Towards Automatic C Programs Optimization and
Parallelization using the PIPS-PoCC Integration

Dounia Khaldi

Corinne Ancourt

Francois Irigoin

CRI, Mathématiques et Systemes, MINES ParisTech
35 rue Saint-Honoré, 77300. Fontainebleau, France

firstname.lastname@mines-paristech.fr

ABSTRACT

This paper explains how the PIPS source-to-source corigpilat
framework integrates the Polyhedral Compiler CollectiBoCC)

as one of PIPS many program transformations. The integratio
between PIPS and PoCC extracts automatically the statitaton
parts of the source code, which can be optimized indepelydent
PoCC and then reintegrates them transparently in the useceso

placing the original loop structure [19]. The scope of théype-
dral model is based on static control parts (SCoP). A regsikic
control part [10] is a consecutive set of statements witly ofdr
loops’, where loop bounds,if’ statement conditionals and array
accesses are affine functions of the iterators and the ghaivam-
eters. The ternary operator can be used to provide dataxdepe
code, where the control will be over-approximated to bodusés

code. PIPS can either be used simply as a wrapper around PoCeing executed for all possible executions. SCoPs are the na

to simplify the compilation process, or use PoCC as a stepirem
complex compilation schemes such as heterogeneous codmgen
tion for CUDA or FPGA based-machine. This is possible when th
polyhedral model can be used to fine-tune fine-grain paisttel
and memory locality. This paper explores the issues in tisggde
of the integration and presents results for some benchnodutke
OpenGPU project.

Keywords
PIPS, PoCC, Optimization, Parallelization, PolyhedratiglipStatic
control code

1. INTRODUCTION AND MOTIVATION

Nowadays, compilers contain a large number of loop optimiza
tions. Several techniques have been proposed to improves cac
performance, making effective use of parallel processayabil-
ities, and reducing overhead associated with control flowost\M
execution time of a scientific program is spent on loops. Téus
lot of compiler analysis and compiler optimization techreq have
been developed to make the execution of loops faster. Taegiftig
automate loop transformations, a model is needed on whigh co
plex transformations can be easily applied. Transforminggsyn-
tax of the loops directly is very cumbersome and makes it-diffi
cult to generalize transformations. Therefore, the palyllemodel
was developed and transformations are applied to this mddhel
Polyhedral model is a geometrical representation for pnogrthat
utilizes machinery from Linear Algebra and Linear Prograngn
for analysis and high-level transformations [13]. Afteartsfor-
mation, efficient code is generated from the polyhedral hode

ral candidates for polyhedral loop transformations. Annegie is
shown in Figure 1.

for (i =0; i <N i++)
for (j =0; j <N j++) {
c[il[i] = 0.0;
for (k = 0; k < N k++)
clilli] =cl[illil+a[i][KI+b[KI[j];

Figure 1: Example SCoP (matrix multiply)

PoCC [17] is an example of compiler that uses the polyhedoaleh

for loop transformations and parallelization for multiesr Using
PoCC, the user has to specify thanks to pragmas where bégins t
SCoP heis interested by, and where it ends. For the base agld de
opment configuration of PoCC, the code fragment inside thg-pr
mas must be a regular static control part. PIPS [8] is a setiarce
source compilation framework for analyzing and transfognC

and Fortran programs. It is a loop restructuring compileple-
menting polyhedral analyses and transformations. Allysea are
interprocedural. PIPS has been used to extract autonigtibal
SCoPs. The goal of this paper is to automate the process alf loc
optimization of SCoPs.

Project OpenGPU aims to take advantage of the computingmpowe
of GPUs. It includes an integrated platform to support thelpa
lelization and optimization of existing codes. In this ot the
parts of code which could benefit from the architerture otterss-

tics have to be identified, then optimized before being egjrted
back into the user’s code. This paper presents two tools BieS
PoCC used to perform this phase. PIPS processes real and com-
plete applications. It is responsible for identifying thatie control
parts. PoCC is in charge of the parallelization and optitions
related to the architecture. After transformation, PIFBtegrates
the optimized parts into the initial application.

This paper is organized as follows. Related work in polyhakedr
compilation is presented in Section 2. Section 3 and 4 d@scri
PoCC and PIPS compilers. Section 5 defines PIPS-PoCC integra
tion. Section 6 presents results and some experiments.ioBect

7 summarizes the various results.

2. RELATED WORK

Complex tools using the polyhedral model like WRAP-IT foeth
ORC compiler [5] or the GRAPHITE branch of GCC [4] are de-
voted to extract static control parts.

In Graphite [20], SCoPs are outlined from the control flowpdra
The scalar evolution analysis framework of GCC is used [$§]oP
outlining scans the basic blocks of the CFG in the dominater o
der. If a basic block contains a non static control statertteen

it is considered as difficult and Graphite passes to the nasich
block which is dominated by the difficult one. Graphite altow
only SCoPs that are surrounded by a single loop. With theopti
'-graphite-dump-cloog’, Graphite dumps each SCoP intocagl
input file.

WRAP-IT extracts automatically SCoPs. It is implementethimi
the compiler infrastructure Open64/ORC. The output is tadfs
SCoPs associated with any function in the syntax tree.

The automatic extraction of SCoPs implemented in PIPS Liscgo

A source code

i
‘ Clan: Chunky Loop ANalyzer ‘

Polyhedral intermediate representation

‘ Candl: Chunky analyzer for dependences in loops ‘

polyhedral dependel iwial IR

PLuTo: automatic Parallelizer and LetSee: Legal transformation
LocaliTy Optimizer for multicores Space explorator

———

‘ CLooG: Chunky Loop Generator ‘

l

Output file (.pocc)

Figure 3: Overview of PoCC Compiler

to source. The user can observe at any stage of our implemen-

tation: Static control code, SCoPs or results of PoCC. SGoP ¢
contain several nested loops. Different optimization agicould
be selected for the SCoPs. The next figure illustrates théSEx-
tracted by Graphite (on the left handside) and by PIPS (onighe
handside) for the program 'gemver.c’. SCoPs extracted RSPI
offer more optimization opportunities such as loop fusion.

#pragna scop
for (i=0; i<N i++)
for (j=0; j<N j++)
ALTT[G] = ALET[j]+ulli]=
vi[jl+u2[i]*v2[j]; ?g:a?inzo-scfgw i ++)
#pragma endscop for (j:b;].<N; | +4)
AT T=ALIT [] +ulli]
*VvI[jl+u2[i]=v2[j];

#pragma scop

for (i=0; i<N i++)

for (j=0; j<N j++) PP -
xOT=x ALy || re G2 T,

fipragma endscop X[T=x[i1+A[T1[i1*y[i];

#pragna scop

for (i=0; i<N i++)
x[i] = x[i] + z[i];
#pragma endscop

for (i=0; i<N i++)
x[i]=x[i]+z[i];

for (i=0; i<N i++)
for (j=0; j<N j++)
Wi T=wli]+A[T][jT*x[]];

#pragma endscop

#pragma scop

for (i=0; i<N i++)
for (j=0; j<N j++)
Wil =wi] +

AT LT[15

#pragma endscop

Figure 2. The Extraction of SCoPs by Graphite(left) and by
PIPS(right) for 'gemver’

3. PoCC:POLYHEDRAL COMPILER COL-
LECTION

PoCC [17] is a compiler that uses the polyhedral model for-pow
erful optimization and parallelism. It relies on a set ofypmdral
tools in the public domain. The scope of the polyhedral maslel
based on static control codes or SCoP for short.

PoCC consists in different modules, corresponding to diffesteps

in the optimization process of a source code. It is illustidan fig-
ure 3. PoCC leverages several GNU tools for polyhedral clampi
tion, especially Clan, Candl, LetSee, Pluto and CL00G.

3.1 Clan and Candl

Clan [10]: The Chunky loop analyzer extracts a polyhedral inter-

mediate representation from the source code of high leegirpms
written in C, C++, C# or Java. Clan considers a given part ef th

code encapsulated by pragmas #pragma scop and #pragma end-

scop. For instance, let us consider the following source ¢odC
(Figure 4) of a matrix-matrix multiplication program thatds two
matrices, achieves the multiplication and then prints ésaiit. Let
us also consider that the user is only interested in the raataitrix
multiply kernel which is a SCoP. Thus, the user has to addpaag
to this SCoP kernel, so that Clan considers this part of the.co

Candl: The Chunky analyzer for dependences in loops computes

polyhedral dependences from the polyhedral IR.

/+ matmul .c 128+128 matrix multiply */
#i ncl ude <stdio. h>
#define N 128
int main() {
int i,j,k;
float a[NJ[N, b[NI[N, c[NI[N];
/+ W read matrix a then matrix b */
for (i =0; i <N i++4)
for (j =0; j <N j++)
scanf (" _%",&[i][j]);
for (i =0; i <N i++)
for (j =0; j <N j++4)
scanf (" %", &[i][j]);
I+ ¢c =ax* b */
#pragma scop
for (i =0; i <N i++)
for (j =0;] <N j++) {
cl[il[j] =0.0;
for (k = 0; k < N k++)
clillil =c[il[j] + ali]l[kI*b[KI[j];

#pragma endscop
/+* We print matrix c */
for (i =0; i <N i++) {
for (j =0, j <N j++)
printf("9.2f_",c[il[j]);

return O;

Figure 4: Pragmas of SCoPs within Matmul program [10]

3.2 PLuTo, LetSee and CLooG

PLuTo [11] is an automatic parallelizer and locality optimizer fo
multicores. It is based on the polyhedral model. PLuTo fiamss

C programs from source to source for coarse-grained phksaile
and locality simultaneously. The core transformation feamrk
mainly works by finding affine transformations for efficieiing
and fusion, but is not limited to it. It performs prevectation,
scalar privatization, array contraction and many loop dfarma-
tions such as: loop fusion, loop unroll. OpenMP parallelecéat
multicores can be automatically generated from seque@Gtiado-
gram sections.

LetSee[18], the Legal transformation Space explorator, is a plat-
form dedicated to computing and exploring the legal affirreedail-
ing of a program. It can be used to optimize a program, theubutp
being an optimized C code corresponding to the polyhedpakre
sentation given as an input.

C, Fortran code

Preprocessing and parsing

Abstract syntax tree

Interprocedural analysis

Preconditions
Call graph
Memory effects
Chains
Data dependence graph
Static control
Array regions

Code generation

OpenMP

Transformations
Scalarization N
Vectorization
Loop Fusion
Loop unrolling ~.
Loop Interchange >

MPI
CUDA

Privatization...

CLo0G [9], the Chunky Loop Generator is a code generator in the

T
PoCC Interface

polyhedral model. It is also used to avoid overhead assmtigith
control flow and to produce effective code.

4. PIPS: AUTOMATIC PARALLELIZER AND
CODE TRANSFORMATION FRAMEWORK

PIPS [8] is a source-to-source compilation framework faalygn

ing and transforming C and Fortran programs. PIPS implesnent
polyhedral analyses and transformations [1]. All analysesin-
terprocedural. Figure 5 resumes its features like:

Use-def chains, data dependence graph, transformersynoliec
tions, symbolic complexity, memory effects (of instruetioon data),

Figure 5: Overview of PIPS Compiler with its PoCC Interface
(dashed arrow)

5. PIPS-PoCC INTERFACE

We present the steps that have been implemented in PIPSito opt
mize/parallelize every SCoP in a program. These stepssiegl lin

the command line interpreter of PIPS: tpips. Figure 6 sunimesar
these steps: Static control detection, SCoP outlining ofifCC

and SCoP inlining. Figure 7 illustrates matmul.tpips. this script

to use to execute our integration.

convex array regions, call graph, interprocedural cofiitoal graph...
Many program transformations can be applied, such as:

e parallelization, several algorithms are implemented:

— Allen & Kennedy's parallelization algorithm that may
perform some loop distribution.

— Vectorization: selects innermost loops for vector units.

— Coarse grain parallelization: is based on the convex
array region of the loops, no loop distribution is per-
formed.

scalar and array privatization: consists in discovering-va
ables whose values are local to a particular scope, usually
loop iteration.

A source code

‘ PIPS: Static Control Detection Phase ‘

Statement : Static I:ontrol ? + #pragmas

PIPS : Outline static control parts ‘

SCoP modules

‘ PoCC : Optimize, parallelize code ‘

l

Optimized, Parallelized SCoPs

‘ PIPS: Inline static control parts ‘

]

Optimized, Parallelized Original Code

loop transformations: loop unrolling, interchange, ndrma
ization, distribution, strip mining, tiling, index set #tihg.

dead-code elimination, partial evaluation, atomizaticon-
trol restructuration, loop invariant code motion, forward-
stitution...

inlining, outlining, cloning of functions

PIPS generates parallel code for MMX, SSE, CUDA ... archi-
tectures [2]. It generates OpenMP code and tranforms cade fr
OpenMP to MPI.

Pipsmake library* manages objects that are resources stored in
memory or/and on disk. The phases are described by gentas; ru
which use and produce resources. Examples of these ruléls are
lustrated in the following section.

http://cri.ensnp.fr/PlPS/ pi psmake. htm

Figure 6: PIPS-PoCC Integration

5.1 Static Control Detection

The static_controlize phase gets the structural parametede-
tects for each statement enclosing loops, enclosing testdte
static_control property. Those informations are mappedtate-
ments. The definition of a static control program is givenliy[It
is a program in which all loops atéor’ loops whose limits depend
only on structure parameters, numerical constants and maps
iteration counters.

For this pass, the code and the list of variables are needgehter-
ate the ’static_control’ resource of a given module (or fiom)

> MODULE. static_control

Static_Controlize
< PROGRAM. entities

< MODULE. code

For instance, let us consider the matrix-matrix multiplpgmam,
the result of the 'Static_Controlize’ phase is illustratedFigure 7.

5.2 Automatic SCoP Extraction and Outlin-

ing

Static control parts (SCoPs) are outlined after applicatd the
'static controlize’ phase. For this phase, the module aaticston-
trol informations and program variables are used to outiG®Ps

of a given module.

#Create a workspace for the program matmul.c
create matrmul matmul . c
#Conput e SCoPs and encapsul ate themw th pragnas
appl y POCC_PRETTYPRI NTER mai n]
#Qut i ne SCoPs
apply SCOP_QUTLI NER nmai n]
setenv |ist_pocc mat nul . dat abase/ * SCoP_x/* SCoP_*. c
#Set PoCC optim zati on options
setenv PoCC_FLAGS "--pluto-unroll"
#Application of PoCC on each SCoP
shell for i in list_pocc; do \

pocc PoCC FLAGS $i; done
setenv list_pocc ‘echo $list_pocc_c|sed

s/ mat nul . dat abase\///g"*

#Reinline results of PoCC
apply I'NLINI NG $list_pocc]
#Print the result on stdout
di spl ay PRI NTED_FI LE[mai n]
#generate the entire file(matmul.c)
apply UNSPLI T[mai n]
#conpile it
shell cd matnul.database/ Src ; gcc -c matnul.c
cl ose
quit

Scop_Outliner > MODULE. code
> MODULE. callees

PROGRAM. entities

MODULE. code

MODULE. static_control

AN N A

After outlining, additional functions are generated. Taeaf mod-

ule callees (> MODULE.callees) has been changed. Figure 9
shows the result of the 'SCoP_Outliner’ phase for the matratrix
multiply program. Figure 10 shows the SCoP code outlinechby t
'SCoP_Outliner’ phase which represents the matrix mudtiion
kernel. The result of the outlining is a set of modules prefikg
'SCoP_".

Figure 7: Executable (matmul.tpips) for matmul.c

int main()

int i, j, k
float a[128][128], b[128][128], c[128][128];

/+* W read matrix a */
for(i =0; i <=127; i +=1)
for(j =0; j <=127; j +=1)
scanf (" %", &a[i][j]);
/* W read matrix b */
for(i =0; i <=127; i +=1)
for(j =0; j <=127; j +=1)
scanf (" %", &l[i][j]);
/* ¢c =a=* b */

SCoP_0(a, b, c);

[+ W& print matrix c */
for(i =0; i <=127; i +=1) {
for(j =0; j <=127; j +=1)
printf("9e.2f_", c[il[j]);
printf("\n");
}

return O;

/* ¢c =a=x*x b */

for(i =0; i <=127; i +=1)

11 < is static > TRUE
11 < paraneter >k, j, i,
I < loops >0 <= <= 127
/1 < tests >

for(j =0; j <=127; j +=1) {
/1 < is static > TRUE
11 < paraneter >k, j, i,
11 < loops >0 <= <= 127
/1l 0 <=j <= 127
/1 < tests >

clilli] = 0.0;
11 < is static > TRUE
I < paraneter >k, j, i,
/1 < | oops >0 <=1 <= 127
/1l 0 <=j <= 127
/1 < tests >
for(k = 0; k <= 127; k += 1)
/1 < is static > TRUE
I < paraneter >k, j, i,
/1 < | oops >0 <=1 <= 127
I 0 <=j <= 127
11 0 <= k <= 127
/1 < tests >
clilli]l = c[il[jl+a[i][kI*b[K][j];

/1 < is static > TRUE
I < paraneter >k, j, i,
/1 < | oops >
/1 < tests >

Figure 9: Matmul after outlining of one SCoP

voi d SCoP_O(float a[128][128], float b[128][128],
float c[128][128])

/1 PIPS generated variabl e
int i, j, k;
[+ ¢c =ax* b/

#pragna scop

for(i =0; i <=127; i +=1)
for(j =0; j <=127; j +=1) {
c[il[il = 0.0;
for(k = 0; k <= 127; k +=1
) clil[i] = clil[il+a[i][KI*b[KI[j];

#pragma endscop

return;

Figure 8: Static control informations for Matmul program

Figure 10: The outlined matrix-matrix multiply kernel

5.3 Application of PoCC on SCoPs

The next step is the PoCC optimization. Many options such as
unroll, parallelize, prevectorize can be chosen. Moduléh ax-
tension ".pocc.c’ are generated. Figure 11 shows the refelte-
cution of PoCC on 'SCoP_0’ with the option ’- -pluto-tile - kyo-
parallel- -pluto-unroll’. The optimizer PLuTo is activatevith the
options polyhedral Loop tiling and loop unrolling. - -phstile’
partitions the loop’s iteration space into 4 blocks of 32etsure

Table 1: (Static Control loop nests) / (all loop nests in the ppli-
cation) [in %]

Benchmark| SCoPs | Ratio of SCoPY Comments
/
loop nests
STAP 21 SCoPs| 65% Some upper

bounds of loops|
are not linear

ABF 15 SCoPs| 100% All loop nests
are SCoPs
FMradio 9 SCoPs | 90% One loop nest
bound contains
pointer access
data locality in cache. ’- - pluto-parallel’ generates thpe®@MP
code. ’- -pluto-unroll’ proceeds with unroll and jam (ufest4)

for loop ', and with unroll (ufactor=4) for Loop 'k’. PoCC #&s
made decisions about unrolling such as: not unroll Loopoihbt
explose the code size. Tile sizes can be specified in a fidesides’,
otherwise default sizes will be set.

5.4 SCoP Inlining

Inlining is a well-known technique. Itis implemented in BIRt re-
places a function call by the function body. In our contelttiuanc-
tion calls to SCoPs, that were transformed/parallelizedPbZC,
are inlined. The goal is to offer the user the structure obiitginal
program.

6. EXPERIMENTS

In this section, we present the results of PIPS_PoCC irtiegran
signal processing applications STAP, ABF and FMradio.

6.1 Overview of the Applications
Space-time adaptive processing (STAP) [15] applicaticbeen

developed in Thales. It is a powerful method to remove theiamb

guity consisting in computing from the signal received bfstim
different antenna (or sub-arrays) and at different timestaffil-
ters that will permit to make the distinction.

Adaptive Beam Forming (ABF) is a beamforming system which

performs adaptive spatial signal processing with an arfagaar
antennas (or phased array) in order to transmit or recejveks in
different directions without having to mechanically stdes array.
FMradio is a kernel extracted from the GNU Radio project [6].

PIPS detects static control code, and outlines SCoPs. RegdC
optimizes/parallelizes SCoPs. Finally, PIPS inlines SCaritl gives
back original structure to user’s program. In this paper aeeh
selected PoCC compiler that locally optimizes functions, dur
implementation can be a front end for other compilers.
PIPS-PoCC integration is a transformation in PIPS that eaves

as an optimization phase for many compilers such as the two au

tomatic compilers for the C language, terapyps [14] and p3a [
for anFPGA based embedded processor and nvliRl, respec-
tively. Figure 12 illustrates this feature.

8. ACKNOWLEDGMENT

This work is funded by the OpenGPU Projelat.t p: / / opengpu.
net/.

The authors would like to thank Cédric Bastoul and Pierre/dlmt

for their comments on this paper and to Antoniu Pop for hip el
install Graphite. Many thanks also to all PIPS contributard es-
pecially to Arnaud Leservot who implemented the static tiaize

phase in PIPS.

9. REFERENCES

[1] Mines paristech. pipstt p: // pi ps4u. or g, 1989-2011.
Open source, under GPLv3.

[2] Hpc project. pardallht t p: / / ww. par 4al | . or g, 2008.

[3] Performance results of podet t p:

/I wwwrocq.inria.fr/~pouchet/software/
pocc/ doc/ ht m doc/ ht m doc/ i ndex. ht m .

[4] Graphite: Gimple represented as polyhedra.
http://gcc.gnu.org/w ki/ G aphite.

[5] Wrap-it: Whirl represented as polyhedra.
http://ww. lri.fr/~girbal/site_wapit.

[6] The gnu radio project.
http://ww. gnu. or g/ sof t war e/ gnur adi o/ .

[7] M. Amini, F. Irigoin, and R. Keryell. Optimisation stafile
des communications hote-accélérateur dans un parallélise
automatique. Technical Report A/451, CRI, Mathématiques
et Systéemes, MINES-ParisTech, Fontainebleau, France,
2010.

[8] C. Ancourt, B. Breusillet, F. Coelho, F. Irigoin, P. Jalet,
and R. Keryell. Pips a workbench for interprocedural
program analyses and parallelizationldrMeeting on data
parallel languages and compilers for portable parallel
computing, 1994.

[9] C. Bastoul. Code generation in the polyhedral model sexa
than you think. InPACT’ 13 |EEE International Conference

STAP and ABF were slightly modified in order to be optimized by on Parallel Architecture and Compilation Techniques, pages
PoCC (the structure of complex floats is changed into an afay 7-16, Juan-les-Pins, France, September 2004.

floats). [10] C.Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam.
. . Putting polyhedral loop transformations to work.UEPC

6.2 Using the PIPS-PoCC Integration 16 International Workshop on Languages and Compilers for

PIPS parses and analyses the applications. It extracts stat-

Parallel Computers, LNCS 2958, pages 209-225, College
trol parts and outlines them. SCoPs are generated in new mod- Station, Texas, october 2003.

ules prefixed by 'SCoP_". The resulting codes can be optidhize [11] U. Bondhugula, A. Hartono, J. Ramanujam, and

parallelized by PoCC compiler. Table 1 shows the resultsuof o P. Sadayappan. A practical and automatic polyhedral

integration on the signal processing applications STAPFARBd program optimization system. IWCM SIGPLAN 2008

FMradio. The ratio represents the number of static contropl Conference on Programming Language Design and

nests / all loop nests in the application. Implementation (PLDI 08), Tucson, June 2008.

Performance results of PoCC are presented at [3]. [12] P. Feautrier. Dataflow analysis of array and scalaresiees.
Int. Journal of Parallel Programming, pages 20(1):23-53,

7. CONCLUSION February 1991.

We present an integration between PIPS and PoCC that aizesat [13] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parell

parallelization and local optimizations in the polyhedraidel. First, M. Sigler, and O. Temam. Semi-automatic composition of

voi d SCoP_O(float a[128][128], float b[128][128],
float c[128][128])

| b1=0; ubl=3;
#pragma onp parallel for shared(tl,!|bl, ubl)
private(t2,t3,t4,t5,t6, k)
for (t2=lbl; t2<=ubl; t2++) {
for (t3=0;t3<=3;t3++) {
for (t5=32%t2;t5<=32*t2+31;t5++) {
| bv=32+t3; ubv=32xt3+31;
#pragma i vdep
#pragma vector always
for (k=lbv; k<=ubv; k++) {
c[t5][k]=0.0;

11}
| b1=0; ubl=3;
#pragma onp parallel for shared(tl,!|bl, ubl)
private(t2,t3,t4,t5,t6, k)
for (t2=lbl; t2<=ubl; t2++) {
for (t3=0;t3<=3;t3++) {
for (t4=0;t4<=3;t4++) {
for (i=32xt2; i<=32xt2+28; i=i+4) {
for (j=32xt4; j<=32xt14+28; j=j+4) {
| bv=32*t 3; ubv=32xt 3+31;
#pragma i vdep
#pragne vector always
for (k=lbv; k<=ubv; k++) {
c[i] [kl =c[i][k]+ali][j]*b[j][KI;
cli][k]=c[i][k]+al[i][(j+1)]=b[(j+1)]K];
cli][kl=c[i][k]+al[i][(j+2)]=b[(j+2)][K];
c[i][k]=c[i][k]+al[i][(j+3)]+*b[(j+3)][K];
c[(i+1)] [kl =c[(i+1)][K]+a[(i +1)][j]*b[j][K];

c[(i+1)] [kl =c[(i +1)][K]+a[(i +1)][(j +1)]*b[(j+1)][k];
cl(i+1) [kl =c[(i+1)][K]+a[(i +1)]1[(]j+2)]*b[(j +2)][k];
cl(i+1) [kl =c[(i+1)][Kk]+a[(i +1)]1[(]j +3)]*b[(j +3)]1[k];

c[(i+2)][k]=c[(i +2)][K]+a[(i +2)][j]*b[j]1[K];

c[(i+2)] [kl =c[(i +2)][K]+a[(i +2)][(j +1)]*b[(j+1)][k];
cl(i+2)][kl =c[(i +2)] [K]+a[(i +2)]1[(j +2)]*b[(j +2)]1[k];
cl(i+2) [kl =c[(i+2)] [K]+a[(i +2)]1[(]j +3)]*b[(j +3)1[k];

cl(i+3)][k =c[(i+3)][Kk]+a[(i +3)]1[j1*b[jI[k];

o[(i+3)][K]=c[(i +3)][k] +a[(i +3)][(j +1)]*b[(j +1)] [K];
o[(i+3)][K]=c[(i +3)] [k] +a[(i +3)][(j +2)]*b[(j +2) 1 [K]:
e[(i +3)1 [kl =c[(i +3)1[k] +a[(i +3)] [(j +3)]*b[(} +3) 1 [K];

}
for (t6=j; t6<=32+t4+31; t6=t6+1) {
I bv=32+t3; ubv=32+t3+31;
#pragma i vdep
#pragma vector always
for (k=lbv; k<=ubv; k++) {
cli][kl=c[i][k]+a[i][t6]«b[t6][K];
cl(i+1)][kl =c[(i+1)][k]+a[(i+1)][t6]«b[t6][k];
c[(i+2)][kl=c[(i+2)][k]+a[(i+2)][t6]*b[t6] [K];
) c[(i+3)1[kl=c[(i+3)][k]+a[(i +3)][t6]*b[t6][K];
1}
for (t5=i; tb5<=32xt2+31; t5=t5+1) {
for (j=32xt4; j<=32*t4+28; j=j+4) {
| bv=32*t 3; ubv=32xt 3+31;
#pragma ivdep
#pragma vector al ways

for (k=lbv; k<=ubv; k++) {
c[t5] [kl =c[t5] [k]+a[t5][j]+b[j][K];
c[t5] [K]=c[t5] [K]+a[t5][(j+1)]*b[(j+1)][K];
c[t5] [kl =c[t5] [K]+a[t5][(j+2)]+b[(j+2)][K];
c[t5][Kl=c[t5] [K]+a[t5] [(j+3)]*b[(j+3)1[K];

1}
for (t6=j; t6<=32*t4+31; t6=t6+1) {
| bv=32+t3; ubv=32xt3+31;
#pragme i vdep
#pragne vector always
for (k=lbv; k<=ubv; k++) {
c[t5][kl=c[tB][k]+a[t5B][t6] «b[t6][K];

}
}
}
}

#pragma endscop
return;
}

PIPS-PoCC Interfac
.C

—-Po
%% Terapyps

T
~
>

PIPS-PoCC Interface

o

PIPS-PoCC Interface

|
|

[(Fah (s
- I@

— V]
23'
H
3]
@ &

l‘

<

Figure 11: PoCC - -pluto-tile - -pluto-parallel - -pluto-unroll

SCoP_0.c

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Figure 12: Application of PIPS-PoCC Integration

loop transformations for deep parallelism and memory
hierarchiesInternational Journal of Parallel Programming,
34(3):261-317, June 2006.

S. Guelton, R. Keryell, and F. Irigoin. Compilation for
heterogeneous computing: Automating analyses,
transformations and decisions. Technical Report A/450, CR
Mathématiques et Systemes, MINES-ParisTech,
Fontainebleau, France, 2010.

F. Le Chevalier, M. Montecot, Y. Doisy, F. Letestu, and

P. Chevalier. Stap developments in thaleRé&dar
Conference, 2009. EURAD 2009. European Issue, pages 53 —
56, sept 2009.

S. Pop, A. Cohen, and G.-A. Silber. Induction variable
analysis with delayed abstractions.lhil. Conf. on High
Performance Embedded Architectures and Compilers
(HiPEAC' 05), pages 218-232. Springer-Verlag, Nov 2005.
L.-N. Pouchet and C. BastoltoCC, The Polyhedral

Compiler Collection package Edition 0.3, for PoCC 1.0-rc2,
April 13rd 2010.

L.-N. Pouchet, C. Bastoul, and A. Cohen. Letsee: thalleg
transformation space explorator. Third International
Summer School on Advanced Computer Architecture and
Compilation for Embedded Systems, L'Aquila, Italia, july
2007.

F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of
efficient nested loops from polyhediat. J. Parallel

Program, pages 28(5):469- 498, 2000.

K. Trifunovic, A. Cohen, D. Edelsohn, F. Li, T. Grosser,

H. Jagasia, R. Ladelsky, S. Pop, J. Sjédin, and R. Upadrasta.
GRAPHITE Two Years After: First Lessons Learned From
Real-World Polyhedral Compilation. IBCC Research
Opportunities Workshop (GROW 10), Pisa Italy, 01 2010.

