
DEPENDENT VECTOR TYPES FOR MULTIRATE FAUST

Pierre Jouvelot
CRI, Mathématiques et systèmes, MINES ParisTech
pierre.jouvelot@mines-paristech.fr

Yann Orlarey
Grame

orlarey@grame.fr

ABSTRACT

Faust is a functional programming language dedicated to
the specification of executable monorate synchronous mu-
sical applications. To extend Faust capabilities to domains
such as spectral processing, we introduce here a multi-
rate extension of the core Faust language. The key idea
is to link rate changes to data structure manipulation op-
erations: creating a vector-valued output signal divides the
rate of input signals by the vector size, while serializing
vectors multiplies rates accordingly. This interplay be-
tween vectors and rates is made possible in the language
static semantics by the introduction of dependent types.
We present a typing semantics, a denotational semantics
and a correctness theorem that show that this extension
preserves the language synchonous characteristics. This
new design is under implementation in the Faust compiler.

1. INTRODUCTION

Since Music III, the first language for digital audio syn-
thesis, developed by Max Mathews in 1959 at Bell Labs,
to Max [1], and from MUSICOMP, considered one of the
very first music composition languages, developed by Le-
jaren Hiller and Robert Baker in 1963, to OpenMusic [2]
and Elody [3], research in music programming languages
has been very active and innovative. With the convergence
of digital arts, such languages, and in particular visual pro-
gramming languages like Max, have gained an even larger
audience, well outside the computer music community.

Within this context, the Faust language [4] introduces
a dual programming paradigm, based on a highly abstract,
purely functional approach to signal processing while of-
fering a high level of performance. Faust semantics is
based on a clean and sound framework that enables math-
ematical correction proofs of Faust applications to be per-
formed, while being complementary to current audio lan-
guages by providing a viable alternative to C/C++ for the
development of efficient signal processing libraries, audio
plug-ins or standalone applications.

The definition of the Faust programming language uses
a two-tiered approach: (1) a core language provides con-
structs to manage signal transformations and (2) a macro
language is used on top of this kernel to build and ma-
nipulate signal processing patterns. The macro language

Copyright: c©2010 Jouvelot et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original author and

source are credited.

has rather straightforward syntax and semantics, since it is
a syntactic variant of the untyped lambda-calculus with a
call-by-name semantics (see [5]). On the other hand, core
Faust is more unusual, since, in accordance with its musi-
cal application domain, it is based on the notion of “signal
processors” (see below).

The original definition of Faust provided in [6] is based
on monorate signal processors; this is a serious limitation
when specifying spectral-based sound manipulation algo-
rithms (such as FFT) or extending the language applicabil-
ity outside the music domain, for instance for image analy-
sis and manipulation (such as data compression). We pro-
pose here a multirate extension of Faust based on a key in-
novative principle: data rate changes are intertwined with
vector data structure manipulation operations, i.e., creating
an output signal where samples are vectors divides the rate
of input signals by the vector size, while serializing vectors
multiplies rates accordingly. Since Faust current definition
does not offer first-class vectors, this proposal kills two
birds with one stone by adding both multirate processing
and vector data structures; this interplay between vectors
and rates is made possible in the typing semantics of Faust
by the introduction of dependent types.

The contributions of this paper are as follows: (1) the
specification of a new extension of Faust for vector pro-
cessing and multirate applications, (2) a static typing se-
mantics of Faust, based on dependent types, (3) a denota-
tional semantics of Faust (the one presented in [6] is op-
erational) and (4) a Frequency Correctness theorem that
validates the multirate synchronous nature of this vector
extension.

After this introduction, Section 2 provides a brief in-
formal survey of Faust basic operations. Section 3 is a
proposal for a multirate extension of this core, which we
illustrate with a simple vector application implementing
a Haar-like subsampling operation. Section 4 defines the
static domains used to define Faust static typing seman-
tics (Section 5). Section 6 defines the semantic domains
and rules used in the Faust dynamic denotational seman-
tics; showing that this multirate extension of Faust indeed
behaves properly, i.e, that signals of different frequencies
merge gracefully in a multirate program, is the subject of
the Frequency Correctness theorem. The last section con-
cludes.

2. OVERVIEW OF FAUST

A Faust program does not describe a sound or a group of
sounds, but a kind of signal processor, something that gets
input signals, itself a function from time ticks t to values,

and produces output signals. The program source is orga-
nized as a set of definitions mapping identifiers to expres-
sions; the keyword identifier process is the equivalent of
main in C. Running a Faust program amounts to plugging
the I/O signals implicity used by process to the actual
sound environment, such as a microphone and an audio
system, for instance.

To begin with, here are two very simple Faust examples.
The first one produces silence, i.e., a signal providing an
infinite supply of 0s:

process = 0;

Note that 0 is an unusual signal processor, since it takes an
empty set of input signals and generates a signal of con-
stant values, namely the integer 0. The second simple ex-
ample is the conversion of a two-channel stereo signal into
a one-channel mono signal using the + primitive that adds
its two input signals together to yield a single, summed
signal:

process = +;

Faust primitives are assembled via a set of high-level
composition operations, generalizations of the mathemat-
ical function composition operator ◦. For instance, con-
necting the output of + to the input of abs in order to
compute the absolute value of the summed output signal
can be specified using the sequential composition operator
’:’ (colon):

process = + : abs;

Here is an example of parallel composition (a stereo ca-
ble) using the operator ’,’ that puts in parallel its left and
right expressions. It uses the _ (underscore) primitive that
denotes the identity function on signals, akin to a simple
audio cable for a sound engineer:

process = _,_;

These operators can be arbitrarily combined. For exam-
ple, to multiply the input signal by 0.5, one can write:

process = _,0.5 : *;

Taking advantage of some syntactic sugar the details of
which are not addressed here, the above example can be
rewritten, using what functional programmmers know as
curryfication:

process = *(0.5);

The recursive composition operator ’˜’ can be used to
create processors with delayed cycles. Here is the example
of an integrator:

process = + ˜ _;

where the ˜ operator connects here in a feedback loop the
output of + to the input of _, via an implicit connection
to the mem signal processor which implements a 1-sample
delay, and the output of _ is then used as one of the inputs

of +. As a whole, process thus takes a single input signal
s and computes an output signal s′ such that s′(t) = s(t)+
s′(t−1), thus performing a numerical integration operation

To illustrate the use of this recursive operator and also
provide a more meaningful audio example, the following
3-line Faust program defines a pseudo-noise generator:

random = +(12345) ˜ *(1103515245);
noise = random,2147483647.0 : /;
process =
(noise,vslider("noise[style:knob]",

0,0,100,0.1) : *),
100 : /;

The definition of random specifies a (pseudo) random
number generator that produces a signal s such that s(t) =
12345 + 1103515245 ∗ s(t − 1). Indeed, the expression
+(12345) denotes the operation of adding 12345 to a
signal, and similarly for *(1103515245). These two
operations are recursively composed using the ˜ operator,
which connects in a feedback loop the output of +(12345)
to the input of *(1103515245) (via an implicit 1-sample
delay) and the output of *(1103515245) to the input of
+(12345).

The definition of noise transforms the random signal
into a noise signal by scaling it between -1.0 and +1.0,
while the definition of process adds a simple user in-
terface to control the production of sound; the noise signal
is multiplied by the value delivered by a slider to control
its volume. The whole process expression thus does not
take any input signal but outputs a signal of pseudo random
numbers (see the familiar block diagram representation of
this process in Figure 1, where the little square near the
addition block denotes a 1-sample delay operator).

Figure 1. Noise generator process block diagram

The last two composition operators in the definition of
core Faust, <: and :>, perform fan-out and fan-in transfor-
mations, as we illustrate in the next section

3. MULTIRATE EXTENSION

Faust, as described in [4], is a monorate language; in mono-
rate languages, there is just one time domain involved when

accessing successive signal values. However, digital signal
processing traditionally relies heavily upon subsampling
and oversampling operations, which naturally lead to the
introduction of multirate concepts. Since Faust targets a
subset of DSP processing, the proposal introduced by Yann
Orlarey [7] suggests to use multiple frequencies to deal
with such issues, instead of more general clocks, such as
those present in traditional synchronous programming lan-
guages [8]. We informally describe below this approach,
and illustrates it with a simple example of its use.

3.1 Frequencies for vector processing

We propose to see clocking issues as an add-on to the Faust
static semantics (Faust is a strongly typed language). Fre-
quencies f are elements of the Freq = Q+ domain. Sig-
nals, which are traditionnally typed according to the type
of their codomain, will now be characterized by a pair,
called a rated type, formed by a type and a frequency:
Type] = Type× Freq.

The first key idea is to posit that multiple rates in an ap-
plication are introduced via vectors. Vectors are created us-
ing the new vectorize primitive; informally, it collects
n consecutive samples (the constant value n is provided
by the signal that is the second argument to this primitive)
from an input signal of frequency f and outputs vectors
with n elements at frequency f/n; if the input values are
of type t, then output vector samples have type vectorn(t).
The dual serialize primitive maps a signal of vectors
of type vectorn(t) at frequency f to the signal of frequency
f ∗ n of their linearized elements, of type t. The primitive
[] provides, using as inputs a signal of vectors and one of
integer indexes, an output signal of successively indexed
vector elements. Finally, the primitive # builds a signal of
concatenated vectors from its two vector signal inputs.

The second key feature of this multirate extension is
thus that the size n of vectors are encoded into vector types;
moreover this size is provided via the value of a signal,
argument of the vectorize primitive. This calls for
a dependent-type [9] static semantics that embeds values
within types. Since Faust strives for high run-time perfor-
mance, this type system must furthermore be sophisticated
enough to be able to ensure, at compile time, that a given
signal is constant (when it is to be used as a signal denot-
ing the size of a vector): we introduce intervals of values
in the static semantics to deal with such an issue. Before
describing formally our framework in the remainder of this
paper, we illustrate it with an example.

3.2 Haar Filtering, an Example

To get a better intuitive understanding of how these vec-
tor constructs interact with Faust primitives, we present a
Haar-like downsampling process, a simplified step in the
Discrete Wavelet Transform shown to be of use, for in-
stance, in some audio feature extraction algorithms [10].
The signal processor process takes an input signal s at
frequency f and produces two output signals, the mean
o1 and difference o2, at frequency f/2, such that o1(t) =
(s(2t) + s(2t + 1))/2 and o2(t) = o1(t) − s(2t + 1). It
could be defined in our extended Faust as follows:

down = vectorize(2) : [](1);
mean = _ <: _,mem :> /(2);
left = _,!;
process =

_ <: (mean:down),down <: left,-;

Here, down gathers the data from its input signal in pairs
stored in vectors of size 2 (hence the size 2 used in the
curried version of vectorize) from which the second
element is extracted, again using a signal processor, here
[], curried over its second argument 1 (vector indices start
at 0). This function downsamples its input signal of fre-
quency f into an output signal of frequency f/2, picking
one value over two from the input.

The definition of mean indicates that its input signal s
(denoted by _) is duplicated, using the <: fan-out opera-
tor. Two copies are expected since the output of <: is fed
into a parallel composition of two one-input signals: the
first copy is simply passed along by _, while the second
one is being delayed via mem by one sample. Both signals
s(t) and its delayed copy s(t − 1) are then averaged, us-
ing the fan-in operator :>, which adds the mixed signals to
s(t) + s(t − 1); this sum signal is then divided by 2 us-
ing a curried division operation to yield an average signal
m(t) = (s(t) + s(t− 1))/2.

The signal processor process duplicates its single in-
put s (as before, _) to a two-input parallel process: the first
copy is averaged using mean and then downsampled us-
ing sequencing with down, yielding signal m2; the second
copy is simply downsampled, yielding s2. These two sig-
nals are then fanned-out into the four-input signal proces-
sor left,-; it indeed takes four inputs, since (1) left
takes a pair of signals, here (m2, s2), keeping only its left
component m2 using the primitive ! that maps, by defini-
tion, its own s2 to nothing and (2) the substraction oper-
ation - takes two inputs, here again m2 and s2, yielding
the signal m2 − s2. The end result is the expected pair of
signals (o1, o2) = (m2,m2 − s2) of downsampled means
and differences.

4. STATIC DOMAINS

The multirate extension of Faust static semantics relies heav-
ily on dependent typing, which is formally defined below.

4.1 Dependent Types

Since the values embedded in signals are typed, the static
typing semantics of extended Faust uses basic types b in
Base, which is a defined set of predefined types:

b ∈ Base = int | float

Since our type system uses dependent types, we need a
way to abstract values to yield a decidable framework. We
introduce spans a in Span, which are pairs of signed in-
tegers n or m; spans represent the intervals of values that
expressions may have at run time:

n,m ∈ Zω = {−ω,+ω} ∪ Z
a ∈ Span = Zω × Zω

where we assume the usual extensions of arithmetic opera-
tions on Z to Zω; we take care in the following to avoid in-
troducing meaningless expressions such as−ω++ω. Note
that we use integer spans here for both integer and floating-
point values for simplicity purposes; extending our frame-
work to deal with floating-point spans is straightforward.
A span a = (n,m) is written [n,m] in the sequel.

All base-typed expressions will be typed with an ele-
ment b of Base, together with a span [n,m] that specifies
an over-approximation of the set of values these expres-
sions might denote. Vectors, as groups of n values, will be
typed using their size (the number n) and the type of their
elements. Finally, since signed integers are part of types,
via spans, we will need to perform some operations over
these values, and thus introduce the notion of type addi-
tion. The type domain is then 1 :

t ∈ Type = Base× Span |
N× Type |
Type× Type

As a short hand, we note b[a] for base types, vectorn(t) for
vector types and t+ t′ for the addition of two types.

Not all combinations of these type-building expressions
make sense. We formally define below the notion of a well-
formed type:

Definition 1 (Well-Formed Type wff (t))
A type t is well-formed, noted wff (t), iff:

• when t = b[n,m], then n ≤ m and ¬(n = m =
−ω) and ¬(n = m = +ω);

• when t = vectorn(t′), then wff (t′) and n ≥ 0;

• when t = t′ + t′′, then wff (t′) and wff (t′′).

4.2 Rated Types

Since vectors are used to introduce multirate signal pro-
cessing into Faust, we need to deal with these rate issues in
the static semantics. As hinted above, we use frequencies
f in Freq to manage rates:

f ∈ Freq = Q

In our framework, the only signal processing operations
that impact frequencies are related to over- and sub-sampl-
ing conversions. To represent such conversions, we use
multiplication and division arithmetic operations, thus defin-
ing Freq as the set of positive rational numbers.

The static semantics of signals manipulated in our ex-
tended Faust thus not only deals with value types, but also
with frequencies. We link these two concepts in the no-
tion 2 of rated types t] in Type]:

t] ∈ Type] = Type× Freq |
Type] × Type]

We will note tf the rated type (t, f) and t]+t′] the addition
of two rated types. We also use simply t when f is not
needed and there is no risk of confusion.

1 The use of the same symbol, t, for both times and types should not
be confusing, since they operate in different semantics.

2 The notation] is, of course, different from the vector concatenation
Faust primitive.

4.3 Impedances

A Faust signal processor maps sets (we called these beams)
of signals to beams of signals. These beams have a type
(we only represent the type of the image of a signal, since
the domain is always time, and signals can only embed
values of a single type) called an impedance z in Z. Type
checking a Faust expression amounts to verifying the com-
patibility of the input and output impedances of its com-
posed subexpressions:

z ∈ Z =
⋃
n≥0

Type]
n

The null impedance, in Type]
0
, is (), and is used when

no signal is present. A simple impedance is (tf), and is
the type of a beam containing one signal that maps time to
values of type t at frequency f . The impedance length |z|
is defined such that z ∈ Type]

|z|
. The i-th rated type in

z (1 ≤ i ≤ |z|) is noted z[i]. Two impedances z1 and z2
can be concatenated as z = z1‖z2, to yield an impedance

in Type]
d1+d2 where di = |zi|, defined as follows:

z[i] = z1[i] (1 ≤ i ≤ d1)

z[i+ d1] = z2[i] (1 ≤ i ≤ d2)

To build more complex impedances, we introduce the ‖
iterator as follows:

‖n,n′,dM = (), if n > n′

M(n) ‖ ‖n+d,n′,dM otherwise

where M is a function that maps integers to impedances.
Intuitively, ‖n,n′,dM is the concatenation ofM(n),M(n+
d),M(n + 2d), ...,M(n′). As a short hand, z[n, n′, d],
which selects from z the types from the n-th type to the
n′-th one by step of d , is ‖n,n′,dλi.z[i], while a simple
slice of z is z[n, n′] = z[n, n′, 1].

Definition 2 (Well-Formed Impedance wff (z))
An impedance z is well-formed, noted wff (z), iff, for all
i ∈ [1, |z|], there exist fi, noted](z[i]), and ti such that
z[i] = ti

fi , with wff (ti) and fi ∈ Freq.

4.4 Schemes

Some Faust processors, such as the identity processor _
or the delay processor mem, are polymorphic. The static
definitions of Faust primitives must thus be type schemes
that abstract their input and output impedances over ab-
stractable sorts S, in Sort. Type schemes k in Scheme are
defined as follows:

S ∈ Sort = {Base,N,Type,Freq,Type]}
k ∈ Scheme = (Var× Sort)∗ × Z× Z

For readability 3 , we note Λx : S...x′ : S′.(z, z′) the
scheme (((x, S), ..., (x′, S′)), z, z′), where x are abstract-
ing variables in Var. These schemes will be instantiated

3 Keeping with a long tradition, we choose the usual ”:” sign to denote
typing relations, even though it is also used to represent the sequence
operation in Faust. The reader should have no problem distinguishing
both uses.

where needed; the substitution (z, z′)[l′/l] of a list l of
variables by elements in l′ in a pair (z, z′) is defined as
usual.

The static definitions of Faust primitives are gathered in
type environments T that map Faust identifiers to schemes.

5. STATIC SEMANTICS

The static semantics specifies, by induction on Faust syn-
tax, how impedance pairs are assigned to signal processor
expressions. We first define some utilitary operations on
static domains, and then provide static rules for Faust.

5.1 Syntax

Faust syntax uses identifiers I from the set Ide and expres-
sions E in Exp. Numerical constants, be they integers or
floating point numbers, are seen as predefined identifiers.
The syntax of core Faust is thus defined as follows:

E ::= I |
E1 : E2 | E1, E2 |
E1 <: E2 | E1 :> E2 |
E1 ∼ E2

In Faust, every expression represents a signal processor,
i.e., a function that maps signals, which are functions from
time to values, to other signals.

5.2 Impedance Matching

Complex Faust expressions are constructed by connecting
together simpler processor expressions. In the case of fan-
in (respectively fan-out) expressions, such connections re-
quire that the involved signal processors match in some
specific sense: Faust uses the impedance matching relation
z′1 � z2 (resp. ≺) to ensure such compatibility conditions.
Such a relation goes beyond simple type equality by autho-
rizing a larger (resp. smaller) output z′1 to fit into a smaller
(resp. larger) input z2, using the following definitions (�
requires mixing of signals, while ≺ simply dispatches the
unmodified signals) in which d′1 = |z′1| and d2 = |z2|:

z′1 � z2 = d′1d2 6= 0 and

mod(d′1, d2) = 0 and∑
i∈[0,d′

1/d2−1]

z1[1 + id2, (i+ 1)d2] = z2

z′1 ≺ z2 = d′1d2 6= 0 and

mod(d2, d
′
1) = 0 and

‖1,d2,d′
1
λi.z′1 = z2

where equality on impedances is defined by structural in-
duction and “mod” denotes the arithmetic modulo opera-
tion.

Since we deal in our framework with dependent types
(values, via spans, appear in the static domains), perform-
ing the mixing of signals, as above, require the ability to
perform, in the static semantics, additions over impedances
and, consequently, over types; for instance, mixing a signal
of type int[0, 2] with one of type int[3, 6] yields a signal of

type int[3, 8]. To formalize such operations, we assume the
existence of static semantics addition rules such as:

(b+) b[n,m] + b[n′,m′] = b[n+ n′,m+m′]
(v+) vectorn(t) + vectorn(t′) = vectorn(t+ t′)

The presence of values in types also induces a natural
order relationship t ⊂ t′ on Type.

5.3 Type Environments

We assume that there is an initial type environment T0 that
provides the typing definitions for the predefined signal
processors. For instance, T0(_) = Λt] : Type].((t]), (t]))

and T0(+) = Λt] : Type].t′
]

: Type].((t], t′
]
), (t] + t′

]
)).

As a consequence of the implicit mixing introduced by the
impedance matching relation � used in fan-in operations,
signal processors for numerical operators such as + must
be able to deal with any type; they are thus associated to
polymorphic type schemes in the type environment. Their
arguments must also have the same frequency, a constraint
enforced by the use of the same t] in these type schemes. A
similar requirement exists for constants such as 0 (which
are too predefined identifiers in T0).

Introducing the vector extension in the static semantics
simply amounts to adding, beside the empty vector {}, of
type Λf : Freq.t : Type.((), (vector0(t)f)), four bindings
in the initial environment T0:

• T0(vectorize) =
Λf : Freq.f ′ : Freq.t : Type.n : N.
((tf , int[n, n]f

′
), (vectorn(t)f/n));

• T0(#) =
Λf : Freq.t : Type.m : N.n : N.
((vectorm(t)f , vectorn(t)f), (vectorm+n(t)f));

• T0([]) =
Λf : Freq.t : Type.n : N.
((vectorn(t)f , int[0, n− 1]f), (tf));

• T0(serialize) =
Λf : Freq.t : Type.n : N.((vectorn(t)f), (tf∗n)).

The dependent type system is key here. In the primitive
vectorize, we are able to specify that the vector size
has to be constant, since its type uses a span restricted to be
one-valued, [n, n]; note that the frequency f ′ of this signal
is also irrelevant, and can be of any value. When concate-
nating vectors with the # processor, the resulting vector
size m+n sums the sizes of the input vectors. We are also
able to ensure that no out-of-bound accesses can occur in
Faust, since the index signal argument fed to the [] signal
processor is constrained, at compile time, to be between 0
and the vector size, since its span is [0, n− 1]. Finally, no-
tice how size information impacts signal frequencies; this
is key to prove the theorem of Section 6.3.

5.4 Typing Rules

Faust is strongly and statically typed. Every expression, a
signal processor, is typed by its I/O impedances:

Definition 3 (Expression Type Correctness T ` E)
An expression E is type correct in an environment T , noted
T ` E, if there exist z and z′ such that T ` E : (z, z′)
with wff (z) and wff (z′).

The static semantics inference rules are defined in Ta-
ble 1; some are rather straightforward. Rule (i) ensures
that identifiers are typable in the type environment T ; type
schemes can be instantiated to adapt themselves to a given
typing context of Identifier I. In Rule (:), signal proces-
sors are plugged in sequence, which requires that the out-
put impedance of E1 is the same as E2’s input. In Rule (,),
running two signal processors in parallel requires that their
input and output impedances are concatenated. In Rules
(<:) and (:>), the ≺ and � constraints are used to ensure
that a proper matching of the output of E1 to the input of
E2 is possible.

The most involved rule deals with loops (∼). Here, the
input impedance z2 of the feedback expression E2 is con-
strained to be the first |z2| types of the output impedance
z′. Also, the first |z′2| elements of the input impedance
of the main expression E1 must be the same as the ouput
impedance of the feedback expression E2; these looped-
back signals will not thus impact the global input impedance
z1[|z′2|+ 1, |z1|]. Note that the output impedance ẑ′ is here
an approximation of z′. This is introduced not for semantic
reasons, but to make type checking decidable while ensur-
ing that the dependent return type is valid independantly of
the unknown bounds of the iteration space:

Definition 4 (Impedance Widening ẑ)
The widened impedance of z, noted ẑ, is such that |ẑ| = |z|
and ∀i ∈ [1, |z|].ẑ[i] = ẑ[i], with:

• ̂vectorn(t)f = vectorn(t̂)f ;

• b̂[a]f = b[â]f ;

• [̂n,m] = [−ω,+ω].

Basically, all knowledge on value bounds is lost under
widening.

Finally, the typical Rule (⊂) allows types to be extended
according to the order relationship induced by spans in
types and basic types.

6. DYNAMIC SEMANTICS

Since Faust sees parallelism as an implementation issue,
the denotational semantics for core Faust is based on stan-
dard notions and does not introduce parallel-specific con-
cepts such as powerdomains, while remaining synchronous.

6.1 Domains

A Faust expression denotes a signal processor; as such its
semantics manipulates signals, which assign various val-
ues to time events. The dynamic semantics, in particular,
uses integers n, k, d, i (in N) and times t in Time = N.

Signals map times to values v in Val :

v ∈ Val = N + R +
⋃
n≥0

Valn + {⊥}+ {?}

Since the evaluation process may be non-terminating, we
posit that Val is a cpo, with bottom element ⊥; all op-
erations in Val are strict. The value ? denotes error val-
ues (useful to denote non-existing values such as 1/0), and
thus, for any Operator o and Value v different from ⊥, we
assume o(?, v) =?. For a vector v ∈ Valn, represented by
tuples of n elements, we define its size |v| by v ∈ Val|v|.

A signal s, which is a history denoted by a function,
is a member of Signal = Time → Val. We define the
domain dom(s) of a signal s by dom(s) = {t/s(t) 6=⊥}.
The size of this domain |dom(s)|, called its support s, is a
member of N + {ω}, where ω is used to deal with infinite
signals. We gather signals into beams m = (m1, ...,mn)
in Beam =

⋃
n≥0 Signaln.

A signal processor p in Proc is the basic constituent of
Faust programs: p ∈ Proc = Beam → Beam. We define
dim(p) = (n, n′) such that p ∈ Signaln → Signaln

′
.

The standard semantics of a Faust expression is a func-
tion of the semantics of its free identifiers; we collect these
in a state r, a member of State = Ide→ Proc.

6.2 Denotational Rules

We assume given an initial state r0, which binds Faust pre-
defined identifiers to their value, such that, for instance:

r0(_) = λ(s).(s)

r0(+) = λ(s1, s2).(λt.s1(t) + s2(t))

r0(mem) = λ(s).(λt.s(t− 1) if t ≥ 1, 0 if t = 0)

These definitions assume that T ` 0 : t for all types
t, since this is needed for the definition of mem to make
sense.

As in the static semantics, introducing the vector exten-
sion in the dynamic semantics 4 simply amounts to adding,
beside the value λ().(λt.()) for {}, four straightforward
bindings in the initial state:

• r0(vectorize) =
λ(s1, s2).(λt.(s1(nt), ..., s1(n− 1 + nt)),

where n = s2(0));

• r0(#) = λ(s1, s2).(λt.s1(t)‖s2(t));

• r0([]) = λ(s1, s2).(λt.s1(t)[s2(t)]);

• r0(serialize) =
λ(s).(λt. ⊥, if n = |s(0)| = 0,

s(bt/nc)[mod(t, n)] otherwise).

To be able to properly define the semantic function E:

E ∈ Exp→ State→ Beam→ Beam

one needs to ensure that we operate with states that are
type-correct.

Definition 5 (State Type Correctness T ` r)
A state r is type correct in an environment T , noted T ` r,
if, for all I in dom(r), one has T ` I.

4 We consider that all notations introduced to manipulate impedances
can similarly be applied to vectors and beams.

(i)
T (I) = Λl.(z, z′)

∀(x, S) ∈ l . l′(x) ∈ S
T ` I : (z, z′)[l′/l]

(:)
T ` E1 : (z1, z

′
1)

T ` E2 : (z′1, z
′
2)

T ` E1 : E2 : (z1, z
′
2)

(<:)

T ` E1 : (z1, z
′
1)

T ` E2 : (z2, z
′
2)

z′1 ≺ z2
T ` E1 <: E2 : (z1, z

′
2)

(,)
T ` E1 : (z1, z

′
1)

T ` E2 : (z2, z
′
2)

T ` E1, E2 : (z1‖z2, z′1‖z′2)
(:>)

T ` E1 : (z1, z
′
1)

T ` E2 : (z2, z
′
2)

z′1 � z2
T ` E1 :> E2 : (z1, z

′
2)

(⊂)

T ` E : (z, z′)
z′ ⊂ z′1
z1 ⊂ z
T ` E : (z1, z

′
1)

(∼)

T ` E1 : (z1, z
′)

T ` E2 : (z2, z
′
2)

z2 = z′[1, |z2|]
z′2 = z1[1, |z′2|]

T ` E1 ∼ E2 : (z1[|z′2|+ 1, |z1|], ẑ′)

Table 1. Faust Static Semantics

E[[I]]r = r(I)

E[[E1 : E2]]r = p2 ◦ p1
E[[E1, E2]]r = λm.p1(m[1, d1])‖p2(m[d1 + 1, d1 + d2])

E[[E1 <: E2]]r = λm.p2(‖1,d2,d′
1
λi.p1(m))

E[[E1 :> E2]]r = λm.p2(‖1,d2,1λi.sum(p1(m)[i, d′1, d2]))

where sum((s)) = (s) and sum((s)‖m) = r(+)((s)‖sum(m))

E[[E1 ∼ E2]]r = λm.fix(λm′.p1(p2(@(m′[1, d2]))‖m))

where @(()) = () and @((s)‖m) = E[[mem]]rs‖@(m)

Table 2. Faust Denotational Semantics: we note pi = E[[Ei]]r and (di, d
′
i) = dim(pi)

The semanticsE[[E]]r of an expression E in a type-correct
state r is a function that maps an input beamm to an output
beam m′.

The semantics (see Table 2) of an identifier is available
in the state r. The semantics of ”:” is the usual compo-
sition of the subexpressions’ semantics. The semantics of
a parallel composition is a function that takes a beam of
size at least d1 + d2 and feeds the first d1 signals into p1
and the subsequent d2 into p2; the outputs are concate-
nated. The fan-out construct repeatedly concatenates the
outputs of p1 to feed into the (larger) d2 inputs of p2. The
fan-in construct performs a kind of opposite operation; all
mod(i, d2)-th output values of p1 are summed together to
construct the i-th input value of p2. The loop expression
has the most complex semantics. Its feedback behavior is
represented by a fix point construct; the output of p2 is fed
to p1, after being concatenated to m, to yield m′; the input
of p2 is the one-slot delayed version of m′.

6.3 Frequency Correctness Theorem

In the presence of signals using different rates at run time,
the consistency of their frequency assignment must be en-
sured. In particular, we show below that the support of
signals and, more generally, beams can be bounded in a
way consistent with their relative frequencies; this is the

Frequency Correctness theorem. Of course, this theorem
is only valid if the values denoted by a given Faust ex-
pression are consistent with its type definition, and kept as
such all along execution (see the Subject Reduction theo-
rem linking Faust static and dynamic semantics in [11]).
We proceed first with the definition of this notion of run-
time type correctness.

Definition 6 (Value Type Correctness v : t)
A value v is type correct, noted v : t, iff:

• when v ∈ N, then t = int[n,m] and n ≤ v ≤ m;

• when v ∈ R, then t = float[n,m] and n ≤ v ≤ m;

• when v ∈
⋃

n Valn, then t = vectorn(t′), n = |v|
and, for all i ∈ [0, n− 1], v[i] : t′.

Definition 7 (Signal Type Correctness s : tf)
A signal s is type correct w.r.t. a type tf , noted s : tf , if,
for all u ∈ dom(s), one has s(u) : t.

Definition 8 (Beam Type Correctness m : z)
A beam m is type correct w.r.t. an impedance z, noted
m : z, if |m| = |z| and, for all i ∈ [1, |m|], one has
m[i] : z[i].

For the evaluation process to preserve consistency, the
environment T and state r, which provide the static and
semantic values of predefined identifiers, must introduce
consistent definitions for their domains:

Definition 9 (State Type Consistency ` T, r)
An environment T and a state r are consistent, noted `
T, r, if, for all I in dom(r), for all z, z′,m, one has: if T `
I : (z, z′) and m : z, then r(I)(m) : z′ and dim(r(I)) =
(|z|, |z′|).

We may now proceed with the issue of frequency.

Definition 10 (Beam Boundness (m, z) ! c)
For any c ∈ Q, a beam m of impedance z is c-bounded,
noted (m, z) ! c, if mini∈[1,|z|](m[i]/](z[i])) ≤ c.

Informally, when (m, z) ! c, then there is at least one
signal i∗ in m that has at most c](z[i∗]) elements in its do-
main of definition 5 . This is interesting since the supports
of signals in a beam m tell us something about how many
values can be computed if we use m as input of a signal
processor. Thus c](z[i∗]) is an upper bound on the num-
ber of elements that can be used in a synchronous com-
putation (all subsequent values are ⊥), thus yielding some
clues about the size of buffers needed to perform it.

Another way to look at c-boundness comes from c itself;
being the inverse of a frequency, its unit is the second, and
thus c is a time. The definition of Beam Boundness yields
an upper bound on the time required to exhaust (at least one
of) the signals of m, thus providing a time limit on compu-
tations that would use these as actual inputs. Even though
this limit, as stated here, holds for a complete computa-
tion, it also applies when one deals with slices of the com-
putation process, for instance when considering buffered
versions of a program.

The Frequency Correctness theorem states that, given a
Faust expression E (with no explicit mem, since its delaying
action extends domains of definition), if the environment T
and state r are consistent and E maps beams of impedance
z to beams of impedance z′, then, given a beam m that is
type correct w.r.t. z and is c-bounded, then the semantics
p(m) of E will yield a c-bounded beam m′ of impedance
z′.

Theorem 1 (Frequency Correctness)
For all E not containing mem, T, z, z′, c, r,m and m′, if
` T, r, m : z, (m, z) ! c, T ` E : (z, z′), then |z′| =
0 ∨ (m′, z′) ! c, where m′ = p(m) : z′ and p = E[[E]]r.

Basically, this theorem (see proof in [11]) tells us that an
upper-bound of the running time of E is always the same,
whichever way we try to assess it via any of its observable
facets (namely input or output data): c is consistent and
thus a characteristics of E. This shows that the synchronous
nature of Faust is preserved.

5 When signals are properly synchronized, e.g., in an actual computa-
tion, all m[i]/](z[i]) are equal, and the comments in this section about
i∗ apply in fact to all signals.

7. CONCLUSION

We provide the typing semantics, denotational semantics
and correctness theorem for a new multirate extension of
Faust, a functional programming language dedicated to mu-
sical applications. We propose to link the introduction of
a vector datatype in a synchronous setting to the presence
multiple signal rates. We describe a dedicated framework
based on a new polymorphic dependent-type static seman-
tics in which both vector sizes and frequencies are values,
and prove a synchrony consistency theorem relating values
and frequencies. This proposal is under implementation in
the Faust compiler.

8. ACKNOWLEDGEMENTS

This work is partially funded by the French ANR, as part
of the ASTREE Project (2008 CORD 003 01).

9. REFERENCES

[1] M. Puckette, “The patcher,” in Proceedings of the In-
ternational Computer Music Conference, ICMA, 1988.

[2] G. Assayag and C. Agon, “OpenMusic Architecture,”
in Proceedings of International Computer Music Con-
ference (ICMA, ed.), pp. 339–340, 1996.

[3] S. Letz, Y. Orlarey, and D. Fober, “The Role of
Lambda-Abstraction in Elody,” in Proceedings of the
International Computer Music Conference (ICMA,
ed.), pp. 377–384, 1998.

[4] E. Gaudrain and Y. Orlarey, “A Faust Tutorial,” tech.
rep., GRAME, Lyon, 2003.

[5] H. Barendregt, The Lambda Calculus: Its Syntax and
Semantics. North-Holland Publishing, 1981.

[6] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and Se-
mantical Aspects of Faust,” Soft Computing, vol. 8,
no. 9, pp. 623–632, 2004.

[7] Y. Orlarey, “Notes sur les extensions de Faust,” tech.
rep., GRAME, Lyon, 2009.

[8] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,
P. L. Guernic, and R. de Simone, “The Synchronous
Languages Twelve Years Later,” in Proceedings of the
IEEE, vol. 91, Jan. 2003.

[9] J. van Leeuwen, ed., Handbook of Theoretical Com-
puter Science (vol. B): Formal Models and Semantics.
MIT Press, 1990.

[10] G. Tzanetakis, G. Essl, and P. Cook, “Audio Analysis
using the Discrete Wavelet Transform,” in Proc. Conf.
in Acoustics and Music Theory Appl.. WSES, 2001.

[11] P. Jouvelot and Y. Orlarey, “Semantics for Multirate
Faust,” tech. rep., CRI, Mathématiques et systèmes,
MINES ParisTech, Nov. 2009.

	 1. Introduction
	 2. Overview of Faust
	 3. Multirate Extension
	3.1 Frequencies for vector processing
	3.2 Haar Filtering, an Example

	 4. Static Domains
	4.1 Dependent Types
	4.2 Rated Types
	4.3 Impedances
	4.4 Schemes

	 5. Static Semantics
	5.1 Syntax
	5.2 Impedance Matching
	5.3 Type Environments
	5.4 Typing Rules

	 6. Dynamic Semantics
	6.1 Domains
	6.2 Denotational Rules
	6.3 Frequency Correctness Theorem

	 7. Conclusion
	 8. Acknowledgements
	 9. References

