroup

task 1

task 2

a) b)

Figure 8. Example program (a), and representation of tasks (b)

channels between tasks. Data parallelism is supported through the
ability of replicating a task into a number of instances, allowing to
run each instance in a different core on disjoint input and/or output
data.

There are several distinctions between the execution model of
the SPM and that of OpenMP, namely:

• In the SPM, streaming tasks are created all at once when a
taskgroup is entered. This is contrary to OpenMP where a
thread creates each task in a parallel region upon encountering
it dynamically.

• Tasks in SPM are permanent, meaning that they are alive while
there is input data for them to process. This implies the auto-
matic generation of an implicit loop: while (there-is-input-data)
{ ... } , enclosing the code in the body of the task, contrary to
what is done in OpenMP. Only when the input streams have no
more data, can the task finish. A taskgroup ends when all its
tasks have finished.

• Contrary to OpenMP which supports access to shared data,
any data accessed by a task must be either private or acquired
through the input streams of the task. The SPM defines specific
situations where global data can be accessed through a well-
defined interface.

4.2 Streaming execution model
An SPM program start executing serially as a single process. Upon
entering a taskgroup, tasks are created and the program starts pro-
cessing data in streams. Figure 8a shows a simple example, which
converts an input stream read from stdin to lower case, and then
writes the resulting stream to stdout. Figure 8b shows the scheme
of tasks built using the SPM pragmas. As can be observed in the
drawing, the taskgroup is used as a container for the annotated
tasks. Arrows represent streams along the direction in which data
circulates.

Observe that extra clauses are attached to the SPM task pragmas
to express data transfers through the streams. The clauses input and
output receive one variable for each input and output stream that
should be established, respectively. A task can receive input data
either from the taskgroup or from a previous task having the same
variable designated as output. A task can send output data either to
a subsequent task having the same variable designated as input, or
to the taskgroup. This way, the taskgroup itself is always used when
there is no previous or subsequent task having the corresponding
variable as output or input.

The SPM also supports the exploitation of data parallelism. In
the streaming context, this implies processing chunks of data taken
from streams in parallel. This is accomplished by replicating an

Task team

Output
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Output
port

Output
port

Input
port

Input
port

Input
port

Instance Instance Instance

State State State

kernel code

kernel code

kernel code

replicated

replicated

replicated

replicated

replicated

replicated

Figure 9. Representation of a team of tasks

SPM task into multiple instances (called a team), where each in-
stance processes a different set of input data chunks. Figure 9 rep-
resents the execution of a team consisting of three instances. Tasks
can have many inputs and many outputs. When splitting a task into
a team of instances, each input stream can be split so that data
chunks are distributed among the instances, or it can be replicated
so that all instances will receive all data chunks. The team con-
tribute to the output streams as a single task, where each output
chunk is generated by a single instance at every task iteration. The
runtime system implements this combined contribution by keeping
track of which instance is the leader at every iteration. See in Fig-
ure 9 how the complete kernel code (updating state and contribut-
ing output) is executed by a single instance at a time, while the
code needed only to update the state of each instance is executed in
a replicated way.

4.3 Front-end compiler and runtime library (ACOlib)
The transformations outlined above are implemented in the Mer-
curium C Compiler (2; 9), which is a source-to-source compiler,
generating C code. We use Mercurium to translate the full set of
SPM pragmas and clauses into calls to a runtime library which sup-
ports task and stream management. The resulting C output is then
compiled with GCC, and linked with the runtime library to obtain
the final binary file.

The initial approach for a runtime system in the ACOTES
project was to implement a simple library (ACOlib) supporting
the functionality needed for tasking and streams. We developed
an implementation of ACOlib for generic SMP environments, but
designed it in such a way that the library could also work with
possibly distributed memory architectures and local stores.

ACOlib supports streaming execution in SMP environments, as
shown in Figure 10a which depicts a snippet of the code generated
for the taskgroup example presented in Figure 8a. Observe how
two tasks are initialized, their ports created and connected, and then
they are started. The two tasks are alive while the taskgroup reads
characters from the file and sends them to Task 1. Figure 10b shows
the code resulting from the transformation of Task 1 of the same
example. This task reads characters from its input port, processes
them, and writes the result onto its output port. The task will remain
alive as long as there are characters available in its input stream.
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task_t task1;
task_init(&task1, task1_outline, 0);
task_t task2;
task_init(&task2, task2_outline, 0);
task_oport(task0, 0, sizeof(char), 1, 1);
task_iport(task1, 0, sizeof(char), 1, 0 + 1, (void *) 0, 0);
task_oport(task1, 1, sizeof(char), 1, 1);
task_iport(task2, 0, sizeof(char), 1, 0 + 1, (void *) 0, 0);
port_connect(task1, 1, task2, 0);
port_connect(task0, 0, task1, 0);
task_start(task1);
task_start(task2);
while (fread(&c, sizeof (c), 1, stdin)) {
   oport_acquire(0, 1);
   memcpy(oport_peek(0), &c, sizeof(char));
   oport_push(0, 1);
}
task_wait(task2);
task_wait(task1);

void task1_outline(task_t __task)
{
    trace_instance_begin();
    char c;
    iport_acquire(0, 1);
    oport_acquire(1, 1);
    while (task_allopen())
    {
           memcpy(&c, iport_peek(0), sizeof (char));
           if ('A' <= c && c <= 'Z')
                c = c  'A' + 'a';
           memcpy(oport_peek(1), &c, sizeof(char));
    
           iport_pop(0, 1);
           oport_push(1, 1);
           iport_acquire(0, 1);
           oport_acquire(1, 1);
    }
    task_close();
}

    a) Taskgroup                                                        b) Task 1

Figure 10. Code generated from the taskgroup example

4.4 Integration in OpenMP and GCC

In parallel to developing the full set of SPM pragmas and their
support by Mercurium and ACOlib, we developed an alternative
proposal suggesting a minimal extension (44) of the OpenMP3.0
standard (43). This approach leverages the knowledge of OpenMP
thereby improving the learning curve while preserving, to a certain
extent, the semantic of the SPM pragmas. The additional compiler
support required by this extension is implemented directly in GCC
and its runtime library libGOMP.

In order to provide stream programming support in OpenMP,
the minimal necessary extension is to allow the use of lastprivate
clauses on task constructs. This extension does not change the ex-
isting semantic of the lastprivate clause. The semantic of first-
private and lastprivate clauses is very close to SPM’s input and
output clauses. The firstprivate clause corresponds to data that is
consumed by the task (flows in), while the lastprivate clause cor-
responds to data that is produced by the task (flows out). The ex-
plicit knowledge about data flow between tasks helps the compiler’s
static analysis and facilitates generating stream communication be-
tween tasks.

To illustrate the OpenMP extension as well as the similarity
of this approach with the SPM, we propose in Figure 11 an im-
plementation of the example code of Figure 8a using OpenMP3.0
extended annotations. We implemented this support for streams in
GCC’s libGOMP runtime library (45), which also simplifies the
toolchain by removing the dependence on the source to source Mer-
curium C Compiler.

4.5 MSF: Multicore Streaming Framework
As described in subsection 4.3 above, the ACOlib runtime li-
brary developed to support tasks and streams was implemented
for generic SMP environments, i.e. with shared memory. In order
to apply our streaming framework to distributed memory archi-
tectures such as that of the Cell/B.E., we are making use of an
underlying Multicore Streaming Framework (MSF). On one hand,
MSF provides efficient support for code management, as the code
that the tasks execute is preloaded in advance of its execution. And
on the other hand, it provides efficient support for data transfers
between tasks, which may be running on the same or on different
processors, as well as with shared or distributed memory. The ab-
straction layer implementing such data transfers resembles that of
ACOlib, offering stream–based communication.

int main()
{

char c;
#pragma omp parallel

{
#pragma omp single

{
while (fread (&c, sizeof (c), 1, stdin))

{
#pragma omp task firstprivate (c) lastprivate (c)

if (’A’ <= c && c <= ’Z’)
c = c ’A’ + ’a’;

#pragma omp task firstprivate (c)
fwrite (&c, sizeof (c), 1, stdout);

}
}

}
return 0;

}

Figure 11. Implementation of the example of Figure 8a using
OpenMP extended annotations.

The use of MSF in ACOTES augments the general tool-chain of
ACOTES which starts with Mercurium translating SPM pragmas
into ACOlib calls. Instead, for the Cell/B.E., it makes direct use
of MSF facilities for setting up tasks in remote processors and
establishing stream communications among them. Furthermore,
MSF also provides the runtime management and scheduling of
task executions according to available data in the heterogenous and
distributed environment of the Cell/B.E.

MSF provides a generic programming model for parallel plat-
forms and an API for programming directly using its facilities. Al-
though its first implementation is on the Cell/B.E., MSF can be im-
plemented on any programmable platform. Tasks can be directed to
various processors based on their processing characteristics. On the
Cell/B.E the target processors are either PPEs or SPEs. The tasks
are then compiled by a back-end compiler that deals with standard
sequential code, and vectorization can be applied to achieve bet-
ter performance on the target processor. Once available on a spe-
cific platform the same front-end compilation techniques can be
performed independently of the underlined architecture. Using the
information provided by the ASM, applications can be optimized
for each platform by changing runtime parameters that are used by
MSF.

4.6 Silicon Hive’s ANSI-C Language Extensions,
underpinning SPM

The ACOTES Streaming Programming Model defines tasks and
blocking ports for communication between these tasks.

Silicon Hive, one of the ACOTES partners, already developed
and used an in-house C-compiler (HiveCC) prior to the project. In
the course of the project, Silicon Hive adapted HiveCC to the de-
veloping insights of the project, providing feedback to the other
partners. What was found during use of the blocking communica-
tion ports of ACOTES, was that synchronization (i.e. the blocking
behaviour) and data communication should take place at different
granularities. This allows the compiler to expose parallelism be-
tween communication and computation. The ANSI-C language ex-
tensions for synchronisation, as discussed below, were the result.
We show how these synchronisation mechanisms are being used
in the context of the gamma correction algorithm that was intro-
duced in Section 1.1. In this context, we will also make use of
other language extensions, such as: attributes, built-in types, func-
tion inlining, operator overloading, and register structures, as illus-
trated in Figure 12 (for reference, the unoptimized version, which
is used as an input to the ACOTES auto-vectorizer is shown in Fig-
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HIVE_TERNARY_OPERATOR( ?, OP_vec_mux
, tvec, tflags, tvec, tvec )

HIVE_BINARY_OPERATOR ( >>, OP_vec_asrrnd
, tvec, tvec, tvec )

HIVE_BINARY_CALL ( >, static inline, isp_vec_gt_c
, tflags, tvec, int )

#define LINESZV LINESZ/VECSZ
SYNC_WITH(0) tvec MEM(VMEM) inBuf[2*LINESZV];
SYNC_WITH(1) tvec MEM(VMEM) outBuf[2*LINESZV];
...

// Initialize correction coefficients:
int ta[SN]={...}, oa[SN]={...}, ga[SN]={...};
// double buffering; pre-fetch & sync with buf 1:
signal_inputFormatter() SYNC(0);
for( line=0; line<LINES_PER_FRAME; line++ ) {

int buf=line&1; // determine buffer
// double buffering; pre-fetch next line:
signal_inputFormatter() SYNC(0);
// double buffering; wait for current line:
wait_inputFormatter() SYNC(0);
for( c=0; c<LINESZV; c++ ) {

tvec x = inBuf[buf*LINESZV+c];
int t=thrh[0], o=offs[0], g=grad[0];
for( i=0; i<SN-1; i++ ) {

tflags flag = x>ta[i]; // overloaded ’>’
// overloaded vector ’?’ operator:
o = flag ? o : OP_vec_clone(oa[i+1]);
g = flag ? g : OP_vec_clone(ga[i+1]);
t = flag ? t : OP_vec_clone(ta[i+1]);

# pragma hivecc unroll
}
// overloaded vector ’>>’ operator:
outBuf[buf*LINESZV+c] = o+(x-t)*g>>SCALE;

# pragma hivecc unroll=6, pipelining=0
}
// Signal output buffer full, sync with output buf.
signal_DMA() SYNC(1);
// Wait until DMA finished previous line.
if(line) wait_DMA() SYNC(1);

}

Figure 12. Gamma-correction algorithm optimized with Silicon-
Hive’s SPM

ure 18). HiveCC supports several pragmas by which the program-
mer can steer the compiler to reveal parallelism. HiveCC also pro-
vides built-in preprocessor definitions which enable the program-
mer to develop code independent of the underlying system archi-
tecture.

Taken together, these language extensions are needed to effi-
ciently implement SPM on Silicon Hive processors.

Type attributes specify aspects of variables such as location, ac-
cess routes, and synchronization with volatile operations. Expres-
sion attributes allow the user to specify the relative timing of as-
sociated statements, aliasing relations between variables, and the
mapping of code on specific function units. MEM and SYNC WITH in
Figure 12 are example for such attributes. These define input/output
as mapped on a specific memory and with which side-effect state-
ments their accesses need to be synchronized.

Built-in Types allow HiveCC to generate non-ANSI-C opera-
tions on non-ANSI-C types. These types result from processors be-
ing defined with datapaths of arbitrary width (i.e. not restricted to
the widths of ANSI-C datatypes). The additional types are avail-
able as signed or unsigned integers of processor-defined width and
vectors with processor-defined numbers of elements and element
widths. If the associated operators have been overloaded (see be-
low), these types may be used in arithmetic expressions. In the
optimized gamma correction algorithm in Figure 12, pixel colour
components are mapped onto the vector type tvec. In the case of
ISP2300 this is a vector of 32 elements, each element being 16 bits
wide.

Custom Operations can be called as intrinsic functions, which is
needed when the overloading mechanism cannot distinguish opera-
tions based on signature alone. In fact, all operations defined on Sil-
icon Hive processors may be called as intrinsic functions. Besides
intrinsics for regular and custom operations, HiveCC also provides
a number of Pseudo Operations. These operations are interpreted
by the simulator, e.g. to print cycle counts on the simulation con-
sole.

Operator Overloading allows the programmer to assign normal
operator symbols to functions, including intrinsic functions for spe-
cific processor operators. HiveCC supports overloading of unary,
binary, ternary, and assignment signatures. The optimized Gamma
correction code provides three examples of overloading (see Fig-
ure 12). By applying overloading to inline functions, the program-
mer can develop machine-independent code without loss of perfor-
mance. This is illustrated in the following code example:

inline static tvec fmux(tvec c,tvec t,tvec e) {
# if HAS_mux

return( OP_mux(c,t,e) );
# else

return c?t:e;
}
HIVE_TERNARY_CALL(?,static,fmux,tvec,tvec,tvec,tvec)

Register Structures are an extension to the ANSI-C register
qualifier. By adding this qualifier to a newly defined type, the
programmer indicates that all elements of the type are to be mapped
onto registers.

In conclusion, the new synchronisation mechanism is needed
to allow data to be communicated at e.g. pixel granularity, while
synchronisation takes place at line granularity. This way, rather than
keeping all volatile loads and stores together, the programmer is
free to communicate data when it becomes available (streaming)
and the compiler is free to schedule the resulting loads and stores
within the constraints imposed by the synchronisation mechanism,
exposing maximal parallelism.

The other type attributes and built-in types are needed in this
context, because they allow the compiler to reason about the many
different non-ANSI-C datatypes that embedded processors may
support. Lastly, the overloading mechanism supports the program-
mer in reasoning about his code, which is particularly important
when communication and computation need to be alternated.

5. Compiler Middle-End and Loop-Level
Optimizations

Through the SPM, the programmer exposes much of the pipeline
and data parallelism in stream computations. The goal of the
ACOTES project is to minimize the burden of manually adapting a
stream computing program to a new architecture. This adaptation
is partly managed by the runtime system for the SPM, and partly
by the compiler middle-end. Program transformations are indeed
necessary to adjust the synchronization grain, and to tune the ex-
ploitation of the architecture’s memory hierarchy w.r.t. the temporal
and spatial locality of the streaming program. One typically splits
such transformations into task-level and loop-level optimizations.
Both address parallelism, locality and specialization, but generally
at different levels (the levels of the memory hierarchy and the lev-
els of parallelism in the target). In the following, we will focus on
the loop-level optimizations, although our design is extensible to
task-level optimizations such as static task pipelining, fusion and
blocking (26). Such an extension would require an adequate inter-
mediate representation of the task-level data flow; this is still work
in progress, based on Feautrier’s proposal to extend the polyhedral
representation to the full network of tasks (19). We will conclude
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this section with the study of some tradeoffs between the exploita-
tion of thread-level parallelism, fine-grain SIMD parallelism (e.g.,
vectors) and memory locality. Those tradeoffs are particularly im-
portant when optimizing a streaming application for multiple levels
of parallelism, and considering power efficiency and compute den-
sity metrics.

5.1 Loop-Nest Optimizations
Loop nest optimizations are important compiler transformations to
fully exploit the features of a given architecture. Current compiler
techniques using syntax-based representations and hard-wired pat-
tern matching techniques are not able to provide peak performance
on complex architectures and/or with multiple on-chip processing
units.

In order to enable long and/or complex sequences of program
transformations, we rely on a powerful algebraic program repre-
sentation called the polyhedral model, where a sequence of trans-
formations is represented as a single affine mapping function.

In scientific and engineering applications, most of the execution
time is spent in nested loops. The polyhedral model views a dy-
namic instance (iteration) of each program statement as an integer
point in a well defined subspace called polyhedron. Basing on this
representation a dependence graph is built, which represents depen-
dences among pairs of statement execution instances (iterations in
loops).

The polyhedral model is classically applicable to static control
parts (SCoP), that is loop nests in which the data access functions
and loop bounds are affine combinations of surrounding loop itera-
tion variables and global parameters.

Polyhedral representation of programs. Each dynamic instance
of a statement S is denoted by a pair (S, i), where i is iteration
vector which contains values for the loop indices of the surround-
ing loops, from outermost to innermost. If loop bounds are affine
expressions of outer loop indices and global parameters (usually,
symbolic constants representing problem size) then the set of all
iteration vectors around statement S might be represented by poly-
tope DS which is called iteration domain of the statement S. Let g
be the vector of global parameters. The iteration domain set DS is
defined by

DS =
˘
i | DS ×

`
i|g|1

´t ≥ 0
¯

Polyhedral dependences. Dependences in a SCoP are repre-
sented as a Dependence Graph (DG). DG is directed multigraph
DG = (V,E) where each vertex represent a statement and each
edge eSi→Sj ∈ E from Si to Sj represents a dependence polyhe-
dron from dynamic instance of Si to dynamic instance of Sj . The
dependence polyhedron is a subset of cartesian product of itera-
tion domains DSi and DSj . Dependence polyhedron for edge e is
denoted as Pe.

Access functions. For each statement S, we define two sets
WS and RS of (M, f) pairs, each pair representing a reference to
variable M being written or read in the statement S; f is the access
function mapping iterations in DS to memory locations in M. f
is a function of loop iterators and global parameters. The access
function f is defined by a matrix F such that

f(i) = F×
`
i|g|1

´t
.

Subscript function returns a vector whose dimensionality is equal
to the dimensionality of an array M .

Scheduling function. Iteration domains define exactly the set of
executed dynamic instances for each statement. However, this al-
gebraic structure does not describe the order in which each state-
ment instance has to be executed with respect to other statement
instances (46). A convenient way to express the execution order for
each statement instance is to give each instance an execution date.
It is obviously impractical to define all of them one by one since

the number of instances may be either very large or unknown at
compile time. An appropriate solution is to define, for each state-
ment S, a scheduling function θS mapping instances of S to mul-
tidimensional timestamps (vectors). For tractability reasons, we re-
strict these functions to be affine, and we will use matrix opera-
tions on homogeneous coordinates (additional dimension equal to
the constant 1) to represent affine functions. For the sake of trans-
formation composition or search space exploration (22), θS is often
broken into dedicated blocks: a matrix AS operating on iteration
vectors, a vector βS for static (multidimensional) statement order-
ing, and a matrix ΓS to parameterize the schedule and to model
pipelining:

ΘS =

26666666664

0 · · · 0 0 · · · 0 βS
0

AS
1,1 · · · AS

1,dS ΓS
1,1 · · · ΓS

1,dg 0

0 · · · 0 0 · · · 0 βS
1

AS
2,1 · · · AS

2,dS ΓS
2,1 · · · ΓS

2,dg 0
...

. . .
...

...
. . .

...
...

AS
dS ,1 · · · AS

dS ,dS ΓS
dS ,1 · · · ΓS

dS ,dg
0

0 · · · 0 0 · · · 0 βS
dS

37777777775

θS(iS) = ΘS ×

0@iS
g
1

1A
As an example we will consider the pseudocode in Figure 17a.

The loop kernel is composed of three statements: S1, S2 and S3.
The iteration domains for statements S1 and S2 are the following:

DS1 =

»
1 0 0 0
−1 1 0 −1

–
0 ≤ i
i ≤M − 1

DS2 =

264 1 0 0 0 0
−1 0 1 0 −1
0 1 0 0 0
0 −1 0 1 −1

375 0 ≤ i
i ≤M − 1
0 ≤ j
j ≤ K − 1

(domain for S3 is the same as domain for S2). Domain for state-
ment S1 has single iterator dimension (corresponding to iteration
variable i), and two parameter dimensions (corresponding to M and
K. Domain for statement S2 has two iterator dimensions (corre-
sponding to iteration variables i and j). There are no array data
access function for statement S1 because it does not access any
array. Data access functions for statement S2 are the following:

WS2 =
no

RS2 =

8<:
“
‖x‖,

ˆ
1 1 0 0 0

˜ ”
,“

‖c‖,
ˆ

0 1 0 0 0
˜ ”

9=; x[i+ j]
c[j]

There are no write accesses in statement S2, while there are two
read data accesses: one from array x and other from array c. Orig-
inal(corresponding to original input code) scheduling functions for
statement S1 and S2 are given:
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AS1 =
ˆ

1
˜

βS1 =
ˆ

0 0
˜t

ΓS1 =
ˆ

0 0
˜

i.e. ΘS1 =

24 0 0
1 0
0 0

35

AS2 =

»
1 0
0 1

–
βS2 =

ˆ
0 1 0

˜t
ΓS2 =

»
0 0
0 0

–

i.e. ΘS2 =

26664
0 0 0
1 0 0
0 0 1
0 1 0
0 0 0

37775
note that ΓS1 and ΓS2 are all zeros, since the schedule does not
depend on global parameters. AS1 and AS2 are identity matrices.

Program optimization in polyhedral model is usually done in
three steps: (1) static analysis of input program resulting in alge-
braic representation of static control loop nests and construction
of dependence graph, (2) transformations of polyhedral abstraction
(based on linear algebra and integer linear programming machin-
ery) without touching syntax representation of original program (3)
code generation (going back into syntax representation). Note that
step (3) is done only once: all the transformations (sequences) are
operating on polyhedral (algebraic) representation.

The following table lists the main loop transformations that we
can freely compose and parameterize in our framework; see Allen
and Kennedy’s book for reference on those transformations (1) and
Girbal et al. for details on the encoding and composition invariants
(22):

Transformation name Matrices involved
Interchange, skewing (unimodular) A
Strip-mining, tiling D, Θ
Pipelining (multidimensional) β
Parametric pipelining (multidimensional) Γ
Reversal (unimodular) A, Γ
Motion, fusion, fission (distribution) β
Privatization, contraction F

Considerable advances in dependence analysis, optimization
and parallelization heuristics, and code generation proved that
polyhedral model is scalable enough to be used in industrial tools.
Yet, the problem of devising the optimal transformation sequences
for optimizing locality and enabling parallelism is still a topic of
considerable research efforts.

There are two approaches to optimizing programs using polyhe-
dral model: static analytical modelling and iterative optimization.
The former builds an analytical model and tries to statically predict
the best possible loop transformation. Iterative optimization takes
a feedback-directed approach, building different versions of the in-
put program by applying different optimizations and choosing the
one that gives the best performance gains. Those two approaches
are complementary: analytical modelling can miss the best opti-
mization opportunity but it takes just a one pass to complete. On
contrary, iterative optimization might search for the best optimiza-
tion but the search space might be huge, taking many iterations to
complete, a challenge for its adoption in production compilers.

Our approach combines an analytical model and an iterative,
feedback-directed approach. We rely on the loop tiling framework
of Bondughula et al. (6), and on the associated tool Pluto, to ex-
tract blocked/tiled loop nests that exhibit one or more parallel loop
levels. This framework includes a heuristic to select the shapes of
the tiles, to maximize coarse grain parallelism while minimizing
communication. This heuristic happens to behave consistently well
on our benchmarks. However, another heuristic is proposed to deal
with the combinatorics of loop fusion/distribution, and this one is
not robust enough to achieve good performance on a wide variety of

benchmarks and on multiple architectures. We thus replaced the fu-
sion/distribution heuristic with an iterative search approach, build-
ing a search space of legal, unique transformations before looking
for a proper tiling scheme with Bondughula’s heuristic. The itera-
tive search is adapted from the more general technique of Pouchet
et al. (46), with new invariants enabling to focus the search space
to more relevant transformations (for the practicality of the itera-
tive search). Our results on 2 UTDSP and 2 BLAS2 benchmark
are reported in Figures 13, 14, 15, 16, considering two different
quad-core general-purpose processors. Those results demonstrate
(1) the potential of our loop-nest optimizer compared to the state-
of-the-art (Intel’s compiler), and (2) the wide performance differ-
ences among the different transformation sequences explored by
the iterative search method.
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Figure 13. RegDetect on Intel Q6600
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Figure 14. RegDetect on AMD Phenom 9850

5.2 Vectorization
Vectorization is the process of converting scalar source code into
code that operates on vectors of data elements, making use of
SIMD/vector instructions. Automatic vectorization by a compiler
typically focuses on loops, where occurrences of an instruction
across different loop iterations operate on different data elements.
It can be seen as a downstream stage of the loop nest optimizer,
where the selection of target-dependent instructions and access pat-
terns come into play. Vectorization is known to be one of the most
effective ways to exploit fine-grain data-level parallelism, and is
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especially important for streaming architectures because their pro-
cessing units typically contain vector (SIMD) units (see Section 7)
to take advantage of the abundant data-level parallelism available
in streaming applications (see Section 1.1). Vectorization has there-
fore been identified as one of the key compiler optimizations to be
addressed by the ACOTES project.

The auto-vectorizer available since GCC 4.0 (36) is capable of
vectorizing inner-most loops with memory references of unit or
power-of-two strides, that may or may not be aligned, and that
may include multiple data-types and type conversions, reductions,
and other special idioms. The two main enhancements that were
missing and were identified as important for the streaming domain
are a cost-model, and the capability to vectorize outer-loops. One
of the most important goals of the cost model, beyond facilitating
informed decision making by the vectorizer, was to be part of an
interface to exchange data and guidance with the high-level loop
optimizer. This is described in detail in Section 5.3. The rest of this
section focuses on the in-place outer-loop vectorization capability
we developed.

Outer loop vectorization refers to vectorizing a level of a loop
nest other than the inner-most, which can be beneficial if the outer
loop exhibits greater data-level parallelism and locality than the
inner-most loop. Figure 17c shows the result of vectorizing the
outer i loop of the loop nest in Figure 17a, assuming Vector Length
VL=4 and M divisible by 4. Notice that the innermost j loop contin-

ues to advance in steps of 1 (compared to 4 in the case of innermost
loop vectorization depicted in Figure 17b), computing 4 results for
4 successive i iterations simultaneously.

Outer-loops may have longer iteration counts, smaller strides,
more efficient computation constructs, lower initialization and fi-
nalization overheads than those in innermost loops, as well as
greater potential for promoting vector register reuse, thereby al-
lowing us to leverage the many vector-registers often available in
streaming architectures.

As mentioned above, data-streaming applications are charac-
terised by nested loops of SIMD-like computations. The high-level
data-reuse carried by the outer-loops in these loop nests can be de-
tected and exploited only if operating at the level of the outer-loop.
For this reason we have implemented an in-place vectorization ap-
proach that directly vectorizes the outer-loop (48; 53; 37; 35; 40;
42), instead of the traditional approach of interchanging an outer-
loop with the inner-most loop, followed by vectorizing it at the
inner-most position (1). The cost model we developed is capable
of guiding the compiler which of these two alternatives is expected
to be more profitable (as exaplined in the following Section).

Operating directly on the level of the outer-loop allows detect-
ing high-level data reuse opportunities that are carried by the outer-
loop, as well as fine grained data reuse opportunities related to the
handing of alignment. We developed an optimization tapping such
opportunities, incorporated within the outer-loop vectorizer. This
optimization detects situations in which the misalignment of a vec-
tor load in a nested inner-loop is not invariant in the inner-loop
(which happens e.g. if the inner-loop stride S is smaller than the
Vector Length (VL)), yet the different misalignments across consec-
utive inner-loop iterations repeat themselves to form a cyclic group
of VL/S distinct misalignments (if S evenly divides VL). This is the
case in the example in Figure 17c where S=1 and VL=4. In this case
we can achieve fixed misalignment by unrolling the inner-loop by
VL/S. Fixed misalignment across iterations can be vectorized much
more efficiently, as the misalignment (and in turn, the permutation
masks to extract the desired data) can be computed once before
the loop (instead of in each iteration). Moreover, each such cyclic
group of loads exhibits a high rate of overlap in the data that is
being fetched, and can be optimized by removing redundant loads
from the unrolled iteration.

Note, however, that such unrolling may result in high regis-
ter pressure, which on some architectures may result in register
spilling, incurring high overhead that masks away the above ben-
efits. For this reason, depending on the required unrolling factor,
this optimization may not be suitable for architectures with too few
vector registers, but is especially appropriate for streaming archi-
tectures, that often include a relatively large number of vector reg-
isters (e.g. 128 on the Cell SPE).

We evaluated these techniques on a set of multimedia bench-
marks. Our implementation of in-place outer-loop vectorization,
achieves speedup factors of 2.92x on average across this set of
benchmarks, compared to 1.21x achieved by innermost loop vec-
torization. Outer-loop vectorization provides superior speedups for
most benchmarks due to smaller strides and/or larger outer-loop-
counts than those in the inner-loop, and/or by avoiding a reduction-
epilog penalty. The optimization for fixed misalignment and data
reuse using unrolling is capable of further boosting the performance
obtained by outer-loop vectorization, to achieve an average speedup
factor of 4.98× (for detailed results see (42)).

These techniques are also applicable to the main computa-
tion kernels in the streaming applications described in Section 1,
namely H.264 and Gamma-correction (in FMradio the inner-most
loops are the best choice for vectorization).

Gamma correction. The complete gamma-correction algorithm
we used for this evaluation is shown in Figure 18. As the reader
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for (i=0; i<M; i++){
S1: s = 0

for (j=0; j<K; j++){
S2: s += x[i+j] * c[j]

}
S3: y[i] = s

}

(a) Scalar

for (i=0; i<M; i++){
vs[0:3] = {0,0,0,0}
for (vj=0; vj<K; vj+=4){
vc = c[vj:vj+3]
vs[0:3] += x[i+vj:i+vj+3] * vc

}
y[i] = sum(vs[0:3])

}

(b) Inner-loop vectorized

for (vi=0; vi<M; vi+=4){
vs[0:3] = {0,0,0,0}
for (j=0; j<K; j++){
vc = {c[j],c[j],c[j],c[j]}
vs[0:3] += x[vi+j:vi+3+j] * vc

}
vy[vi:vi+3] = vs[0:3]

}

(c) Outer-loop vectorized

Figure 17. FIR-filter Vectorization

volatile int inBuf[LINESZ]; // global arrays
volatile int outBuf[LINESZ];
...

// Initialize correction coefficients:
int ta[SN]={...}, oa[SN]={...}, ga[SN]={...};
for( line=0; line<LINES_PER_FRAME; line++ ) {

signal_inputFormatter(); // Line buffer empty
wait_inputFormatter(); // Processor stalled,
// until line buffer is full.
for( c=0; c<LINESZ; c++ ) {

int x = inBuf[c];
int t=thrh[0], o=offs[0], g=grad[0];
// Search for correction interval:
for( i=0; i<SN-1; i++ ) {

int flag = x>ta[i];
// Found interval; set pixel coeffs:
o = flag ? o : oa[i+1];
g = flag ? g : ga[i+1];
t = flag ? t : ta[i+1]; }

// Calculate output:
outBuf[c] = o + asrrnd((x-t)*g,SCALE );}

// Line output buffer full; Signal&wait for DMA.
signal_DMA();
wait_DMA(); } // Stalled until DMA is ready.

Figure 18. gamma-correction algorithm

will have noticed, the algorithm continues searching after the inter-
val has been found, but will no longer update the three coefficients.
Thus, the algorithm is predictable and more amenable to vectoriza-
tion. Vectorizing the outer-loop that scans over pixels in a row (the
c loop), is most effectively done when the inner-most loop (that
searches through the array of thresholds, i loop in the Figure) is
completely unrolled (this means that the pixel-loop becomes the
inner-most loop in the nest, and so regular inner-loop vectorization
can be applied), achieveing an improvement factor of 1.81x/10.15x
over the sequential version on PowerPC970/Cell-SPU respectively.
The super-linear speedup on the Cell-SPU (the Vectorization Fac-
tor is 4) is due to the heavy penalty for branches on the SPU (which
the vectorizer converts into conditional vector operations) and the
data-rotate overhead for operating on scalar data in vector regis-
ters (which is avoided when the code is vectorized). Outer-loop
vectorization can be used if the inner-most loop is not completely
unrolled, e.g. if its loop-count is unknown at compile time or too
large to completely unroll. In the particular case at hand however
the inner-most loop-count (SN − 1) is a compile-time known con-
stant 3.

As a point of comparison, we note that these optimizations
can be expressed using Silicon Hive’s SPM (as described in Sec-
tion 4.6). A manually optimized implementation of gamma cor-
rection for the ISP2300 is shown in Figure 12. It applies these
optimizations (vectorization, loop unrolling) and others (software
pipelining with double buffering and explicit synchronization)
achieves a 200-fold acceleration, bringing performance up to 0.76

cycles/pixel. Vectorization is expressed using overloaded compar-
ison and conditional operators and by making the pixel loop it-
erate over vectors of pixels rather than a single pixel, achieving
a 30× improvement factor - close to the theoretical speedup fac-
tor V F = 32. While the data-level parallelism exploited by the
compiler using GCC auto-vectorization is comparable to the one
achieved manually using Silicon Hive’s SPM, the other optimiza-
tions that the latter applies are not yet supported by the ACOTES
toolchain. In gamma-correction these further increase data-level
parallelism by a factor of 3 on the ISP2300.

H.264. The main computation kernel in H.264 consists of two
modes: vertical and horizontal. The first mode, has a consecu-
tive access-pattern in the inner-most loop, and an outer-loop that
scans through different rows. Here only inner-loop vecorization is
applicable, and it obtains a 5.2× to 7.6× performance improve-
ment on PowerPC970/Cell-SPU respectively. The second mode
has a consecutive access-pattern in the outer-loop and a row-size
stride in the inner-loop. In-place outer-loop vectorization is ap-
plied here and achieves a 10× to 11× performance improvement
on PowerPC970/Cell-SPU respectively. The alternative of first in-
terchanging the two loops in the nest and then applying inner-
loop vectorization (rather than vectorizing the outer-loop in-place)
achieves a speedup of 6.8× to 11× on PowerPC970/Cell-SPU. In-
place outer-loop vectorization is better on PowerPC970 than the
interchange based approach due to improved locality (which the
Cell-SPU is less sensitive to as it does not have a cache). Reason-
ing about such tradeoffs and selecting between these alternatives is
the role of the cost-model, which is discussed in more detail in the
next section.

5.3 Interaction Between Loop-Nest Optimizations and
Vectorization

Vectorization involves low-level, target-specific considerations and
transformations, which currently exclude it from being part of the
polyhedral framework. In this section, we make a first step in this
direction, building a performance model for automatic vectoriza-
tion that integrates seamlessly within the polyhedral representa-
tion. Figure 19 summarizes this integration step in the context of
the GCC compilation flow. We address a key adaptation problem
when porting a streaming application to a new target architecture;
it facilitates educated decision making on how to best apply loop
transformations while considering the subsequent effects of vector-
ization.

To profitably apply vectorization to a loop-nest, an intelligent
decision needs to be made as there are often several alternatives to
choose from, each with its associated positive or negative perfor-
mance gain. One such default alternative is to keep the original,
unvectorized code. Several key costs impact the expected perfor-
mance of vectorized code, including: strides of accesses to mem-
ory, loop trip counts, reduction operations across loops and more.
These factors depend on the loop form being vectorized, however,
and must be adapted if certain loop transformations are applied to
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Figure 19. GCC compilation flow

the loop nest. Here we describe how to integrate these factors into
the polyhedral model, thereby adapting them seamlessly as dif-
ferent loop transformations are being considered (without explic-
itly transforming the code), facilitating efficient application of both
loop transformations and vectorization.

The underlying assumption of vectorization is that the kernel of
a loop usually executes faster if vectorized than if not, but that as-
sociated overheads may hinder the vectorized version, diminishing
its speedup compared to the original scalar version, and more so for
loops that iterate a small number of times. Indeed, if the number N
of iterations of a loop is smaller than its vectorization factor VF,
there is no potential for speeding it up using vectorization; on the
contrary, vectorizing such a loop may only slow down its execu-
tion due to additional preparatory actions and checks. Furthermore,
even if N is larger than VF, the number of iterations of the vec-
torized loop, although positive, may not suffice to out-weigh the
overheads incurred by vectorization.

Alongside each transformation, the cost for individual statement
is updated. We can iteratively perform different transformations in
polyhedral model by changing schedule θS for each statement S
and computing the cost function of the new schedule. At the end
we pick the best possible schedule, based on the minimal cost.

In a classical polyhedral framework, access functions for array
references are represented as affine expressions. One may compose
this subscript function with static knowledge about the data layout
of an array. For each array reference, one may form a linearized
memory access function `, capturing the stream of memory access
locations as function of the iteration vector:

`(i) = b+ (Li|Lg|ω)×
`
i|g|1

´t
= b+ Lii + Lgg + ω

where b is the base address of the array and (Li|Lg|ω) is the vec-
tor of coefficients that encodes the layout information for data ar-
ray(assuming row-major data layout). b is typically not known at
compilation time; nevertheless, the most relevant property of b (for
our purpose) is its alignment modulo the vector size, which is gen-
erally available from language and malloc alignment guarantees.
It is crucial for computing the cost of vectorized data load/store
instructions, which constitutes the majority of the vectorizer over-
head.

After applying the schedule transformation, the new time-stamp
vector is expressed as follows (we ignore β vector component of the
schedule for the purpose of data access modelling):

s = (A|Γ)× (i|g)t = Ai + Γg

thus, original iteration vector i is given by:

i = A−1(s− Γg)

which gives us the new, transformed linearized access function:

`′(s) = b+ LiA−1s + (Lg − LiA−1Γ)g + ω

with a new vector of coefficients:

L′ = (LiA−1|Lg − LiA−1Γ|ω)

This shows that linearized access functions, on which the total
vectorization cost depends, is transformed automatically with the
scheduling transformations. Thus, we do not need to generate code
in order to compute the vectorization cost after applying a set of
loop transformations – the vectorization cost is the direct function
of scheduling matrix. For the rest of presentation we focus on Li

part of the linearized access function coefficient vector.
Cost model is based on modelling the vectorization cost per

statement, given its modified iteration domainDS and θS . The cost
function for statement S is the following:

cvec(S, dv) =
|DS |
V F

(
X

cvect instr) +X
m∈(WS)

(fa +
|DS |
V F

(cvect store + fm)) +

X
m∈(RS)

(fa +
|DS |
V F

(cvect load + fs + fm))

Where |DS | is the total number of iterations for statement S
(taking into the account all the nested loops around the statement
S). VF is the vectorization factor, whereas dv represents the depth
of the loop meant for vectorization. It is implicitly assumed, that
function depends on modified iteration domainDS and θS (through
the change of linearized access function).

Given the desired loop level d we can extract the stride δ of
memory access with respect to that loop by simply looking at
element d of Li vector:

δd = Li
d

stride at the vectorized loop level is obtained by taking the relevant
element from linearized access function and multiplying it by VF:

δdv = Li
dv ·VF

Factor fs considers the penalty of load1 instructions accessing
memory addresses with a stride across the loop being vectorized.
Typically, unit-strided (i.e. consecutive) accesses to memory are
supported most efficiently by vector loads and stores, incurring
minimal if any overhead. However, accesses to non-unit strided
addresses may require additional data unpack or pack operations,
following or preceding vector load or store instructions, respec-
tively (41). For example, V F scalar accesses to memory addresses
with stride δdv across the loop being vectorized may require δdv

vector loads (each with cost c1), followed by δdv − 1 vector ex-
tract odd or extract even instructions (each with cost c2), to produce
one vector holding the desired V F elements. On the other hand, if
several accesses to the same address are vectorized together (i.e.
δdv = 0), a vector “splat” instruction is often required to propa-
gate the loaded value across all elements of a vector (with cost c0).
Equation 1 shows how factor fs is computed as a function of the
stride δdv .

fs =

8<: δdv = 0 : c0
δdv = 1 : 0
δdv > 1 : δdv · c1 + (δdv − 1) · c2

9=; (1)

1 Storing vectors with strided access is not yet implemented in current GCC
vectorizer.
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Factor fa considers the alignment of loads and stores. Typically,
accesses to memory addresses that are aligned on V F -element-
boundaries are supported very efficiently, whereas other accesses
may require loading two aligned vectors from which the desired
unaligned V F elements are extracted (for loading) or inserted (for
storing).

This alignment overhead may be reduced considerably if the
stride δ of memory addresses accessed across loop levels dv+1..dS

is a multiple of V F , since the misalignment remains constant inside
the vectorized loop. If this is the case there is the opportunity to
reuse loaded vectors and use invariant extraction masks. By having
the transformed linearized access function:

`(i) = b+ Li
1i1 + . . .+ Li

dv idv + · · ·+ Li
dS idS + Lgg + ω

it is easy to check if misalignment inside the vectorized loop re-
mains constant – the coefficients from Li

dv+1 to Li
dS (correspond-

ing to strides of all inner loops of the vectorized loop) have to be a
multiple of V F .

If the misalignment is constant inside the vectorized loop we
also check if the base address which is accessed on each first
iteration of the vectorized loop (dv) is known to be aligned on V F -
element-boundary; if so then there is no need for re-aligning any
data: fa = 0. This is done by considering strides across outer-
loops (enclosing the vectorized loop, if exist), and initial alignment
properties such as array alignment. In order to check the alignment
in outer loops, we need to check if coefficients from Li

1 to Li
dv−1

are multiple of V F .
By putting together all considerations for alignment, cost can be

modelled as:

fa =

8>><>>:
aligned : 0
var. misalign. : |DS |(c1 + c3 + c4)
fixed misalign. : |DS

1..dv−1|(c1 + c3)+
|DS |(c1 + c4)

9>>=>>; (2)

where c3 represents the cost of building a mask based on the
misalignment amount, c4 is representing the cost of extraction or
insertion and c1 is the vector load cost. |DS

1..dv−1| denotes the
number of iterations around the vectorizer loop level.

The vectorization factor V F of a loop is determined according
to the size of the underlying vector registers and the smallest data-
type size of variables appearing inside the loop. Each individual
vector register will thus be able to hold V F variables of this small
size. However, if there are variables in the loop of larger size,
storing V F copies of them will require multiple vector registers,
which in turn implies that the associated instructions need to be
replicated. Factor fm records the extra overhead that is associated
with this replication.

Additional factors that depend on the specific machine re-
sources available may also impact the performance of vectoriza-
tion, such as the size of register files, available ILP, and complex
vector instructions.

By taking an example kernel in Figure 17 the linearized access
function for arrays x and c are as follows:

`x(i) = b+ ( 1 1 0 0 ω )×
`
i|g|1

´t
`c(i) = b+ ( 0 1 0 0 ω )×

`
i|g|1

´t
After applying loop interchange transformation by having the in-
terchange matrix as follows:

A′S2 =

»
0 1
1 0

–
the new access functions would become as follows:

`′x(i) = b+ ( 1 1 0 0 ω )×
`
i|g|1

´t

`′c(i) = b+ ( 1 0 0 0 ω )×
`
i|g|1

´t
Notice that strides has changed. If we choose to vectorize the in-
nermost loop, before the transformation, the access stride in matrix
c with respect to the vectorized loop was 1, while after the loop
interchange, the stride with respect to the vectorized loop is 0. The
cost function is updated accordingly

By applying different loop interchange transformations and
choosing different loops to vectorize, the performance of the re-
sulting vectorization varies considerably. Our model was able to
predict the best possible combination of loop interchange and
outer/inner vectorization strategy.

We evaluated our approach by introducing our model into the
polyhedral framework of GCC2, and comparing its performance
estimates for different loop interchanges and vectorization alterna-
tives against actual execution runs of a set of benchmarks. The set
of benchmarks includes a rate 2 interpolation (interp), block finite
impulse response filter (bkfir), an 8 × 8 discrete cosine transform
for image compression (dct (33)), 2D-convolution by 3 × 3 filters
for edge detection (conv), a kernel from H.264 (H264), video image
dissolve (dissolve), weight-update for neural-nets training (alvinn)
and a 16 × 16 matrix-matrix multiply (MMM) (including a trans-
posed version MMM trans).

On the SPU, in all but one case (alvinn) the model correctly
predicted the best vectorization technique. Using the cost-model
driven approach, we obtain an average speedup of 3.5x over the
scalar version, which is an improvement of 36% over the optimized
in-place outer-loop vectorization technique, and 2.3x times better
than the innermost vectorization approach, on average.

On the PPC970, the cost model mispredicts in 3 cases (interp,
bkfir and alvinn). The Overall speedup obtained by the cost-model
driven approach is 2.9x over the scalar version, an improvement
of 50% over outer-opt, and 2.3x times better than innermost loop
vectorization, on average.

Incorporating the vectorizer into the polyhedral framework is
still work in progress, and not fully automated. Until auto vectoriza-
tion is fully integrated into the polyhedral interface, the vectorizer
provides information to the high level loop optimizer via an inter-
face which exports its analysis utilities, and allows the high level
loop optimizer to query which loops could/would be vectorized,
thereby improving the effectiveness of the high level loop optimiza-
tion heuristics, and has the potential of speeding up the exploration
of loop transformations. The following utilities were identified as
useful to assist the high level optimizer to pick the right loops to
optimize for vectorization:

1. given a loop, return whether the loop is vectorizable or not;

2. given a loop, return iteration count threshold for profitable
vectorization;

3. given a loop and an associated number of iterations, return
performance impact from vectorizing the loop.

This API is meant to assist the high level loop optimizer when
strip-mining/coarsening loops for the auto parallelizer vs. the auto
vectorizer. It is implemented in GCC, and is available to be used by
passes outside vectorization.

6. Compiler Back-End
This section describes the last stage of the ACOTES tool-chain,
involving compiler back-ends and code generation for the rele-
vant streaming platforms considered, including the runtime support
of these platforms. Previous sections described uniform, largely

2 Graphite, http://gcc.gnu.org/wiki/Graphite
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target-independent stages of the ACOTES tool-chain, from pro-
gramming model and programmer annotations, through high-level
transformations and down to low-level transformations using GCC.
From this point several alternatives were considered, to support
code generation for the different streaming targets provided by the
partners.

6.1 Common Compiler Backend Format
In order to increase the amount of sharing among the partners,
we studied the suitability of adopting common compiler back-end
formats. Several candidates existed for this purpose. A natural one
was the GCC RTL format, since GCC4 is already used as the basis
for the higher level parts of the project.

Indeed for one platform, namely the Cell Broadband Engine,
the native GCC RTL format was employed. The GNU tool-chain
served the development of the Cell processor from its early ar-
chitecture exploration and programming environment creation (17;
52), and so GCC already provided the ability to generate code for
both the PPE (PowerPC Engine) and the SPE’s (Synergistic Pro-
cessing Engines) of Cell. Additional enhancements were developed
to improve auto-vectorization and other transformations for Cell,
that are needed in order to program and compile streaming appli-
cations effectively (47).

Alternatively, we considered the suitability of higher level for-
mats, such as the Java bytecode or the Low Level Virtual Machine
(LLVM) (32). Finally, the ECMA-335 Common Language Infras-
tructure (CLI) standard (13), at the basis of the well known Mi-
crosoft .NET technology, was seriously considered. The motiva-
tions were multiple: first of all it is an open standard, providing
a clear separation between multiple compiler front-ends produc-
ing CLI, and multiple CLI consumers, providing therefore a nat-
ural support for multiple ISA mapping; secondly, it supports the
semantics of multiple languages, including C, which is used for
our project. And finally, thanks to Microsoft, it is a widely adopted
technology, with growing interest also in the open source commu-
nity, as indicated by the Mono (39), DotGNU Portable.NET (49) or
ILDJIT (7) projects.

The outcome of the investigation (10) is that GCC RTL is indeed
confirmed as a natural candidate as compiler back-end format. For
what concerns the high-level processor-independent formats, the
characteristics of CLI bytecode and data representation, make it an
excellent choice for ACOTES: the framework has been standard-
ized by two different entities, ECMA and ISO, and is stable. It can
be used as a processor independent format or can be specialized
for a particular target. Additional information can be added to the
code, variables and types to drive further optimizations. Finally it
supports both managed and unmanaged environments.

In order to exploit the GCC4-based developments of other part-
ners and to share visibility on this format within the project, STMi-
croelectronics developed a GCC4 to CLI translator (11; 51). We
leveraged from existing efforts in this direction by the open source
community that we consolidated and complemented by adding the
streaming information. This translator is free software.

6.2 Split Compilation
Split (or multi staged) compilation refers to the fact that the com-
pilation process may be decomposed into several steps. In our con-
text, the first step occurs on the workstation of the developer. It
takes C code as input and generates a program representation in
CLI format. The second step occurs on the final device where the
application is run. It reads the CLI format and generates the native
binary format. This latter step can be designed to run at install-time
or at run-time, depending on the system.

We proposed to take advantage of this two-step situation to
transfer the complexity of compiler optimizations as much as pos-

sible to the first stage. When an optimization cannot be applied —
either because it is target-dependent, or because it may increase
code size too much, or because it is too costly to be applied at run-
time — it might still be considered: an analysis can be run and its
results encoded into annotations embedded in the intermediate for-
mat. The second stage can rely on the annotations and skip expen-
sive analysis to implement straightforward code transformations.
Annotations may also express the hardware requirements or char-
acteristics of a piece of code (I/O required, benefits from hardware
floating point support, etc.)

This multi stage process makes it possible to apply to embedded
systems the most recent aggressive techniques like iterative compi-
lation (5) or transformation in the polyhedral model (22).

7. Target Streaming Platforms
The ACOTES project targets four streaming platforms. Of these
four, two (the Cell B.E. and the HiveFlex ISP2300) are in produc-
tion, while the other two (the exSTream and the Ne-XVP) are in
the design stage.

7.1 Cell B.E.
The Cell/B.E. (16) is a heterogeneous multicore processor that con-
sists of an IBM 64-bit Power Architecture core, called the IBM
PowerPC processor element (PPE), augmented by eight special-
ized single-instruction, multiple-data (SIMD) coprocessors (See
Figure 6(a)). These coprocessors, called synergistic processor el-
ements (SPEs) (15), provide data-intensive processing. The SPE
accelerators operate from a local storage that contains instructions
and data for a single SPE; this is the only memory directly accessi-
ble from the SPE. Memory access is performed via a DMA-based
interface using copy-in/copy-out semantics.

The PPE is fully compliant with the 64-bit PowerPC Archi-
tecture and can run 32-bit and 64-bit operating systems and ap-
plications. The SPEs are independent processors, each running its
own individual application programs that are loaded by the ap-
plication that runs on the PPE. The SPEs depend on the PPE to
run the operating system, and, in many cases, the top-level con-
trol thread of an application. The PPE depends on the SPEs to
provide the bulk of the application performance. The SPEs are de-
signed to be programmed in high-level languages and support a rich
instruction set that includes extensive single-instruction, multiple-
data (SIMD) functionality. However, just like conventional proces-
sors with SIMD extensions, use of SIMD data types is preferred,
not mandatory.

The PPE and the SPEs are compiled separately by different
back-end compilers and then linked together to compose an appli-
cation. CELL/B.E. introduces multilevel parallelism, which users
must exploit to gain the best performance. The lower level is the
SPE level in which vectorization of inner and then outer loops
should be explored. The higher level is functional parallelism level
that should enable to distribute the processing between several
SPEs.

A first step towards enabling auto-vectorization for the Cell
is to model the SPE registers and instructions as vector registers
and instructions in the compiler. In GCC this is done in special
machine-description files in the GCC port for the Cell SPE. Once
this model is in place the existing auto-vectorization capabilities of
the compiler are transparently enabled.

7.2 Ne-XVP architecture from NXP semiconductors
The Ne-XVP (Nexperia eXtreme Video - or Versatile- Processor)
architecture from NXP Semiconductors Research allows to get high
silicon efficiency and low power for streaming applications like
video processing (video encoding and decoding, frame rate con-
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version, image improvement), while keeping a high level of adap-
tation to algorithmic change and application diversity. It is there-
fore a scalable architecture based on duplication of programmable
or not - cores sharing a common memory structure. The right se-
lection of the characteristics of the cores allows getting a very high
efficiency tuned for each application domain while keeping a low
cost of ownership by reducing the verification and validation costs,
and reusing common module elements.

multi-core approach is well represented now in the industry: the
clock race has reached its limits and the era of multi-core is com-
ing. But contrary to the typical approach for multicores (heteroge-
neous), the Ne-XVP architecture uses in a better way the available
silicon, starting from the observation that existing cores are opti-
mized for single core environment, and not for multicore. An opti-
mum is better reached when the optimization is done globally than
by adding separately optimized elements (at least for non linear
systems, which is typically the case of the Design Space of archi-
tectures). But, or course, the elementary cores still should be very
efficient for the application domain. It is why the architecture uses
a VLIW architecture, well suited for embedded applications, and
mainly the architecture which was optimized for years for video
processing in Philips then NXP: the TriMedia Instruction Set Ar-
chitecture (ISA).

At the core level, Ne-XVP is not making a new architecture
from the TriMedia ISA, it only plays with the standard architecture
parameters such as the number of issue slots, the number of regis-
ters, the composition and number of Functional Units and the size
of data and instruction cache. The main change is the support for
multi-threading in cores, by adding extra registers banks and min-
imum logics, allowing a fast context switch in a core. It enables a
single physical core to look like several cores from a software or
application view. The reason of adding multi-threading to cores is
two fold:

• It eased the software and the port of applications: a multi-
threaded application can work either in different cores, or on
a single core, so the number of threads is virtualized. A multi-
threaded application can work on different instances of the Ne-
XVP architecture that physically differs by their number of
cores.

• Multithreading makes each core more insensitive to latency:
if a thread is waiting due to a cache miss or latency due to a
functional unit, then another task might kick in, increasing the
use of the core. Even if multithreading adds complexity to the
cores, it allows also to decrease the requirements of some part
of the cores (latency, bypass, etc), globally adding a very small
area.

To reach the high level of Mops/W, the Ne-XVP will then use
the maximum parallelism, but not all parts of applications can
be parallelized. This is the well-known Amdhal’s law: it is the
irremovable sequential part of the application that will limit the
ultimate performance of the architecture on a particular application.
Therefore, the architecture has a part that runs fast to execute the
sequential part of the application.

This fact leads to a heterogeneous approach, where a core is
optimized for sequential tasks while others can work as pool for
parallel operations. It should be noted that increasing the different
type of cores beyond two did not really bring further improvement.
More details can be found in (29) .

The specialization and efficiency of the types of core can also be
increased by adding specific instructions (custom-ops in TriMedia
terminology). The instructions can of course be implemented in a
specific functional unit in the cores (if they are simple), or be shared
by different cores, leading to embedding specific coprocessors in
the array of cores, depending on the complexity and granularity of

the function. This approach is taken in the Ne-XVP approach for
the CABAC coprocessor and for coprocessors helping for the task
managements and memory coherency. From a point of view of cost
of development, rather complex functions are shared (-co-joining-)
and therefore integrated as specific coprocessor, because it will not
impact the design and verification of each cores, which is always
tricky and expensive.

The resources are also tuned to the characteristics of the applica-
tion domains. For example, the coherence is only required at certain
particular points (communication between tasks, end of tasks, etc),
which allows to implement a coherence mechanism that has a very
light footprint.

To ease the scalability to various size of video picture, data par-
titioning is often used to parallelize applications. The hardware task
scheduler accelerator takes benefit of this and dispatches the tasks
to the available cores, allowing a same binary code to be executed
without modification on different instances of the Ne-XVP archi-
tecture with various numbers of cores. Data partitioning also permit
the co-joining of instruction caches, reducing the silicon footprint
of the system.

All those considerations led to the Ne-XVP architecture tem-
plate in Figure 20 . The architecture is composed of several cores
of two types – core1 and core2. The first type optimized for se-
quential code execution is instantiated only once to address the
Amdahl’s law bottleneck, whereas the second type is replicated
many times to carry out the parallel workload. Each core, mul-
tithreaded, has a data and instruction cache, where the latter can
be shared among several cores. Hardware Coherence Coprocessors
maintain data cache coherence in hardware, which also governs
the cache2cache tunnels. The Synchronization unit features vari-
ous hardware accelerators (Hardware Synchronization Unit, Hard-
ware Task Scheduler (21), Task Scheduling Unit) for fast inter-task
synchronization and communication, which may be deployed inde-
pendently of each other.

Figure 20. Ne-XVP architecture.

Compared to a simple multicore system based on standard “off-
the-shelf” TriMedia TM3270 with 128KB data cache, 64KB in-
struction cache, 5 issue slots, 128 registers, without multithreading
and coprocessors, the Ne-XVP architecture is 16 times more effi-
cient in silicon area (and power) for applications such as H.264 de-
coding in CMOS 45nm technology. Special Architecture Features
Targeting Selected Applications The Ne-XVP architecture has a
large versatility concerning its programming model. The software
can see the Ne-XVP hardware like:

• A common address space architecture. The Hardware Coher-
ence Coprocessor ensures the coherence of the various versions
of the data in different caches,

• A distributed memory architecture. Physically, the L1 caches
are distributed, and cache-to-cache communications are done
by the configurable tunnels.
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• A data driven model: The Hardware Task Scheduler allows
activating the various threads running on the cores only when
data are ready and available.

• A multi-threaded architecture: the HTS and the cores allow im-
plementing a model similar to the ”Cell superscalar” (CellSs).

• A streaming architecture: the typical Push, Pop, Peak, Sneak
functions can be efficiently emulated with the standard Ne-XVP
instructions.

Several streaming applications were used in the definition of the
Ne-XVP architecture; more particularly image processing func-
tions, codec functions (H.264 at standard and Super-HD resolu-
tion), image enhancement and 3D Graphics.

For streaming applications mainly composed of a succession of
kernels, Ne-XVP can be nearly as efficient as dedicated hardware:
each kernel can be mapped on a core, and each core can be self-
sufficient, running only with its internal local memory and regis-
ters. For the more complex applications, like H.264 super-HD, Ne-
XVP allows to easily implement various thread level parallelisms.
It could be semi-static, where the compiler does not have to guess
the dependencies, which are checked at run-time by the Hardware
Task Scheduler. The experiments show that performance is increas-
ing quasi proportionally with the number of cores. The program-
ming model is facilitated by the shared memory architecture, which
makes it easier for programmers familiar to C or C++ program-
ming language.

For the ACOTES compiler chain, its various elements are exer-
cised to efficiently use the Ne-XVP architecture: the SMP allows
dispatching tasks on different cores (or hardware threads in a core).
The communication scheme of ACOTES allows to totally use the
efficiency of the Hardware Coherence Coprocessor, requesting co-
herence only when it is required. Correct placement (linked to the
ASM) allows minimizing the inter-core communication and keeps
busy the tunnel units. Finally, the cores, based on the TriMedia
VLIW Instruction Set Architecture, benefit from the loop and vec-
tor processing improvement of the ACOTES GCC compiler chain.
The ACOlib library can also use the hardware mechanisms imple-
mented in the various coprocessors to efficiently support the appli-
cation.

7.3 xSTream architecture from STMicroelectronics
The STMicroelectronics xSTream architecture is based on the con-
vergence of communication and computing as a way to solve scal-
ability and programmability of high-performance embedded func-
tionalities, such as graphics, multimedia and radio subsystems. In
addition it addresses some of the increasingly challenging design
and silicon fabrication issues at the architecture, micro-architecture
and design levels through the use of advanced techniques such as
voltage and frequency scaling (via a globally asynchronous locally
synchronous model, GALS), local clock generators adapted to lo-
cal silicon process variations (to increase yield and fault tolerance),
skew insensitive design (via mesochronous and delay insensitive
network on chip links) and use of regular cell design flows (for sil-
icon manufacturability).

Figure 21 illustrates a high-level view of a complete system
embedding an instance of the xSTream processor fabric.

The system is composed of the traditional “host processing” part
on the left side, which we have depicted as a Symmetric Multipro-
cessing (SMP) subsystem for future scalability, while the entity on
the top-right end of the picture above is the ’streaming engine’ of
the xSTream architecture. It is meant to be addressing the needs of
data-flow dominated, highly computational intensive semi-regular
tasks, typical of many embedded products. The streaming nature
of the kernels mapped onto it makes it possible to design a semi-
regular fabric of programmable engines interconnected via a rela-
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Figure 21. High-level view of an embedded system containing an
xSTream computing fabric.

tively simple network of point to point channels. The structure of
the tasks that is mapped onto the computational fabric is more simi-
lar to a pipeline of ’filters’ rather than a set of tasks explicitly com-
municating between them, while the latter model is not ruled-out
by the xSTream template, including up to more traditional lock-
based synchronization distributed parallel tasks. It mostly focuses
on providing a range of facilities, both HW and SW, to fully exploit
data-flow centric applications and programming models. The fab-
ric supports a number of simultaneous software pipelines running
on the processing elements as to accommodate complex applica-
tions and also provide load balancing and latency hiding capability.
A property of the streaming fabric is to support very high internal
data bandwidth, throughput and computationally intensive tasks.
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Figure 22. The xSTream fabric and node structure.

The processing elements of the streaming fabric are relatively
simple programmable processors or engines with a general purpose
but simple basic ISA that can be extended with SIMD or Vector
mode instructions. The engines include a set of features for im-
proving performance and efficiency, such as sub-word parallelism,
wide data-paths, simple pipelines, etc. At the same time they exe-
cute instructions fetched from local memories instead of caches, a
great simplification at the pipeline forefront. Local memory is also
used for wide data accesses. The engines are connected between
them, and the interconnect functionality plays one of the critical
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roles in this picture. In fact it is quite the essence of the system to be
able to provide a self synchronizing support for software pipelines.
This is achieved with a set of lightweight routers, very similar to
the ones being defined for network-on-chip replacements of stan-
dard bus infrastructures; but with more freedom for simplification,
due to the constrained nature of the communication patterns versus
a generic system back-bone NoC. The fabric is not limited to ex-
ploitation of programmable engines, in fact it is entirely possible
to use hybrid approaches where some elements of the array can be
fixed functions, implemented in a classic ASIC design flow, if such
function are of a critical, very well know and fixed nature. Likewise
the pipelines can be attached on the periphery of it to I/O channels
that go to dedicated peripherals or specific I/O functions such as
cryptographic engines or similar.

The xSTream architecture provides native support for streaming
applications, in particular for what concerns

• communication links,
• communication primitives, which are mapped directly into na-

tive instructions for maximum efficiency,
• memory operations for both internal and external memory ac-

cess and
• a processing element well suited for data intensive computa-

tions (the xPE).

The interconnection network of the xSTream is composed of a
set routers connected by physical links (for example a 2D mesh
topology). Each router has one (or more) end-point connected to it,
which can be a consumer and/or producer of the packets flowing
through the network. The end-points can be one of the following:
An xSTream accelerator processor or xPE, High-bandwidth IO
links to the outside world or DMA channels.

Router-to-router connection as well as router-to-end-point con-
nection is implemented over a single physical channel, whose pa-
rameters can be tuned for width, speed, arbitrations, local buffering,
etc.

To improve performance and simplify low-level deadlock avoid-
ance, the Network On chip supports virtual channels that are used
to multiplex physical connections. The architecture also supports
a communication feature at a higher level of abstraction: Virtual
channels are implemented by using multiple ”virtual” queues man-
aged by a Flow Controller (xFC) at each end-point node of the fab-
ric. A packet can be written into a specific ”virtual” queue only
if the credit based end-to-end flow-control allows it, this guards
the application from running into so called high-level application
deadlocks that might arise when the data-flow graphs do not satisfy
certain conditions. Additionally, virtual queues can be of virtually
any length, limited only by the available amount of local memory
per each node, this feature greatly extend the freedom of software
mapping tools to explore a larger legal solution space for the map-
ping problems and objective functions (such as local bottlenecks,
load-balancing, etc.), and increases the potential of finding better
optimized configurations. Virtual queues at the inputs and outputs
of the xSTream xPE processor are exposed at the instruction set
level so that they can be effectively treated similarly to fully disam-
biguated sequential memory references by optimizing compilers.

The following ISA operations are defined for the queues of each
xPE and can be described functionally as:

• pop destination reg, queue identifier
• push source reg, queue identifier
• peek destination reg, index, queue identifier
• qsync queue identifier

The queue identifier is a global queue identifier and specifies
the source or destination nodes to which the operation is directed
as well as the specific virtual queue on which the operation is to be
performed.

The pop operation retrieves data from the head of the queue and
fills the destination reg.

The push operation pushes the content of the source reg into the
tail of the queue.

In practice queues are defined as variable length in the imple-
mentation through a mechanism that uses local memory to the xPE
as a back-log temporary storage implemented by the xFC.

This same mechanism allows also to support a third primitive,
which is the peek operation. Peek behaves like a pop issued after
a successive number of pops for index-1 elements but does not ac-
tually remove the elements from the queue. Effectively it provides
partial random access support for the queue itself. A peek operation
is only allowed for a queue with back-log storage in local memory
that has been declared to be large enough to contain a number of
elements greater or equal to the maximum peek index used for a
given input queue. In practice, peek blocks if less than index ele-
ments are present in the virtual queue. It may also be used for syn-
chronization purposes and block based processing instead of pure
streaming.

Finally the qsync primitive guarantees that an output virtual
queue is drained of all of the data pushed through it and locally
stored at the destination end, this instructions is required in a
number of different scenarios, both for pipeline set up and shut
downs, but also to allow advanced management of virtual queues
and context switches.

The xSTream architecture template can accommodate various
kinds of computing nodes from programmable ones to hardwired
functions. To complete the template with a suitable programmable
element we have designed a highly parametric programmable en-
gine that we call xSTream processing element (xPE).

The xPE is optimized for stream oriented, data-flow dominated,
performance demanding computation. The target application range
is especially focused on embedded multimedia, telecom, and sig-
nal processing applications, Specific requirements that were used
for the definition of the engine architecture and microarchitecture
were:

Low silicon area or more exactly, high computing density in
terms of MIPS per physical gate,

High computational power with outstanding power figures in
term of MIPS/mW, MIPS/MHz, associated with relatively high
(for the embedded world) operating frequencies, support for high
level programming languages and compiler friendliness, especially
for ISA orthogonality when it comes to vector/SIMD execution
semantics. Finally the xPE is highly design time configurable with
a wide range of tuning knobs and optional features that enable
extensive trade offs for area, power, and compute density for a
single xSTream node to adapt the fabric granularity to the specific
application domain an instance of it is design for.

The xPE microarchitecture is highly streamlined and ”minimal-
ist” core architecture to tune system frequency and limit core size
by shaving off most of the complexity required for more general
purpose microprocessors and media processors. The xPE execution
semantics is VLIW coupled with a modular and scalable design
based on configurable VLIW slices.

Local memories and interfacing are optimized for managing and
accessing data streams, as well as wide vector instructions operat-
ing on packed data words to exploit available DLP. The xPE sup-
ports a fine-grained multithreading to exploit task level parallelism
and, once again, to ease the data-flow application mapping tasks
and to achieve the more conventional latency hiding benefits of
multithreading.
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Figure 23. The xPE slice data-path

Each xPE slice includes two vector integer/floating point general-
purpose ALUs, one vector integer/floating point general-purpose
multiplier unit, one vector load/store unit with special stream ac-
cess operations (push/pop to/from queues), independent fetch/issue
unit with supporting features to synchronize multiple slices, shared
registers for cluster communication and some simple branch pre-
diction features. The xPE data-path supports either 32-bit operands
or 128-bit packed vector operations (4 × 32-bit or 8 × 16-bit),
has an extensible register file with multiple views, as 64 general-
purpose, 32-bit wide registers and one with 32 general-purpose,
128-bit wide vector registers. The xPE pipeline is 9 stages with up
to 4 stages of execution depending from specific functional units’
latencies. Full bypassing and forwarding is supported.

The vector extensions ISA include three source operand opera-
tions for SIMD most of which capable of a sub-word permutation
operand for greater flexibility to support automated compiler vec-
torization.

The xPE ISA is designed for maximum flexibility for further
extensions, but with code density very much in mind in terms of
efficiency as most of the code will be fetched from relatively small
local memory. A short summary of the ISA features is:

• Integer, fixed point, and floating point operations.
• Special instructions for thread synchronization.
• Instructions are encoded with 24-bit syllables.
• Up to two syllables are packed in a bundle and executed in

parallel.
• Wide immediate values and various bundle extension formats.
• Variable bundle size to optimize code size.

7.4 Silicon Hive HiveFlex ISP2300 Subsystem Architecture
Slicon Hive’s basic system-level processing template is an IP-based
structure containing an arbitrary number of processors, intercon-
nected through buses, point-to-point connections, and/or streaming
connections. Figure 24 depicts the template for a single processor.
The processors within a system may all be different. Each may use
various amounts of different types of parallelism: sub-operation-

level parallelism (pipelining within operations), operation-level
parallelism (domain specific operations with many inputs and out-
puts), data-level parallelism (vector, SIMD), and instruction-level
parallelism (ILP, VLIW). Using this template, Silicon Hive de-
velops domain-specific multi-processor subsystems for streaming
applications.

Figure 24. Silicon Hive Processor Template.

The ACOTES project targets streaming applications and has
chosen three applications from three different streaming domains:
H264 video processing, FM radio modulation (communication),
and gamma correction (image processing). It was found that each
of these domains exhibit different kinds of parallelism and thus
require different processor architectures. A communications pro-
cessor needs to rely more on ILP. On the image signal processing
is more regular and thus can benefit most from extensive use of
vectorisation. Lastly, video processing is a mix of control and im-
age processing. Thus, a video processor would consist of multiple
smaller vector processors, combined with a scalar control proces-
sor.

Next to applying the template features, as described above, the
processors themselves need to be scalable, in terms of the above
architectural parameters. Before committing a processor design to
silicon, the architectural parameters are fixed. For example, the
required performance points for a communicatins processor are
obtained by scaling the number of issue slot clusters (ranging
from 5 to 20 issue slots for complex arithmetic). The image signal
processor (ISP2300) has a fixed set of 8 vector issue slots, but its
vector and element sizes need to be fixed (typically, they scale from
4 to 128 and from 8 to 16, respectively).

This section discusses HiveGo CSS 31xx camera subsystem
in more detail. It contains amongst others a HiveFlex ISP2300
processor, configured with 32-element vectors, each element being
16 bits wide. However, the concepts apply equally well to the
typical communications or video processors.

Processor subsystems are based on a flexible template. And,
within families, the different processor instantiations also have
wide variations in architectural configurations. Thus, as an addi-
tional requirement to being able to deal with the different types of
parallelism, mentioned above, the software development environ-
ment must be able to target a very wide range of different system
and processor architectures.
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Because of the above wide range of different architectures that
need to be supported simultaneously, the requirement is that tools
are not changed or or generated to fit the target architecture. The
number of different tools to be supplied would explode. Thus, each
implied tool (e.g. compiler front-end, scheduler, linker, browser,
simulator, etc.) needs to reads system description and needs to
target its operation to the system.

Subsystems consist of processors, system-level IP blocks, and
stream processing code.

Figure 25. Block Diagram of HiveGo CSS 31xx Subsystem.

Figure 25 depicts the HiveGo CSS 31xx camera subsystem. In
this system, HiveFlex ISP2300 and Scalar Processor are ANSI-C
programmable processors. InputFormatter, FilterbankAccelerator,
GDC/ScalingAccelerator, and DMA are weakly programmable au-
tonomous modules. For the purposes of this paper, they may be
considered parallel processors, streaming data into and out of mem-
ories inside ISP2300. Their operation needs to be synchronized
with the application running on ISP2300.

InputFormatter reads raw data coming from the sensor through
the SMIA/MIPI interface. The data is packed to fit the vector ele-
ments of ISP2300. ISP2300 itself performs a chain of operations on
each pixel, whereby the raw sensor data is converted from a Bayer
format into weighed RGB pixels. In addition to that, typical cam-
era operations, such as white balance correction and gamma correc-
tion are performed. For typical convolutional filtering (motion blur,
etc.) and scaling, the software architect may program the operation
of the associated parallel processors to fit between certain software
loops. See Figure 2, where co-processor-implemented functions,
such as GDC/Upscaling phase, may be inserted between the color
enhancement and sharpness enhancement phases, and where cer-
tain image enhancement phases would typically be executed on the
Filterbank block.

8. Tool-Chain Evaluation
In this section we demonstrate how the concepts, tools and opti-
mizations presented thus far can be used together in one vertical
toolchain. We use the FMradio application (see section 1) as an ex-
ample, and show how each step in the overall ACOTES framework
can be applied to it.

The machine used for evaluation is a 4-core Power6 with 2-way
SMT in each core, 64KB L1 cache (cache line size 128B) and 2MB
L2 cache per core, running under Linux. Experiments were done
using all 8 hardware threads (i.e. with affinity set to “all”).

8.1 Using the SPM
The parallelism in FMradio can be exposed using the Acotes direc-
tives and Front-End tools described in Sections 4.1 to 4.3 (version

taskgroup
{
  Reader (&pair))

  for (i = 0; i < 8; i++) {
     task input (pair) output (fm_qd_bp)
        FM_QD_Demod (pair, &fm_qd_bp)
     task input (fm_qd_bp) output (band_11)
        FFD (1.813, fm_qd_bp, &band_11
     task input(fm_qd_bp) output(band_12)
        FFD (1.813, fm_qd_bp, &band_12
     task input(fm_qd_bp) output(band_21)
        FFD (1.407, fm_qd_bp, &band_21)
     task input(fm_qd_bp) output(band_22)
        FFD (1.407, fm_qd_bp, &band_22)
     task input(band_11,band_12,band_21,band_22) output(ffd_bp)
        subMultSq (band_11,band_12,band_21,band_22, &ffd_bp)
  }
  task input(fm_qd_bp) output (band_2)
     FFD (8.407, fm_qd_bp, &band_2)
  task input(ffd_bp) output (band_3)
     FFD (8.407, ffd_bp, &band_3)
  task input(band_2,band_3)
  {
     stereo_sum (band_2, band_3, &output)
     Writer (output)
  }
}

Figure 26. Annotated FMradio

from now on denoted “SPM”) or using standard OpenMP prag-
mas, with the minor additional extension described in Section 4.4
(further denoted “GCC-SPM”). The GCC-SPM’s implementation,
in the “streamOMP” branch of GCC, is still ongoing, so we will
provide results based on manual streamization for this version. We
demonstrate and evaluate both approaches.

After analysing FMradio, we observed that up to 13 tasks can
be created and linked using streams. Of such tasks, 5 of them are
very light, and we have joined them in two sets of 3 and 2 tasks.
This leaves a total of 10 exploitable tasks. We have annotated
the code with the Acotes directives, compiled it with the Acotes
compiler, and linked using ACOlib. Figure 26 shows the structure
of the resulting code. Observe how it describes the same structure
as presented in Figure 1.

The alternative OpenMP-based implementation of the FMradio
code presented on figure Figure 26 only requires minute modi-
fications, like replacing the input and output clauses by their
OpenMP counterparts firstprivate and lastprivate and
adding the appropriate parallel and single directives. Figure 27
shows the resulting OpenMP annotated code. Here we only rely
on GCC, with OpenMP enabled through the -fopenmp compiler
option.

#pragma omp parallel

#pragma omp single

{

Reader (&pair))

for (i = 0; i < 8; i++) {

#pragma omp task firstprivate (pair) lastprivate (fm_qd_bp)

FM_QD_Demod (pair, &fm_qd_bp)

#pragma omp task firstprivate (fm_qd_bp) lastprivate (band_11)

FFD (1.813, fm_qd_bp, &band_11

#pragma omp task firstprivate(fm_qd_bp) lastprivate(band_12)

FFD (1.813, fm_qd_bp, &band_12

#pragma omp task firstprivate(fm_qd_bp) lastprivate(band_21)

FFD (1.407, fm_qd_bp, &band_21)

#pragma omp task firstprivate(fm_qd_bp) lastprivate(band_22)

FFD (1.407, fm_qd_bp, &band_22)

#pragma omp task firstprivate(band_11,band_12,band_21,band_22) lastprivate(ffd_bp)

subMultSq (band_11,band_12,band_21,band_22, &ffd_bp)

}

#pragma omp task firstprivate(fm_qd_bp) lastprivate (band_2)

FFD (8.407, fm_qd_bp, &band_2)

#pragma omp task firstprivate(ffd_bp) lastprivate (band_3)

FFD (8.407, ffd_bp, &band_3)

#pragma omp task firstprivate(band_2,band_3)

{

stereo_sum (band_2, band_3, &output)

Writer (output)

}

}

Figure 27. OpenMP annotated FMradio
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Table 1. Speedup results obtained from FMradio

Version Only
Stream. Only Vect. Stream. +

Vect.
SPM 1.1 2 1.4

GCC–SPM 2.6 2 3.6

We evaluate the impact of streamization using the above two
approaches on Power6. The sequential code is identical in both
cases. The SPM streamized version produced only 1.1x speedup
factor over the sequential code because of degraded cache behavior
and synchronization overhead. Refer to Table 1 for a comparison
of the performance achieved by each technique explained in this
section.

However, in the case of the GCC-SPM version, these prob-
lems were fixed by an optimization (45) implemented in GCC’s
OpenMP runtime library, libGOMP, whereby the allowed patterns
of accesses to streams preclude false sharing of cache lines be-
tween producers and consumers. More specifically, this optimiza-
tion consists of increasing the granularity of accesses to streams
by aggregating the reading (resp. writing) of multiple elements in
read (resp. write) windows. The size of such windows is a multiple
of the size of a cache line, which ensures that producers and con-
sumers never access simultaneously the same cache lines. Thanks
to this optimization, this version achieves a 2.6x speedup factor
over the sequential code.

8.2 Loop-level optimization and vectorization
FMradio does not exhibit enough nested loops to illustrate the
need for complex loop transformations. Loop fusion is the only
relevant one, but happens to be always compatible with vector-
ization in this example; it is systematically applied together with
task-level fusion. The compiler (GCC) then proceeds to apply auto-
vectorization, as one of the final Middle-End optimization passes.
The main computation kernel in FMradio is an inner-loop that scans
through the input buffer and computes the sum of products with
the array of coefficients. The impact of vectorization is 1.3x/1.4x
improvement factor over the streamized versions (as described in
Section 8.1) using “SPM”/“GCC-SPM” respectively). Alignment
handling and reduction overhead (to finalize the summation) are the
main factors that explain the gap between the theoretical speedup
factor from vectorization (4×) and the speedups we observed.

Relative to the sequential (non-streamized) version, the impact
of vectorization is higher, achieving a 2× speedup. These speedups
are summarized in Table 1.

8.3 Code generation
The streamized and vectorized code proceeds through the com-
pilation flow, reaching the back-end target-dependent compilation
passes, all the way through final code generation, using the ma-
chine description files (of Power6 in this example), where the
Acolib/OpenMP constructs of the “SPM”/“GCC-SPM” are trans-
lated to pthreads library calls. The overall impact of streamizing
and vectorizing FMradio is 1.4x/3.6x repectively.

9. Conclusions
In this paper we presented and demonstrated the framework de-
veloped by the ACOTES project. ACOTES includes partners from
both industry and academia, whose goal is to improve program-
mer’s productivity using: (1) automatic simulation and compilation
techniques to abstract the underlying multi-core hardware from the
programmer, and (2) programmer hints (pragmas) that define the
inputs, outputs and control variables of the computation, hinting to

the underlying compilation system where the borders of the com-
ponents are. The actual components are then built based on an ab-
stract representation of the platform called the Abstract Stream-
ing Machine (ASM). The ASM expresses the processing thread-
level and data-level parallelism capabilities available, and in addi-
tion communication overhead (processing and delay) between the
processors. The automatic compiler transformations then base their
parallelism related optimization decisions on the pragmas and the
resources needed by each constructed component mapped to each
processor. These techniques and tools were demonstrated using the
FMradio streaming program, starting from it’s programming using
the ACOTES pragmas, through it’s multiple levels of compilation,
all the way to actual execution on a real streaming architecture.
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