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Abstract

Tuning applications for multi-core systems involve subtle concepts and target-dependent opti-
mizations. New languages are being designed to express concurrency and locality without reference
to a particular architecture. But compiling such abstractions into efficient code requires a portable,
intermediate representation: this is essential for modular composition (separate compilation), for opti-
mization frameworks independent of the source language, and for just-in-time compilation of bytecode
languages. An intermediate representation is also essential to library and other baseline computing
infrastructure developers who cannot afford the abstraction penalty of higher-level languages. But
efficiency is nothing if it ruins productivity of the few available experts. Efficiency programmers need
an alternative to fragile, ad-hoc optimizations built upon non-deterministic primitives. This paper
introduces Erbium, an intermediate representation for compilers, a low-level language for efficiency
programmers, and a lightweight runtime implementation. It is built upon a new data structure for
scalable and deterministic concurrency, called Event Recording (Er). Our work is inspired by the
semantics of data-flow and synchronous languages, motivated by advanced optimizations relying on
non-blocking concurrency. We provide experimental evidence of the productivity, scalability and effi-
ciency advantages of Erbium, relying on a prototype implementation in GCC 4.3.

1 Introduction

To cope with the ever increasing demand for performance, hardware engineers design multi-core processors

and accelerators. The clock race is over: increasing performance requires changing the code structure

to harness complex parallel hardware and memory hierarchies. But this is a nightmare for program-

mers: translating more processing units into effective performance gains involves a never-ending combi-

nation of target-specific optimizations. These optimizations involve subtle concurrency concepts, often

non-deterministic algorithms, as well as target-dependent enhancements of memory locality. Optimizing

compilers and runtime libraries do not shield programmers from the complexity of the hardware; as a result

the need for manual, target-specific optimizations increases with every processor generation.
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Higher-level languages are designed to express (in)dependence and locality without reference to any

particular hardware, leaving compilers and runtime systems with the responsibility of lowering these ab-

stractions to well-orchestrated threads and memory management. The current practice tends to isolate

the (sequential) language from the threading libraries. It induces severe inefficiencies, validation and ver-

ification nightmares, and ultimately, undetected non-deterministic bugs. This paper introduces Erbium

(Er) an intermediate representation for compilers, a data structure for scalable and deterministic concur-

rency, and a lightweight runtime implementation. Erbium is a deterministic, portable abstraction, to

expose data-level, task and pipeline parallelism suitable to a given target. It is meant as an intermediate

representation for compilers, for active/autotuned library generators, and for efficiency programmers.

Our experiments on a real application demonstrate a speedup of 10.1 on a 24-core Xeon and 9.51 on

a 16-core Opteron, from thread-level parallelization alone (GCC -O2). Combined with more aggressive

optimizations, including automatic vectorization (GCC -O3), the speedups climb to 12.6 and 14.6, respec-

tively. This peaceful collaboration of thread-level parallelism with middle- or back-end optimizations is

not customary with high-level languages or with low-level library-based threading approaches.

The rest of the paper is structured as follows. Section 2 discusses the design goals and choices of the

intermediate representation. Section 3 defines its syntax and semantics. Section 4 details its transpar-

ent specialization on shared-memory platforms. Section 5 evaluates our implementation on realistic and

extreme situations. Section 6 discusses related work. We conclude and summarize important research

directions in Section 7.

2 Design of the Intermediate Representation

Erbium defines an intermediate representation for compilers and usable as a low-level language by efficiency

programmers. We aim at the simultaneous satisfaction of the following objectives.

Determinism. Erbium’s semantics derives from Kahn Process Networks (KPNs) [26]. KPNs are canon-

ical concurrent extensions of (sequential) recursive functions preserving determinism (time independence)

and functional composition. Functions in a KPN operate on infinite data streams and follow the Kahn

principle: in denotational semantics, they must be continuous over the Scott topology induced by the prefix

ordering of streams [26,31]. A classical operational definition of KPNs states that processes communicate

through lossless FIFO channels with blocking reads and non-blocking writes. The semantics of Erbium is

not bound to this particular operational implementation. Erbium processes can be arbitrary, imperative

C code, operating on process-private data only; their interactions are compatible with the Kahn principle,

with an operational semantics favoring scalable and lightweight implementation.
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Modularity. Separate compilation of modular processes is essential to the construction of real world

systems. An Erbium program is built of a sequential main thread spawning interacting processes dy-

namically. Modularity has triggered much research in high-level concurrent languages, regarding causality,

liveness [8,32], and resource boundedness [9–11,22]. Our low-level design is complementary to these ap-

proaches: we rest on the guarantees of the compiler front-end in charge of lowering high-level abstractions

to Erbium. But resource management remains a task of the generated code and runtime library: we

introduce a low-level mechanism for modular back-pressure supporting wide broadcast and worksharing

scenarios for large-scale data-parallelism.

Expressiveness. In concurrent data-flow languages, data and functional parallelism is implicit in (recur-

sive) functions [27,39]. As an intermediate representation, Erbium provides explicit, asynchronous spawn

points for concurrent processes.

A runtime system relying on context-switches — even lightweight user-space ones — cannot match the

speed of hardware synchronization. To hide communication latency and avoid such overhead, Erbium

favors long-running processes and data-flow communications. To this end, traditional data-flow models

implement data streams with push()/pop() primitives over FIFO channels. Erbium’s data structure

for communication is much richer, allowing for random-access peek (use), poke (definition, assignment)

and communications decoupled from the actual synchronization. This data structure is called an event

recording (Er), or recording for short. It unifies the stream and future [23] concepts, and generalizes them

to support single-producer/multiple-consumer concurrency.

Unlike periodic subclasses of KPN [6,11,30,49], Erbium supports dynamic creation, termination of

concurrent processes, allowing for arbitrary mode switches, resets and adaptation scenarios. Determinism

is preserved through generic initialization and termination protocols.

Static adaptation. As an intermediate language, Erbium supports aggressive specialization, analysis

and optimization. It is not restricted to periodic subclasses of KPN [20,28] or specific parallel compu-

tation skeleton [16,43]. It supports program transformations for dynamic, data-dependent control flow

applications, including generalized forms of decoupled software pipelining [21,37,42].

Binary code does not offer the required level of static adaptation; on the contrary Erbium defines

the intermediate representation as the portability layer. Erbium is accessible to efficiency programmers

as a source language and serves as a target for higher-level languages and compilers. This is an essential

design decision. The Erbium runtime may be specialized for different memory models, shared (globally

addressable, cache coherent) or distributed. It may transparently exploit any hardware acceleration for

faster context switch, synchronization and communication.

The compiler is responsible for selecting an appropriate specialization, offering the most relevant run-
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time primitives and interface for a given platform. It also adapts the grain of concurrency, implementing

fusion of task pipelines, static scheduling of task graphs, coarsening of the communication/synchronization

grain, and automatic buffer size inference. Exploiting split-phase synchronization and communication at

compilation time allows to overlap communications with computations.

Lightweight implementation. Erbium is designed to be as close as possible to the hardware while

preserving portability and determinism. This is a central motivation for a low-level abstraction. Any

intrinsic overhead in its design and any implementation overhead will hit scalability and performance; such

overheads cannot be recovered by a programmer who operate at this or higher levels of abstraction.

Thanks to its data-flow semantics, it is possible to implement the concurrent primitives of the Erbium

runtime only relying on non-blocking synchronizations. No busy waiting and no system call is involved —

apart from the necessary stalls to implement (back-)pressure. Thanks to its native support, broadcast and

worksharing patterns are very efficiently implemented, avoiding unnecessary copy in (collective) scatter

operations.

Finally, Erbium can be implemented with a very low memory footprint thanks to its low-level, stream-

lined design. Code footprint is only 59 kB on x86-64 (compiled with GCC 4.3 -O3); more importantly,

on a distributed-memory IBM Cell, it is broken down into 28 kB for the PPU (PowerPC) and 11 kB for

each SPU (accelerator). The data footprint is minimal, with small recording descriptors and few shared

variables (aside from communication buffers whose size depend on the application and on fine-tuning to

the target platform).

3 Semantics of the Intermediate Representation

Formalization is out of the scope of this practice- and design-oriented paper; we use a C syntax and informal

semantics instead.

Figure 1 illustrates the Erbium primitives and event recording structures on a simple producer-

consumer template. We will use this example to define data-flow-synchronization and communication,

resource management, process creation and termination.

Data-flow synchronization and communication. An Event Recording (Er), or recording for short,

is an unbounded stream, indexed in the set of natural integers and randomly addressable. Each recording

is associated with a private, monotonically increasing commit index. Recording elements at indices less

than the commit index are fully defined and read-only.

A view is a read-only unbounded stream, randomly addressable, connected to a recording. Each view

is associated with a private, monotonically increasing update index. View elements at indices less than

4



view horizonrecord horizon

record

process

commitlast defined

view

updatelast available

process

stall release

copy4 3 2 1 0 2 1 0
v0v1v4 v3 v2 v1 v0 v2

Figure 1: Producer-consumer data flow with bounded resources

int main() {

recording int re =

new_recording(1);

run producer(re);

run consumer(re);

}

process producer

(recording int re) {

int tl=0, hd, i;

alloc(re, P_HORIZ);

while (1) {

hd = tl + P_BURST;

if (hd<N) break;

stall(re, hd);

for (i=tl; i<hd; i++)

re[[i]] = foo(i);

commit(re, hd);

}

}

process consumer

(recording int re) {

int tl=0, hd, i;

int sum=0;

view int vi = new_view(re);

register(vi);

alloc(vi, C_HORIZ);

while(1) {

hd = tl + C_BURST;

receive(vi, hd);

hd = update(vi, hd);

if (!hd) break;

for (i=tl; i<hd; i++)

sum += vi[[i]];

release(vi, hd);

tl = hd;

}

}

Figure 2: Producer-consumer example

the update index are identical to the the corresponding elements of the connected recording. recording

T r (resp. view T v) declares a recording r (resp. view v) of data elements of type T. The [[i]] syntax

is used to subscript a recording or view at index i.

On Figure 1, the producer process committed indices 0, 1 and 2 to the recording, but keeps indices 3

and 4 private. At this point, modifications of these values are still possible on indices 3 and 4, but the

values at indices 0, 1 and 2 are read-only. On the consumer side, only indices 0 and 1 have been updated

into the view; index 2 is available but the consumer did not yet decide to observe it in the view. All three

values are read-only.

The commit() and update() primitives implement data-flow pressure, enforcing causality among pro-

cesses. void commit(recording T r, int i) increments the commit index of r to i; it does nothing if

i is lower than or equal to 0 or to the current commit index. int update(view T v, int i) sets the

update index of v to i, or does nothing if i is lower than or equal to 0 or to the current update index. It

waits until the commit index of the connected recording is greater than or equal to i. It returns the value

of i, except on termination of process owning the connected recording, to be explained in the termination

section. This primitive controls what indices will be observed in the process controlling the view; it offers

the same determinism guarantees as a blocking read in a KPN.

Indices are always non-negative integers. The update index of a view is always less than or equal to

the commit index of its connected recording. On the other hand, the observed value of the commit index

(not directly accessible to the program) depends on the observing thread and on how frequently its is

synchronized across the machine; we only assume that changes to the commit index will ultimately be

observable by any hardware thread.
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In our split-phase design, data-flow communication is decoupled from synchronization. A one-sided,

asynchronous communication is initiated with the receive() primitive. void receive(view T v, int

i) updates v with the data of its connected recording, starting from the current update index up to i−1. It

cannot complete until the commit index reaches i. The communication may also proceed earlier, retrieving

sub-ranges of indices, this is left to the implementation and not observable at the level of the intermediate

representation. When an asynchronous call to receive(v, i) is pending, a followup update(v, j) must

wait until all elements of indices lower than min(i, j) have been retrieved. On shared-memory platforms,

receive() may be implemented as prefetch or no-op. On distributed-memory platforms, asynchronous

communication will typically involve a DMA circuit.

On Figure 1, indices 0, 1 and 2 have been received by the consumer and stored in the view’s buffer.

This is independent from the fact that the consumer did not yet decide to observe index 2.

Resource management. Practical implementation of recordings need a bounded memory space: rea-

sonable KPNs can be evaluated with bounded memory.1 The bound may be managed statically or dynam-

ically, and corresponds to the maximal number of live elements. The live elements of a recording (resp.

view) are stored in a sliding window and its size is called the recording’s (resp. view’s) horizon. When

compiling for shared memory platforms, sliding windows of the recording and views may be coalesced to

avoid unnecessary data copying.

Some primitives are required to stop the production of data that would violate the semantics of an

unbounded recording, while operating on a finite horizon. As with any blocking write semantics, these

primitives may induce resource deadlocks when the recording horizon is insufficient. In general, it is the

responsibility of compiler front-end and/or of the runtime library, to provide algorithms for automatic

inference of buffer sizes (static and/or dynamic) [10,11,13,22,30].

The release() and stall() primitives implement back-pressure. An element is considered live in a

view as long as release() has not been called on a higher index. An element is considered live in a

recording as long as at least one connected view has not yet released its index, calling release() on a

higher index. Each recording (resp. view) is associated with a private, monotonically increasing stall (resp.

release) index, marking the tail of live elements in the recording (resp. view). void stall(recording

T r, int i) waits as long as the release index of at least one connected view is lower than i − h + 1,

where h is the horizon of the recording. Then it increments the stall index of r to i. void release(v,

i) increments the release index of v to i; it does nothing if i is lower than or equal to the current release

index. The stall index is always lower than or equal to the minimum of the connected views’ release indices.

Initiation and termination issues are considered below.

1Unreasonable ones may queue inputs indefinitely; data-flow synchronous languages reject such programs using a clock
calculus [9–11,22].
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On Figure 1, index 0 has been released by the consumer, its value being (logically) removed from the

view’s buffer; it is not available for further computations. Because there is only one consumer, index 0 has

also left the recording’s buffer, making room for further value definitions and commits by the producer.

The recording and view horizons are set to 4 and 2, respectively.

Sliding windows of recordings and views may be distinct, especially on distributed platforms. In such a

case, it is safe for update() to implement the semantics of receive() and for receive() to be implemented

as a no-op, anticipating the release of data and reducing the turn-around time of live elements.

The reader may wonder why back-pressure deserves dedicated primitives and is not implemented with

commit() and update(), synchronizing with a shadow recording in the consumer and a shadow view in

the producer. Modularity is the reason. The data-flow commit() and update() primitives require an

explicit connection: using such primitives, a producer waiting for the release of indices by a consumer

need to statically know to which consumer it is communicating with. This would violate the modularity

of function composition, forcing the producer to be dedicated to a predefined collection of consumers. Our

back-pressure design is a core component of Erbium’s modular, split-phase communications.

Eventually, the representation of indices is another, subtle resource constraint. Applications will use

unsigned 32-bit or 64-bit integers, depending on the target platform. We will assume 32-bit integers in

the following. Overflow may occur, but infrequently enough so that performance is not impacted. The

commit() primitive is responsible for preventing overflows, e.g., by detecting when the index crosses the

231 All internal index variables (e.g., the current commit, update, release variables) can be translated

backwards by the closest multiple of the horizon lower than or equal to the minimal release index. This

translation is invisible to the sliding window indexing and preserves the non-negativeness of indices. Since

the application itself refers to index variables, it is preferable to let those variable wrap-around safely

without explicit control flow to detect overflows. This can be achieved by translating the index arguments

transparently in the runtime implementation. The “translation bias” may start at 0 and be atomically

updated along each threshold-crossing detected by commit().

Creation and termination. A process is declared as a plain C function, introduced by the process

keyword. It cannot be called as a function, and does not have a return value. The run p(...) spawns a

new thread to run process p,2 passing arbitrary arguments to initialize the new process instance, including

recording arguments to communicate with other instances.

Initialization is a common source of complexity and deadlocks in concurrent applications. Erbium

defines a standard, deterministic protocol, supporting modular composition, dynamic creation of processes

and dynamic connection of views to recordings.

2Erbium may implement lightweight user-space threads and workstealing schedulers [33], but this is orthogonal to the
scope of the paper.
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view T new view(recording T r) creates a fresh view descriptor, its update index initialized to 0,

and connected to recording r.

void register(view T v, int id) adds v as the id-th registered view of its connected recording.

This property controls which views are counted as part of the concurrent algorithm itself rather than

independent observers: registered views are considered by the back-pressure mechanisms to avoid non-

deterministic loss of data in case of late connection of the view. Non-registered views are also useful

in asymmetric broadcasts where some consumers may safely miss parts of the data stream — such as

transient or instrumentation processes. The registration property is a crude one: richer and more dynamic

properties could be designed on the same basis.

recording T new recording(int m) creates a fresh recording descriptor, its commit index initialized

to 0. Argument m is the threshold number of registered views connected to the recording to unlock back-

pressure mechanisms. More precisely, stall(i) may proceed if and only if all views of ids less than or

equal to m have registered and the update index of all registered views is greater than or equal to i.

void alloc(recording T r, int h) and void alloc(view T v, int h) create a fresh sliding

window of h elements of type T and attach it to r (resp. v). The horizon h is specific to a given recording

or view. A process calling alloc() becomes the owner of the corresponding recording or view. This binds

the sliding window buffers of recordings and views to a specific process instance. This binding is important

when running Erbium on a distributed platform: the placement of data and process instances must be

consistent. It is also useful for the recycling of process resources.

Recordings passed as arguments of processes must be initialized prior to spawning the process thread,

or non-deterministic failures may happen when connecting views. Since the allocation of recording’s buffers

defines its owning process, the creation of the recording descriptor must be decoupled from the allocation

of its buffer, hence the distinct new recording() called prior to spawning the process instance.

Termination is at least as error-prone as initialization in concurrent applications, due to resource

reclaiming (as illustrated by concurrent garbage collection). A process way free the recordings (resp.

views) it owns through the zombify() primitive; it saves the last value of its commit (resp. update) index,

then waits until all connected views have released the corresponding index (resp. have been notified of the

termination), and finally frees the descriptor and buffer. For recordings, this terminal commit index is

returned by the update() primitive, letting the consumer adjust to the situation where less elements than

expected could be retrieved. The next call to update() returns 0 indicating proper termination. These

two cases are the only ones where update() does not return the value of its second argument. An explicit

or implicit return terminates a process.

Simple example. Figure 2 illustrates these concepts on a simple producer-consumer example. A single

recording is connected to a single view. Data-flow synchronization, communication and back-pressure are
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straightforward, with data element bursts in the {tl, . . . , hd−1} range. Each process sets its own recording

and view horizon, and its own commit and update burst.

Notice that commit() follows the last definition of a value in the commit burst, update() precedes the

first use of the update burst, release() follows the last use of the update burst, and stall() precedes

the first definition of new indices in the commit burst.

Termination is detected in the consumer in two phases: first the return value of update() bounds the

burst iteration to the precise number of retrieved elements, then control-flow breaks out of the loop at the

next call.

The recording owned (allocated) by the producer is an initialization argument for the consumer; this

recording’s descriptor has been previously initialized prior to spawning the producer, and is used to connect

the view to the recording in the consumer. Separate compilation of the producer and consumer is therefore

possible.

This naive implementation is inefficient, especially on distributed memory: there is no overlap of com-

munications with computations. A better version would add a prefetch distance to the call to receive(),

looking a few data element ranges ahead. The distance would of course be platform-specific and tuned by

the compiler or at runtime. The grain of synchronization can also be tuned, coarsening the burst size of the

producer and/or consumer. Load-balancing can be achieved by adjusting the relative value of the burst

sizes. Finally, on some high-latency systems like networks of workstations, it may simply not be beneficial

to split the computation into distinct producer and consumer processes. In such a case, task fusion is the

only solution and should be implemented by the compiler, statically scheduling the activations to avoid

starvation and overflow.

This simple example can be trivially adapted into a broadcast with multiple consumers: the only

changes are to run multiple consumers instead of one, and setting the minimal number of registered views

accordingly when creating the recording descriptor.

4 Shared Memory Implementation

Let us discuss the specialization of Erbium on shared-memory platforms. Specialization for distributed-

memory involves completely different algorithms, although these implementation differences are transpar-

ent to the Erbium-based application; this will be the purpose of a separate paper.

A recording or view is built of a data structure descriptor — holding the current indices and shared

variables — and a separate sliding window buffer. The buffer is shared between the recording and its

connected views. The size of the buffer is the sum of the recording horizon and the maximal view horizon;

it is dynamically reallocated when connecting a view whose horizon exceeds the maximum size of all

connected horizons.
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The four synchronization primitives obey a non-blocking implementation, relying on as few hardware

atomic operations as possible (and no software mutexes/locks). To avoid busy waiting on empty/full

buffers, update() and stall() suspend the execution of the process. This involves wait and wake/signal

operations, and is implemented in two different flavors: portable POSIX threads with condition variables

and mutexes, and lower level Linux futexes [15]. All experiments use the futex version.

The code generator is implemented in an experimental branch of GCC 4.3. It expands the Erbium

constructs to their shared-memory specializations after the main optimization passes. Task-level analyses

and optimizations are not yet implemented. The most interesting step is to hide the concurrency con-

structs from the downstream optimizations. This can be achieved by systematically strip-mining bursts

of computations enclosing the index-wise computations inside a protected inner loop. This approach was

already proposed to support optimizations over streaming extensions of OpenMP [40]. It also removes

modulo-indexing of sliding windows. This transformation was the most important step to enable auto-

matic vectorization.

5 Experiments

Experiments target a 4-socket Intel hexa-core Xeon E7450 (Dunnington), with 24 cores at 2.4 GHz, and

4-socket AMD quad-core Opteron 8380 (Shanghai) with 16 cores at 2.5 GHz, both with 64 GB of memory.

A distributed-memory implementation is also underway for the IBM Cell broadband engine. This port

is not mature enough to conduct systematic experiments, but it was used to validate the portability of

Erbium and confirm its very low memory footprint.
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Figure 4: Synchronization cost

We studied a synthetic benchmark called exploration, with multiple producers broadcasting data to

a larger number of consumers. Each index is associated with a fixed (parameterized) number of multiply-

and-add operations. We report results on an extreme broadcast scenario, where n is the number of

running process instances: 1 producer process (1 recording) and n − 1 consumer processes (1 view per
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process instance); this scenario stresses the scalability of the waiting roulette and of the estimation in the

minimum release index in the back-pressure algorithm. In our experiments, n will take values in {4, 16, 24}
matching the number of hardware threads of our platforms.

Based on the fine-tuning achieved on the synthetic benchmarks, we wrote Erbium versions of three full

applications: fmradio from the GNU radio package,3 a 802.11a production WiFi codec from Nokia,4 and

jpeg, a JPEG decoder rewritten in Erbium from a YAPI implementation of Philips Research [47]. They

are all data streaming codes, representative of data crunching tasks running on single-node machines. It is

complex enough to illustrate the expressiveness of Erbium, yet simpler than complete frameworks like h264

video that would require adaptive scheduling schemes not yet implemented in Erbium [5]. In addition,

802.11a involves input-dependent mode changes and jpeg exhibits high variability in computation loads

per macro-block.

5.1 Performance Tuning on a Synthetic Benchmark

Figure 3 report execution times for all configurations of the exploration benchmark. These configura-

tions include varying horizon in a 256-to-4096 range, burst sizes in a horizon/16-to-horizon/2 range, and

computational work per index in a 1-to-512 range. The scalability is excellent, even considering negligible

amounts of work per index. But the lower the work amount, the larger the bursts should be to amortize

synchronization, task waking and context-switch overhead.

Performance overhead is shown in Figure 4. This time, the total number of multiply-and-add operations

is fixed: the total number of computed indices is proportional to the inverse of the amount of work per

index. Interestingly, increasing the burst size alone is sufficient to bring the overhead to the minimum;

this would hardly be possible with copy- and lock-based primitives.

In the extreme case of a single multiply-and-add per index, our implementation achieves 928491 index

computations per second.5 A previous lock-based implementation was almost two orders of magnitude

slower.

5.2 Parallelization of Real Applications

We report experimental data about the parallelized version of our three benchmarks. fmradio and 802.11a

did not require algorithmic or radical design changes to achieve scalable performance; jpeg was written

initially as a fine-grain KPN and only required systematic coarsening of the comminications.

On fmradio, exploiting task and pipeline parallelism is straightforward but shows limited scalability —

6 concurrent processes. Exploiting data parallelism is not trivial and involves an interesting transformation:

3http://gnuradio.org/trac
4From the ACOTES FP6 European project.
5One index computation corresponds to a cycle of the 4 synchronization primitives and the communication of one value.
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Platform (cores) Seq. -O3 Par. -O2 Par. -O3 Par. -O3 vs. Par. -O2

Xeon (24) 1.14 10.1 12.6 1.25
Opteron (16) 1.52 9.51 14.6 1.54

Figure 7: Speedups results for fmradio

Platform (cores) Task-Level Only No Decoupling Combined Parallelism

Xeon (24) 1.85 1.84 6.67
Opteron (16) 2.73 2.81 7.45

Figure 8: Speedups results for 802.11a

the original code uses a circular window using modulo arithmetic and holding the results of previous filtering

iterations; it can be replaced by a recording, removing spurious memory-based dependences.

Figure 5 illustrates the concurrency exposed in fmradio. On the left, 4 FFD processes process the

signal, implementing different sub-samplings and linear transforms (amplitude- and frequency-domain).

They account for most of the computation load. Two of them operate at twice the sampling rate of

the two others, involving twice the number of “taps” and twice as many computations. This suggests

to balance the load by creating twice as many instances for the heavier ones. The right side of the

figure details the data-parallelization of an FFD process, sharing the work into two instances. Figure 7

summarizes the speedups achieved with GCC 4.3 and different optimization options. The baseline is the

sequential (original) version compiled with -O2 (no vectorization, less optimizations); it runs in 13.65 s

on Xeon. These results confirm the scalability of Erbium on a real application; they also confirm its

compiler-friendliness, with the automatic vectorizer of GCC capable of aggressive loop restructuring in

presence of concurrency primitives, recording and view accesses.

Figure 6 illustrates the concurrency exposed in 802.11a. The data-flow graph is more unbalanced

than fmradio; it is also very far from the fork-join graphs of StreamIt [49]. We do not take I/O tasks

into account. All the remaining tasks take a significant fraction of the total execution time. Among

those, frequency sync and fine time sync cannot be data-parallelized easily: they need to be further

decoupled into a sequential fast-forward loop and a data-parallel kernel [37]. Figure 7 displays speedup re-

sults. It demonstrates the performance advantage of combining task-level and data parallelism (Combined
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Parallelism), compared with the partially data-parallel one (No Decoupling, keeping the same degree of par-

allelism for the remaining data-parallel tasks) and task-level parallelism only. Partial data-parallelization

even degrades performance on Xeon due to work-sharing overheads.
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Figure 9: Performance of jpeg function of synchronization grain size

On jpeg, the systematic macro-block-level decomposition of the application exposes 26 fine grain tasks.

Most of these can be further data-parallelized, but we choose to limit ourselves to a pipelined and task-

parallel version: the objective of this experiment is to confirm our results on the synthetic benchmark

and demonstrate the benefits of the low-cost abstractions of Erbium in the real world. Figure 9 show

the impact on the synchronization grain. Larger bursts are required to reach the performance plateau

when running on all cores. Also, increasing the burst size eventually yields performance degradation when

running out of one or both cache levels. Speedup reaches 2.42× on Xeon and 1.95× on Opteron for

the optimal grain, exploiting task-level parallelism only. These numbers are low but they confirm that

Erbium succeeds in exploiting fine-grain task parallelism on real applications, despite the high rate of

synchronizations. This is encouraging about the scalability of bandwidth-bound applications on future

manycore architectures, when data-parallelism alone does not scale.

Streaming codes are often bandwidth-bound. The Xeon’s front-side bus is clearly penalized on such

codes compared to the Opteron’s Hypertransport busses: data-parallelism is limitted by off-chip memory

bandwidth. Indeed, compared to a pure task-level parallel (pipelined) implementation, data parallelism

may offer better scalability; and compared to a pure data-parallel implementation, pipelining reduces

memory bandwidth contention and amortizes load imbalance (absence of synchronization barrier). The

tradeoff between task and data-level parallelism depends on the target architecture. Notice that pipelining

also increases expressiveness, extracting parallelism from dependent iterations in a loop, as in 802.11a.

Overall, Erbium leverages much more flexible, scalable and efficient forms parallelism than restricted

models.
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5.3 Comparison With Lightweight Scheduling of Short Tasks
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Figure 10: Long-lived processes vs. short-lived atomic tasks

Erbium favors long-running tasks with iterated lightweight synchronizations. This differs from a more

common approach where concurrency is expressed at the level of atomic, short running tasks. exploration

synthetic benchmark with a Cilk implementation spawning short-lived user-level tasks [33]. The target

machine is a 4-core Intel Core 2 Duo desktop, and Cilk is run with the --nproc 4 option to generate parallel

code, and with the --nproc 1 option to specialize the code for sequential execution. The baseline sequential

execution takes almost 7 s for the finest synchronization grain, and 5 s for larger ones. The parallel Cilk

version with the finest synchronization takes 221.4 s and the corresponding Erbium version takes 107.7 s.

The performance gap widens significantly for intermediate size bursts, and reaches almost 5× when the

Erbium version reaches its performance plateau. But the most important figure in practice is that the

Erbium version breaks even for grain size 80× smaller than Cilk. It demonstrates the need for data-flow

interactions among long-lived processes as an essential abstraction for scalable concurrency. Short-lived

atomic tasks may be better supported with dedicated hardware [29]. Nevertheless, lightweight threading

techniques are still very useful for load balancing and to increase the reactivity of passive synchronizations

(blocking update()/stall() on empty/full buffer).
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6 Related Work

Concurrency models have been designed for maximal expressiveness and generality [24,34], with language

counterparts such as Occam [12]. Asynchronous versions have been proposed to simplify the implemen-

tation on distributed platforms and increase performance [18,25,35], with language counterparts such as

JoCaml [17]. Our goal is different: parallelism is only a specialization and optimization of Erbium. We

need concurrency if it is useful for exploiting parallelism on some target platform. The data-flow concur-

rency expressed in our model is sufficient to expose scalable parallelism in a wide spectrum of applications;

it also offers strong determinism and liveness guarantees that evade more expressive models.

Our work is strongly influenced by data-flow and streaming languages, including Id and I-Structures [3],

SISAL [27], Lustre [22], Lucid Synchrone [9], Jade [44] and StreamIt [48,49]. These languages share

a common interest in determinism (time-independence) and abstraction. They also involve advanced

compilation techniques, including static analysis to map declarative semantics to effective parallelism, task-

level optimizations and static scheduling. The intermediate representation of Erbium is an ideal target

for a front-end compiler for such abstract languages and for implementing platform-specific optimizations.

But unlike the previous proposals, it can also be used for highly efficient infrastructure developments.

Extensions of OpenMP have been proposed to improve the support for pipeline parallelism and stream-

ing applications [7,40]. These are promising tradeoffs between declarative abstractions and explicit, target-

specific parallelization, aiming for an incremental introduction of richer forms of concurrency and expression

of locality in programming languages. They do suffer, however from expressiveness limitations: the fmradio

application has been initially parallelized with such approaches, but data parallelism could not easily be

expressed. Pop et al. report speedup saturating around 3× on 4-core to 16-core x86-64 platforms [40].

High-level and domain specific libraries have been proposed to shield the programmers from concurrency

subtleties, raising the level of abstraction [2,19,45]. These approaches are complementary to Erbium as

higher level abstractions. But they also suffer from expressiveness limitations (algorithmic skeletons) and

they induce abstraction penalty not easily managed by the C++ compiler front-ends (including code size

overhead unacceptable in embedded and memory-constrained accelerators). Unlike the former approaches,

some of these libraries choose to trade safety for the ability to express non-deterministic concurrency [2,45];

they fill a gap in the domain of concurrent data structures that Erbium is unable to address as efficiently

today. This motivates further research in combining data-flow and transactional concurrency in a single,

consistent programming model.

Our approach is complementary to the large body of work in lightweight runtimes. Cilk does not

natively support data-flow concurrency [33] but we share its emphasis on compile-time specialization. We

wish to integrate its work stealing and load-balancing capabilities in the future, as motivated by Azevedo

et al. for streaming applications [5]. In addition, Erbium binds processes and data together, facilitating
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process migration and fault tolerance. Regarding the distributed-memory implementation of Erbium, we

will leverage the results of proposals like StarSs (data-flow oriented language, [38]) and StarPU (process

network, runtime approach, [4]).

Further performance improvements can be achieved with hardware support, starting from the pioneering

data-flow architecture designs [14,50], recently revived for coarser-grain, task-level concurrency [1,29,46].

Hardware support reduces the turn-around time for context-switch and thread awaking.

Finally, our work is totally independent from verification-oriented enforcement of deterministic execu-

tion in the scheduler [36,41]. These approaches do not define a deterministic semantics for the application,

independently of the architecture.

7 Conclusion

We introduced Erbium and its three main ingredients: an intermediate representation for compilers and

efficiency programmers, a data structure for scalable and deterministic concurrency, and a lightweight run-

time. The intermediate representation is being implemented in GCC 4.3 and allows classical optimizations

and parallelizing transformations to operate transparently. It relies on 4 concurrency primitives imple-

mented with platform-specific, non-blocking algorithms. The data structure called Event Recording (Er)

is the basis for a scalable and deterministic concurrency model with predictable resource management.

Our current implementation has a very low footprint and demonstrates high scalability and performance.

Unlike usual runtime approaches to low-level parallel programming, the intermediate representation is the

portability layer. We are working on porting Erbium to distributed memory machines (Cell BE and

clusters) and on front-ends for high-level languages.
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