
Towards Automatic C Programs Optimization and
Parallelization using the PIPS-PoCC Integration

Dounia Khaldi Corinne Ancourt
François Irigoin

CRI, Mathématiques et Systèmes, MINES ParisTech
35 rue Saint-Honoré, 77300. Fontainebleau, France

firstname.lastname@mines-paristech.fr

ABSTRACT
This paper explains how the PIPS source-to-source compilation
framework integrates the Polyhedral Compiler Collection (PoCC)
as one of PIPS many program transformations. The integration
between PIPS and PoCC extracts automatically the static control
parts of the source code, which can be optimized independently by
PoCC and then reintegrates them transparently in the user source
code. PIPS can either be used simply as a wrapper around PoCC
to simplify the compilation process, or use PoCC as a step in more
complex compilation schemes such as heterogeneous code genera-
tion for CUDA or FPGA based-machine. This is possible when the
polyhedral model can be used to fine-tune fine-grain parallelism
and memory locality. This paper explores the issues in the design
of the integration and presents results for some benchmarksof the
OpenGPU project.

Keywords
PIPS, PoCC, Optimization, Parallelization, Polyhedral model, Static
control code

1. INTRODUCTION AND MOTIVATION
Nowadays, compilers contain a large number of loop optimiza-
tions. Several techniques have been proposed to improve cache
performance, making effective use of parallel processing capabil-
ities, and reducing overhead associated with control flow. Most
execution time of a scientific program is spent on loops. Thusa
lot of compiler analysis and compiler optimization techniques have
been developed to make the execution of loops faster. To efficiently
automate loop transformations, a model is needed on which com-
plex transformations can be easily applied. Transforming the syn-
tax of the loops directly is very cumbersome and makes it diffi-
cult to generalize transformations. Therefore, the polyhedral model
was developed and transformations are applied to this model. The
Polyhedral model is a geometrical representation for programs that
utilizes machinery from Linear Algebra and Linear Programming
for analysis and high-level transformations [13]. After transfor-
mation, efficient code is generated from the polyhedral model, re-

placing the original loop structure [19]. The scope of the polyhe-
dral model is based on static control parts (SCoP). A regularstatic
control part [10] is a consecutive set of statements with only ’for
loops’, where loop bounds,‘if ’ statement conditionals and array
accesses are affine functions of the iterators and the globalparam-
eters. The ternary operator can be used to provide data-dependent
code, where the control will be over-approximated to both clauses
being executed for all possible executions. SCoPs are the natu-
ral candidates for polyhedral loop transformations. An example is
shown in Figure 1.

for (i = 0; i < N; i++)
for (j = 0; j < N; j++) {

c[i][j] = 0.0;
for (k = 0; k < N; k++)

c[i][j] = c[i][j]+a[i][k]*b[k][j];
}

Figure 1: Example SCoP (matrix multiply)

PoCC [17] is an example of compiler that uses the polyhedral model
for loop transformations and parallelization for multicores. Using
PoCC, the user has to specify thanks to pragmas where begins the
SCoP he is interested by, and where it ends. For the base and devel-
opment configuration of PoCC, the code fragment inside the prag-
mas must be a regular static control part. PIPS [8] is a source-to-
source compilation framework for analyzing and transforming C
and Fortran programs. It is a loop restructuring compiler, imple-
menting polyhedral analyses and transformations. All analyses are
interprocedural. PIPS has been used to extract automatically the
SCoPs. The goal of this paper is to automate the process of local
optimization of SCoPs.
Project OpenGPU aims to take advantage of the computing power
of GPUs. It includes an integrated platform to support the paral-
lelization and optimization of existing codes. In this context, the
parts of code which could benefit from the architerture characteris-
tics have to be identified, then optimized before being reintegrated
back into the user’s code. This paper presents two tools PIPSand
PoCC used to perform this phase. PIPS processes real and com-
plete applications. It is responsible for identifying the static control
parts. PoCC is in charge of the parallelization and optimizations
related to the architecture. After transformation, PIPS reintegrates
the optimized parts into the initial application.
This paper is organized as follows. Related work in polyhedral
compilation is presented in Section 2. Section 3 and 4 describe
PoCC and PIPS compilers. Section 5 defines PIPS-PoCC integra-
tion. Section 6 presents results and some experiments. Section

7 summarizes the various results.

2. RELATED WORK
Complex tools using the polyhedral model like WRAP-IT for the
ORC compiler [5] or the GRAPHITE branch of GCC [4] are de-
voted to extract static control parts.
In Graphite [20], SCoPs are outlined from the control flow graph.
The scalar evolution analysis framework of GCC is used [16].SCoP
outlining scans the basic blocks of the CFG in the dominator or-
der. If a basic block contains a non static control statementthen
it is considered as difficult and Graphite passes to the next basic
block which is dominated by the difficult one. Graphite allows
only SCoPs that are surrounded by a single loop. With the option
’-graphite-dump-cloog’, Graphite dumps each SCoP into a cloog
input file.
WRAP-IT extracts automatically SCoPs. It is implemented within
the compiler infrastructure Open64/ORC. The output is a list of
SCoPs associated with any function in the syntax tree.
The automatic extraction of SCoPs implemented in PIPS, is source
to source. The user can observe at any stage of our implemen-
tation: Static control code, SCoPs or results of PoCC. SCoP can
contain several nested loops. Different optimization options could
be selected for the SCoPs. The next figure illustrates the SCoPs ex-
tracted by Graphite (on the left handside) and by PIPS (on theright
handside) for the program ’gemver.c’. SCoPs extracted by PIPS
offer more optimization opportunities such as loop fusion.

#pragma scop
for (i=0; i<N; i++)
for (j=0; j<N; j++)
A[i][j] = A[i][j]+u1[i]*

v1[j]+u2[i]*v2[j];
#pragma endscop

#pragma scop
for (i=0; i<N; i++)
for (j=0; j<N; j++)

x[i]=x[i]+A[j][i]*y[j];
#pragma endscop

#pragma scop
for (i=0; i<N; i++)
x[i] = x[i] + z[i];

#pragma endscop

#pragma scop
for (i=0; i<N; i++)
for (j=0; j<N; j++)
w[i] = w[i] +

A[i][j]*x[j];
#pragma endscop

#pragma scop
for (i=0; i<N; i++)
for (j=0; j<N; j++)
A[i][j]=A[i][j]+u1[i]

*v1[j]+u2[i]*v2[j];

for (i=0; i<N; i++)
for (j=0; j<N; j++)
x[i]=x[i]+A[j][i]*y[j];

for (i=0; i<N; i++)
x[i]=x[i]+z[i];

for (i=0; i<N; i++)
for (j=0; j<N; j++)
w[i]=w[i]+A[i][j]*x[j];

#pragma endscop

Figure 2: The Extraction of SCoPs by Graphite(left) and by
PIPS(right) for ’gemver’

3. PoCC : POLYHEDRAL COMPILER COL-
LECTION

PoCC [17] is a compiler that uses the polyhedral model for pow-
erful optimization and parallelism. It relies on a set of polyhedral
tools in the public domain. The scope of the polyhedral modelis
based on static control codes or SCoP for short.
PoCC consists in different modules, corresponding to different steps
in the optimization process of a source code. It is illustrated in fig-
ure 3. PoCC leverages several GNU tools for polyhedral compila-
tion, especially Clan, Candl, LetSee, Pluto and CLooG.

A source code

Polyhedral intermediate representation

polyhedral dependences from the polyhedral IR

Output file (.pocc)

Clan: Chunky Loop ANalyzer

Candl: Chunky analyzer for dependences in loops

CLooG: Chunky Loop Generator

 PLuTo: automatic Parallelizer and LetSee: Legal transformation
 Space explorator LocaliTy Optimizer for multicores

Figure 3: Overview of PoCC Compiler

3.1 Clan and Candl
Clan [10]: The Chunky loop analyzer extracts a polyhedral inter-
mediate representation from the source code of high level programs
written in C, C++, C# or Java. Clan considers a given part of the
code encapsulated by pragmas #pragma scop and #pragma end-
scop. For instance, let us consider the following source code in C
(Figure 4) of a matrix-matrix multiplication program that reads two
matrices, achieves the multiplication and then prints the result. Let
us also consider that the user is only interested in the matrix-matrix
multiply kernel which is a SCoP. Thus, the user has to add pragmas
to this SCoP kernel, so that Clan considers this part of the code.
Candl: The Chunky analyzer for dependences in loops computes
polyhedral dependences from the polyhedral IR.

/* matmul.c 128*128 matrix multiply */
#include <stdio.h>
#define N 128
int main() {

int i,j,k;
float a[N][N], b[N][N], c[N][N];
/* We read matrix a then matrix b */
for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
scanf(" %f",&a[i][j]);

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
scanf(" %f",&b[i][j]);

/* c = a * b */
#pragma scop

for (i = 0; i < N; i++)
for (j = 0; j < N; j++) {
c[i][j] = 0.0;
for (k = 0; k < N; k++)

c[i][j] = c[i][j] + a[i][k]*b[k][j];
}

#pragma endscop
/* We print matrix c */
for (i = 0; i < N; i++) {

for (j = 0; j < N; j++)
printf("%6.2f ",c[i][j]);

}
return 0;

}

Figure 4: Pragmas of SCoPs within Matmul program [10]

3.2 PLuTo, LetSee and CLooG
PLuTo [11] is an automatic parallelizer and locality optimizer for
multicores. It is based on the polyhedral model. PLuTo transforms
C programs from source to source for coarse-grained parallelism
and locality simultaneously. The core transformation framework
mainly works by finding affine transformations for efficient tiling
and fusion, but is not limited to it. It performs prevectorization,
scalar privatization, array contraction and many loop transforma-
tions such as: loop fusion, loop unroll. OpenMP parallel code for
multicores can be automatically generated from sequentialC pro-
gram sections.
LetSee[18], the Legal transformation Space explorator, is a plat-
form dedicated to computing and exploring the legal affine schedul-
ing of a program. It can be used to optimize a program, the output
being an optimized C code corresponding to the polyhedral repre-
sentation given as an input.
CLooG [9], the Chunky Loop Generator is a code generator in the
polyhedral model. It is also used to avoid overhead associated with
control flow and to produce effective code.

4. PIPS : AUTOMATIC PARALLELIZER AND
CODE TRANSFORMATION FRAMEWORK

PIPS [8] is a source-to-source compilation framework for analyz-
ing and transforming C and Fortran programs. PIPS implements
polyhedral analyses and transformations [1]. All analysesare in-
terprocedural. Figure 5 resumes its features like:
Use-def chains, data dependence graph, transformers, precondi-
tions, symbolic complexity, memory effects (of instructions on data),
convex array regions, call graph, interprocedural controlflow graph...
Many program transformations can be applied, such as:

• parallelization, several algorithms are implemented:

– Allen & Kennedy’s parallelization algorithm that may
perform some loop distribution.

– Vectorization: selects innermost loops for vector units.

– Coarse grain parallelization: is based on the convex
array region of the loops, no loop distribution is per-
formed.

• scalar and array privatization: consists in discovering vari-
ables whose values are local to a particular scope, usually a
loop iteration.

• loop transformations: loop unrolling, interchange, normal-
ization, distribution, strip mining, tiling, index set splitting.

• dead-code elimination, partial evaluation, atomization,con-
trol restructuration, loop invariant code motion, forwardsub-
stitution...

• inlining, outlining, cloning of functions

PIPS generates parallel code for MMX, SSE, CUDA ... archi-
tectures [2]. It generates OpenMP code and tranforms code from
OpenMP to MPI.
Pipsmake library1 manages objects that are resources stored in
memory or/and on disk. The phases are described by generic rules,
which use and produce resources. Examples of these rules areil-
lustrated in the following section.

1http://cri.ensmp.fr/PIPS/pipsmake.html

C, Fortran code

OpenMP
MPI

CUDA SSE

Scalarization

Loop Fusion
Loop unrolling

Loop Interchange

Vectorization

Privatization...

Abstract syntax tree

Preconditions
Call graph

Memory effects

Chains

Static control
Array regions

Data dependence graph

PoCC Interface

Preprocessing and parsing

Transformations

Interprocedural analysis

Code generation

Figure 5: Overview of PIPS Compiler with its PoCC Interface
(dashed arrow)

5. PIPS-PoCC INTERFACE
We present the steps that have been implemented in PIPS to opti-
mize/parallelize every SCoP in a program. These steps are listed in
the command line interpreter of PIPS: tpips. Figure 6 summarizes
these steps: Static control detection, SCoP outlining, useof PoCC
and SCoP inlining. Figure 7 illustrates matmul.tpips. It isthe script
to use to execute our integration.

A source code

SCoP modules

Statement : Static control ? + #pragmas

Optimized, Parallelized SCoPs

Optimized, Parallelized Original Code

PIPS: Static Control Detection Phase

PIPS : Outline static control parts

PoCC : Optimize, parallelize code

PIPS: Inline static control parts

Figure 6: PIPS-PoCC Integration

5.1 Static Control Detection
The static_controlize phase gets the structural parameters. It de-
tects for each statement enclosing loops, enclosing tests and the
static_control property. Those informations are mapped onstate-
ments. The definition of a static control program is given in [12]. It
is a program in which all loops are‘for’ loops whose limits depend
only on structure parameters, numerical constants and outer loops
iteration counters.
For this pass, the code and the list of variables are needed togener-
ate the ’static_control’ resource of a given module (or function)

S t a t i c _ C o n t r o l i z e > MODULE. s t a t i c _ c o n t r o l
< PROGRAM. e n t i t i e s
< MODULE. code

For instance, let us consider the matrix-matrix multiply program,
the result of the ’Static_Controlize’ phase is illustratedon Figure 7.

5.2 Automatic SCoP Extraction and Outlin-
ing

Static control parts (SCoPs) are outlined after application of the
’static controlize’ phase. For this phase, the module and static con-
trol informations and program variables are used to outlineSCoPs
of a given module.

#Create a workspace for the program matmul.c
create matmul matmul.c
#Compute SCoPs and encapsulate them with pragmas
apply POCC_PRETTYPRINTER[main]
#Outline SCoPs
apply SCOP_OUTLINER[main]
setenv list_pocc matmul.database/*SCoP_*/*SCoP_*.c
#Set PoCC optimization options
setenv PoCC_FLAGS "--pluto-unroll"
#Application of PoCC on each SCoP
shell for i in list_pocc; do \

pocc PoCC_FLAGS $i; done
setenv list_pocc ‘echo $list_pocc_c|sed

’s/matmul.database\///g’‘
#Reinline results of PoCC
apply INLINING[$list_pocc]
#Print the result on stdout
display PRINTED_FILE[main]
#generate the entire file(matmul.c)
apply UNSPLIT[main]
#compile it
shell cd matmul.database/Src ; gcc -c matmul.c
close
quit

Figure 7: Executable (matmul.tpips) for matmul.c

/* c = a * b */

for(i = 0; i <= 127; i += 1)
// < is static > TRUE
// < parameter > k, j, i,
// < loops > 0 <= i <= 127
// < tests >

for(j = 0; j <= 127; j += 1) {
// < is static > TRUE
// < parameter > k, j, i,
// < loops > 0 <= i <= 127
// 0 <= j <= 127
// < tests >

c[i][j] = 0.0;
// < is static > TRUE
// < parameter > k, j, i,
// < loops > 0 <= i <= 127
// 0 <= j <= 127
// < tests >

for(k = 0; k <= 127; k += 1)
// < is static > TRUE
// < parameter > k, j, i,
// < loops > 0 <= i <= 127
// 0 <= j <= 127
// 0 <= k <= 127
// < tests >

c[i][j] = c[i][j]+a[i][k]*b[k][j];
}

// < is static > TRUE
// < parameter > k, j, i,
// < loops >
// < tests >

Figure 8: Static control informations for Matmul program

S cop_Out l i ne r > MODULE. code
> MODULE. c a l l e e s
< PROGRAM. e n t i t i e s
< MODULE. code
< MODULE. s t a t i c _ c o n t r o l

After outlining, additional functions are generated. The set of mod-
ule callees (> MODULE.callees) has been changed. Figure 9
shows the result of the ’SCoP_Outliner’ phase for the matrix-matrix
multiply program. Figure 10 shows the SCoP code outlined by the
’SCoP_Outliner’ phase which represents the matrix multiplication
kernel. The result of the outlining is a set of modules prefixed by
’SCoP_’.

int main()
{

int i, j, k;
float a[128][128], b[128][128], c[128][128];

/* We read matrix a */
for(i = 0; i <= 127; i += 1)

for(j = 0; j <= 127; j += 1)
scanf(" %f", &a[i][j]);

/* We read matrix b */
for(i = 0; i <= 127; i += 1)

for(j = 0; j <= 127; j += 1)
scanf(" %f", &b[i][j]);

/* c = a * b */

SCoP_0(a, b, c);

/* We print matrix c */
for(i = 0; i <= 127; i += 1) {

for(j = 0; j <= 127; j += 1)
printf("%6.2f ", c[i][j]);

printf("\n");
}
return 0;

}

Figure 9: Matmul after outlining of one SCoP

void SCoP_0(float a[128][128], float b[128][128],
float c[128][128])

{
//PIPS generated variable
int i, j, k;
/* c = a * b */

#pragma scop
for(i = 0; i <= 127; i += 1)

for(j = 0; j <= 127; j += 1) {
c[i][j] = 0.0;
for(k = 0; k <= 127; k += 1)

c[i][j] = c[i][j]+a[i][k]*b[k][j];
}

#pragma endscop

return;
}

Figure 10: The outlined matrix-matrix multiply kernel

5.3 Application of PoCC on SCoPs
The next step is the PoCC optimization. Many options such as
unroll, parallelize, prevectorize can be chosen. Modules with ex-
tension ’.pocc.c’ are generated. Figure 11 shows the resultof exe-
cution of PoCC on ’SCoP_0’ with the option ’- -pluto-tile - - pluto-
parallel- -pluto-unroll’. The optimizer PLuTo is activated with the
options polyhedral Loop tiling and loop unrolling. ’- -pluto-tile’
partitions the loop’s iteration space into 4 blocks of 32, toensure

Table 1: (Static Control loop nests) / (all loop nests in the appli-
cation) [in %]

Benchmark SCoPs Ratio of SCoPs Comments
/
loop nests

STAP 21 SCoPs 65% Some upper
bounds of loops

are not linear
ABF 15 SCoPs 100% All loop nests

are SCoPs
FMradio 9 SCoPs 90% One loop nest

bound contains
pointer access

data locality in cache. ’- - pluto-parallel’ generates the OpenMP
code. ’- -pluto-unroll’ proceeds with unroll and jam (ufactor=4)
for loop ’j’, and with unroll (ufactor=4) for Loop ’k’. PoCC has
made decisions about unrolling such as: not unroll Loop ’i’ to not
explose the code size. Tile sizes can be specified in a file ’tile.sizes’,
otherwise default sizes will be set.

5.4 SCoP Inlining
Inlining is a well-known technique. It is implemented in PIPS. It re-
places a function call by the function body. In our context, all func-
tion calls to SCoPs, that were transformed/parallelized byPoCC,
are inlined. The goal is to offer the user the structure of itsoriginal
program.

6. EXPERIMENTS
In this section, we present the results of PIPS_PoCC integration on
signal processing applications STAP, ABF and FMradio.

6.1 Overview of the Applications
Space-time adaptive processing (STAP) [15] application has been
developed in Thales. It is a powerful method to remove the ambi-
guity consisting in computing from the signal received bothfrom
different antenna (or sub-arrays) and at different times a set of fil-
ters that will permit to make the distinction.
Adaptive Beam Forming (ABF) is a beamforming system which
performs adaptive spatial signal processing with an array of radar
antennas (or phased array) in order to transmit or receive signals in
different directions without having to mechanically steerthe array.
FMradio is a kernel extracted from the GNU Radio project [6].
STAP and ABF were slightly modified in order to be optimized by
PoCC (the structure of complex floats is changed into an arrayof
floats).

6.2 Using the PIPS-PoCC Integration
PIPS parses and analyses the applications. It extracts static con-
trol parts and outlines them. SCoPs are generated in new mod-
ules prefixed by ’SCoP_’. The resulting codes can be optimized,
parallelized by PoCC compiler. Table 1 shows the results of our
integration on the signal processing applications STAP, ABF and
FMradio. The ratio represents the number of static control loop
nests / all loop nests in the application.
Performance results of PoCC are presented at [3].

7. CONCLUSION
We present an integration between PIPS and PoCC that automatizes
parallelization and local optimizations in the polyhedralmodel. First,

PIPS detects static control code, and outlines SCoPs. Next,PoCC
optimizes/parallelizes SCoPs. Finally, PIPS inlines SCoPs and gives
back original structure to user’s program. In this paper we have
selected PoCC compiler that locally optimizes functions, but our
implementation can be a front end for other compilers.
PIPS-PoCC integration is a transformation in PIPS that can serve
as an optimization phase for many compilers such as the two au-
tomatic compilers for the C language, terapyps [14] and p4a [7],
for anFPGA based embedded processor and nvidiaGPU, respec-
tively. Figure 12 illustrates this feature.

8. ACKNOWLEDGMENT
This work is funded by the OpenGPU Project.http://opengpu.
net/.
The authors would like to thank Cédric Bastoul and Pierre Jouvelot
for their comments on this paper and to Antoniu Pop for his help to
install Graphite. Many thanks also to all PIPS contributorsand es-
pecially to Arnaud Leservot who implemented the static_controlize
phase in PIPS.

9. REFERENCES
[1] Mines paristech. pips.http://pips4u.org, 1989-2011.

Open source, under GPLv3.
[2] Hpc project. par4all.http://www.par4all.org, 2008.
[3] Performance results of pocc.http:

//www-rocq.inria.fr/~pouchet/software/
pocc/doc/htmldoc/htmldoc/index.html.

[4] Graphite: Gimple represented as polyhedra.
http://gcc.gnu.org/wiki/Graphite.

[5] Wrap-it: Whirl represented as polyhedra.
http://www.lri.fr/~girbal/site_wrapit.

[6] The gnu radio project.
http://www.gnu.org/software/gnuradio/.

[7] M. Amini, F. Irigoin, and R. Keryell. Optimisation statique
des communications hôte-accélérateur dans un paralléliseur
automatique. Technical Report A/451, CRI, Mathématiques
et Systèmes, MINES-ParisTech, Fontainebleau, France,
2010.

[8] C. Ancourt, B. Breusillet, F. Coelho, F. Irigoin, P. Jouvelot,
and R. Keryell. Pips a workbench for interprocedural
program analyses and parallelization. InIn Meeting on data
parallel languages and compilers for portable parallel
computing, 1994.

[9] C. Bastoul. Code generation in the polyhedral model is easier
than you think. InPACT’13 IEEE International Conference
on Parallel Architecture and Compilation Techniques, pages
7–16, Juan-les-Pins, France, September 2004.

[10] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam.
Putting polyhedral loop transformations to work. InLCPC
16 International Workshop on Languages and Compilers for
Parallel Computers, LNCS 2958, pages 209–225, College
Station, Texas, october 2003.

[11] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical and automatic polyhedral
program optimization system. InACM SIGPLAN 2008
Conference on Programming Language Design and
Implementation (PLDI 08), Tucson, June 2008.

[12] P. Feautrier. Dataflow analysis of array and scalar references.
Int. Journal of Parallel Programming, pages 20(1):23–53,
February 1991.

[13] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello,
M. Sigler, and O. Temam. Semi-automatic composition of

void SCoP_0(float a[128][128], float b[128][128],
float c[128][128])

{
lb1=0; ub1=3;

#pragma omp parallel for shared(t1,lb1,ub1)
private(t2,t3,t4,t5,t6,k)

for (t2=lb1; t2<=ub1; t2++) {
for (t3=0;t3<=3;t3++) {

for (t5=32*t2;t5<=32*t2+31;t5++) {
lbv=32*t3; ubv=32*t3+31;

#pragma ivdep
#pragma vector always

for (k=lbv; k<=ubv; k++) {
c[t5][k]=0.0;

}
}}}

lb1=0; ub1=3;
#pragma omp parallel for shared(t1,lb1,ub1)

private(t2,t3,t4,t5,t6,k)
for (t2=lb1; t2<=ub1; t2++) {

for (t3=0;t3<=3;t3++) {
for (t4=0;t4<=3;t4++) {
for (i=32*t2; i<=32*t2+28; i=i+4) {

for (j=32*t4; j<=32*t4+28; j=j+4) {
lbv=32*t3; ubv=32*t3+31;

#pragma ivdep
#pragma vector always
for (k=lbv; k<=ubv; k++) {

c[i][k]=c[i][k]+a[i][j]*b[j][k];
c[i][k]=c[i][k]+a[i][(j+1)]*b[(j+1)][k];
c[i][k]=c[i][k]+a[i][(j+2)]*b[(j+2)][k];
c[i][k]=c[i][k]+a[i][(j+3)]*b[(j+3)][k];
c[(i+1)][k]=c[(i+1)][k]+a[(i+1)][j]*b[j][k];
c[(i+1)][k]=c[(i+1)][k]+a[(i+1)][(j+1)]*b[(j+1)][k];
c[(i+1)][k]=c[(i+1)][k]+a[(i+1)][(j+2)]*b[(j+2)][k];
c[(i+1)][k]=c[(i+1)][k]+a[(i+1)][(j+3)]*b[(j+3)][k];
c[(i+2)][k]=c[(i+2)][k]+a[(i+2)][j]*b[j][k];
c[(i+2)][k]=c[(i+2)][k]+a[(i+2)][(j+1)]*b[(j+1)][k];
c[(i+2)][k]=c[(i+2)][k]+a[(i+2)][(j+2)]*b[(j+2)][k];
c[(i+2)][k]=c[(i+2)][k]+a[(i+2)][(j+3)]*b[(j+3)][k];
c[(i+3)][k]=c[(i+3)][k]+a[(i+3)][j]*b[j][k];
c[(i+3)][k]=c[(i+3)][k]+a[(i+3)][(j+1)]*b[(j+1)][k];
c[(i+3)][k]=c[(i+3)][k]+a[(i+3)][(j+2)]*b[(j+2)][k];
c[(i+3)][k]=c[(i+3)][k]+a[(i+3)][(j+3)]*b[(j+3)][k];

}
}
for (t6=j; t6<=32*t4+31; t6=t6+1) {

lbv=32*t3; ubv=32*t3+31;
#pragma ivdep
#pragma vector always
for (k=lbv; k<=ubv; k++) {

c[i][k]=c[i][k]+a[i][t6]*b[t6][k];
c[(i+1)][k]=c[(i+1)][k]+a[(i+1)][t6]*b[t6][k];
c[(i+2)][k]=c[(i+2)][k]+a[(i+2)][t6]*b[t6][k];
c[(i+3)][k]=c[(i+3)][k]+a[(i+3)][t6]*b[t6][k];

}
}}
for (t5=i; t5<=32*t2+31; t5=t5+1) {

for (j=32*t4; j<=32*t4+28; j=j+4) {
lbv=32*t3; ubv=32*t3+31;

#pragma ivdep
#pragma vector always
for (k=lbv; k<=ubv; k++) {

c[t5][k]=c[t5][k]+a[t5][j]*b[j][k];
c[t5][k]=c[t5][k]+a[t5][(j+1)]*b[(j+1)][k];
c[t5][k]=c[t5][k]+a[t5][(j+2)]*b[(j+2)][k];
c[t5][k]=c[t5][k]+a[t5][(j+3)]*b[(j+3)][k];

}}
for (t6=j; t6<=32*t4+31; t6=t6+1) {

lbv=32*t3; ubv=32*t3+31;
#pragma ivdep
#pragma vector always

for (k=lbv; k<=ubv; k++) {
c[t5][k]=c[t5][k]+a[t5][t6]*b[t6][k];

}
}

}
}

}
}

#pragma endscop
return;

}

Figure 11: PoCC - -pluto-tile - -pluto-parallel - -pluto-unroll
SCoP_0.c

gcc

IR

a.out

.c
.c

.c

.c
.c
.c

IR

IR

...

...

P4A Terapyps

IR

.c
.asm

.asm

.cu
.cu

.cu

...

...

PIPS−PoCC Interface

PIPS−PoCC Interface PIPS−PoCC Interface

FPGA

Figure 12: Application of PIPS-PoCC Integration

loop transformations for deep parallelism and memory
hierarchies.International Journal of Parallel Programming,
34(3):261–317, June 2006.

[14] S. Guelton, R. Keryell, and F. Irigoin. Compilation for
heterogeneous computing: Automating analyses,
transformations and decisions. Technical Report A/450, CRI,
Mathématiques et Systèmes, MINES-ParisTech,
Fontainebleau, France, 2010.

[15] F. Le Chevalier, M. Montecot, Y. Doisy, F. Letestu, and
P. Chevalier. Stap developments in thales. InRadar
Conference, 2009. EuRAD 2009. European Issue, pages 53 –
56, sept 2009.

[16] S. Pop, A. Cohen, and G.-A. Silber. Induction variable
analysis with delayed abstractions. InIntl. Conf. on High
Performance Embedded Architectures and Compilers
(HiPEAC’05), pages 218–232. Springer-Verlag, Nov 2005.

[17] L.-N. Pouchet and C. Bastoul.PoCC, The Polyhedral
Compiler Collection package Edition 0.3, for PoCC 1.0-rc2,
April 13rd 2010.

[18] L.-N. Pouchet, C. Bastoul, and A. Cohen. Letsee: the legal
transformation space explorator. InThird International
Summer School on Advanced Computer Architecture and
Compilation for Embedded Systems, L’Aquila, Italia, july
2007.

[19] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of
efficient nested loops from polyhedra.Int. J. Parallel
Program, pages 28(5):469– 498, 2000.

[20] K. Trifunovic, A. Cohen, D. Edelsohn, F. Li, T. Grosser,
H. Jagasia, R. Ladelsky, S. Pop, J. Sjödin, and R. Upadrasta.
GRAPHITE Two Years After: First Lessons Learned From
Real-World Polyhedral Compilation. InGCC Research
Opportunities Workshop (GROW’10), Pisa Italy, 01 2010.

