
Electronic Communications of the EASST
Volume X (2013)

Proceedings of the
Automated Verification of Critical Systems

(AVoCS 2013)

Preservation of Lyapunov-Theoretic Proofs:
From Real to Floating-Point Numbers

Vivien Maisonneuve

14 pages

Guest Editors: Steve Schneider, Helen Treharne
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Preservation of Lyapunov-Theoretic Proofs:
From Real to Floating-Point Numbers

Vivien Maisonneuve1

1vivien.maisonneuve@cri.mines-paristech.fr
CRI, Mathématiques et Systèmes

MINES ParisTech
Fontainebleau, France

Abstract: In [Fer10] Feron presents how Lyapunov-theoretic proofs of stability can
be migrated toward computer-readable and verifiable certificates of control software
behavior by relying of Floyd’s and Hoare’s proof system.

We address the issue of errors resulting from the use of floating-point arithmetic:
we present an approach to translate Feron’s proof invariants on real arithmetic to
similar invariants on floating-point numbers and show how our methodology applies
to prove stability, thus allowing to verify whether the stability invariant still holds
when the controller is implemented.

We study in details the open-loop system of Feron’s paper. We also use the same
approach for Feron’s closed-loop system, but the constraints are too tights to show
stability in this second case: more leeway should be introduced in the proof on real
numbers, otherwise the resulting system might be unstable.

Keywords: Lyapunov stability, proof preservation, ellipse, floating-point, IEEE 754,
rounding errors, control system

1 Introduction

Provable stability constitutes an essential attribute of control systems, especially when human
safety is involved, as in medical or aeronautical domains. Motivated by such applications, there
exist many theorems to support system stability and performance under various assumptions and
in various settings.

Stability criteria apply to a class of dynamical systems for which a stability proof is needed.
Modern systems developments, such as adaptative control technologies, rely on robust stability
and performance criteria as the primary justification for their relevance to safety-critical control
applications. Lyapunov’s stability theory plays a critical role in that regard.

The low-level software implementation of a control law can be inspected by analysis tools
available to support the development of safety-critical computer programs. The simplest program
analysis techniques consist of performing several simulations, sometimes including a software
or hardware representation of the controlled system in the loop. However, simulations provide
information about a large but only finite number of system behaviors. More advanced methods
include model checking and abstract interpretation, e.g. using Astrée [CCF+13]. In these meth-
ods, inputs are computer programs and outputs are certificates of proper program behavior along

1 / 14 Volume X (2013)

mailto:vivien.maisonneuve@cri.mines-paristech.fr

From Real to Floating-Point Numbers

the chosen criterion. Another possibility is to use theorem-proving techniques, supported by
computer tools such as Coq, Isabelle or PVS [Coq13, Pau13, PVS13]. These proof assistants can
be used to establish properties of programs and more general mathematical constructs. Model
checking, abstract interpretation, and theorem-proving tools are all used to verify safety-critical
applications.

In [Fer10], Feron investigates how control-system domain knowledge and, in particular, Lya-
punov-theoretic proofs of stability and performance, can be migrated toward computer-readable
and verifiable certificates of control software behavior by relying on Floyd’s and Hoare’s proof
system [Pel01], applied to MATLAB pseudocode (Sections 2 and 3). His article focuses on using
this framework to support such properties, namely, bounded-input, bounded-state stability, as
they apply to control-system code implementations. But errors resulting from the use of floating-
point arithmetic are not addressed.

In this paper, we present an approach to translate Lyapunov-theoretic stability proof invari-
ants on pseudocode with real arithmetic, as provided in Feron’s article, to similar invariants on
machine code that take into account rounding errors introduced by floating-point arithmetic. We
use them to verify whether stability conditions still hold, in which case system stability with
floating-point numbers can be established.

This document is organized as follows. The next section describes a second-order dynamical
system example, with the corresponding controller. Next, the analysis of the open-loop controller
is presented, followed by its translation to floating-point arithmetic. Then we discuss the case
of the closed-loop system. The document concludes with a discussion of the generality of this
successful approach.

2 Motivating Example

We consider the first system described in the article of Feron [Fer10]. It is a dynamical system
composed of a single mass and a single spring shown in Figure 1.

y yd

u

Figure 1: Mass-spring system

The position input y of the mass is available for feedback control. The signal yd is the reference
signal, that is, the desired position to be followed by the mass.

A discrete-time MATLAB implementation of the controller, using real numbers, is provided

Proc. AVoCS 2013 2 / 14

ECEASST

in [Fer10]. The source code is shown below:

1 Ac = [0.4990, -0.0500; 0.0100, 1.0000];
2 Bc = [1; 0];
3 Cc = [564.48, 0];
4 Dc = -1280;
5 xc = zeros(2, 1);
6 receive(y, 2); receive(yd, 3);
7 while (1)
8 yc = max(min(y - yd, 1), -1);
9 u = Cc*xc + Dc*yc;

10 xc = Ac*xc + Bc*yc;
11 send(u, 1);
12 receive(y, 2);
13 receive(yd, 3);
14 end

Apart from the mechanical system state observation y and the desired system output yd , vari-
ables in this code are:

• xc =
(xc1

xc2

)
∈ R2 is the discrete-time controller state;

• yc ∈ [−1,1] is the bounded output tracking error, i.e. the input y− yd passed through a
saturation function to avoid variable overflow in the controller;

• u ∈ R is the mechanical system input, i.e. the action to be performed according to the
controller.

Constants Ac, Bc, Cc and Dc are the discrete-time controller state, input, output and feedthrough
matrices. The commands send and receive are basically I/O: they respectively send and
receive data given in the commands first argument through a specific channel given by the com-
mands second argument.

3 Open-Loop Stability Proof

The stability proof of this system relies on Lyapunov theory. In simple terms, a system is Lya-
punov stable if all states xc reachable from an initial starting state belonging to a bounded neigh-
borhood V of an equilibrium point xe remain in V .

Lyapunov theory provides constraints that must be satisfied by such a V . On linear systems,
they are equations that can be solved using linear matrix inequalities [BEFB94]. Commonly, V
is an ellipsoid.

In this case, to prove Lyapunov stability, we need to show that at any time, xc belongs to the
set EP chosen by Feron according to Lyapunov’s theory:

EP = {x ∈ R2 |xT ·P · x≤ 1}, P = 10−3
(

0.6742 0.0428
0.0428 2.4651

)
.

3 / 14 Volume X (2013)

From Real to Floating-Point Numbers

using EP as the stability neighborhood V .
This set is a full ellipse, centered around 0 and slightly slanted:

xc ∈ EP⇐⇒ 0.6742x2
c1
+0.0856xc1xc2 +2.4651x2

c2
≤ 1000.

EP is drawn in Figure 2.

xc1
−40 −30 −20 −10 10 20 30

xc2

−20

−10

10

20

EP

Figure 2: The stability domain EP

A stability proof of the controller is provided in [Fer10], using Floyd-Hoare program an-
notation technique [Pel01]: each program instruction comes with an invariant. The program

annotated by Feron is reproduced below. We note zc =
(xc1

xc2
yc

)
.

5 xc = zeros(2,1);
% xc ∈ EP

6 receive(y, 2); receive(yd, 3);
% xc ∈ EP

7 while (1)
% xc ∈ EP

8 yc = max(min(y - yd, 1), -1);
% xc ∈ EP, y2

c ≤ 1
% zc ∈ EQµ

, Qµ =
(

µP 02×1
01×2 1−µ

)
, µ = 0.9991

9 u = Cc*xc + Dc*yc;
% zc ∈ EQµ

, u2 ≤ (Cc Dc) ·Q−1
µ · (Cc Dc)

−1

10 xc = Ac*xc + Bc*yc;

% xc ∈ EP̃, P̃ =
[
(Ac Bc) ·Q−1

µ · (Ac Bc)
T
]−1

, u2 ≤ (Cc Dc) ·Q−1
µ · (Cc Dc)

−1

11 send(u, 1);
% xc ∈ EP̃

12 receive(y, 2);
% xc ∈ EP̃

13 receive(yd, 3);
% xc ∈ EP̃

Proc. AVoCS 2013 4 / 14

ECEASST

% xc ∈ EP

14 end

Most of the proof relies on algebraic arguments. For example, the invariant loosening that
follows Line 8:

8 yc = max(min(y - yd, 1), -1);
% xc ∈ EP, y2

c ≤ 1
% zc ∈ EQµ

, Qµ =
(

µP 02×1
01×2 1−µ

)
, µ = 0.9991

means

xc ∈ EP∧ y2
c ≤ 1 =⇒ zc ∈ EQµ

with Qµ =
(

µP 02×1
01×2 1−µ

)
and µ = 0.9991.

where zc =
(xc

yc

)
as defined above.

The correctness of this assertion stems from the fact that, given any value of µ ∈ [0,1], the
domain EQµ

is a solid ellipsoid, centered around 0, and whose intersection with the plane yc = 1
is equal to EP. Consequently, the solid bounded cylinder C = {zc |xc ∈ EP∧ y2

c ≤ 1} is included
within EQµ

(Figure 3).

EQµ

EP

C xc2

yc

1

−1

xc1

Figure 3: Inclusion of EP within EQµ

The following invariants

% zc ∈ EQµ
, Qµ =

(
µP 02×1

01×2 1−µ

)
, µ = 0.9991

9 u = Cc*xc + Dc*yc;
% zc ∈ EQµ

, u2 ≤ (Cc Dc) ·Q−1
µ · (Cc Dc)

−1

10 xc = Ac*xc + Bc*yc;

% xc ∈ EP̃, P̃ =
[
(Ac Bc) ·Q−1

µ · (Ac Bc)
T
]−1

, u2 ≤ (Cc Dc) ·Q−1
µ · (Cc Dc)

−1

also rely on algebraic arguments and theorems.
Other invariants are trivial. Finally, only the very last loosening

% xc ∈ EP̃
% xc ∈ EP

5 / 14 Volume X (2013)

From Real to Floating-Point Numbers

i.e. EP̃ ⊂ EP, that “closes” the loop, is not purely algebraic since its validity relies on the nu-
merical parameters Ac, Bc, Cc, Dc. This assertion needs to be checked to ensure the correctness
of the proof statements. This can be done either numerically, or algebraically for at most two-
dimensional systems like this one.

This stability proof has been checked with Mathematica [Wol13] and is available online1.

4 Stability Proof Scheme with Floating-Point Numbers

We would like to check that the stability proof still holds on a controller implemented with
floating-point numbers. When using floating-point arithmetic, the values of constants are slightly
altered and calculations are likely to produce rounding errors.

In absolute terms, it is impossible to switch from real to floating-point numbers without af-
fecting the behavior of the controller. Thus, the stability proof cannot be preserved in the general
case. On the other hand, the program still can be stable if rounding errors are small enough
and the final inclusion EP̃ ⊂ EP leaves them enough room. We study how proof invariants can be
tweaked so that they correspond to a floating-point semantic. Our goal is to derive from the proof
scheme for real numbers a proof scheme suited for floating-point arithmetic, whose correctness,
although not guaranteed, can be checked as easily.

In this section, we use the IEEE 754 floating-point standard [IEE08] encoded on 64 bits2 as
most of today’s floating-point units do. In this standard, both addition and multiplication are
correctly rounded depending on the active rounding mode, which allows to bound the rounding
error depending on the values of operands. The case of other numeric representations is discussed
in Section 6.

4.1 Converting Constants

The first step is to convert real constants

1 Ac = [0.4990, -0.0500; 0.0100, 1.0000];
2 Bc = [1; 0];
3 Cc = [564.48, 0];
4 Dc = -1280;

to floating-point constants, assuming rounding to nearest value:

1 Acf = [0.49899999999999999911182158029987476766109466552734375,
-0.05000000000000000277555756156289135105907917022705078125;
0.01000000000000000020816681711721685132943093776702880859375,
1.0000]

2 Bcf = [1; 0];
3 Ccf = [564.48000000000001818989403545856475830078125, 0]

1 Mathematica source file is available at: http://www.cri.ensmp.fr/people/maisonneuve/lyafloat/resources/lyafloat_
stability.nb, and the corresponding PDF file at: http://www.cri.ensmp.fr/people/maisonneuve/lyafloat/resources/
lyafloat_stability.pdf.
2 The procedure that follows would be exactly the same with 32-bit floating-point numbers, only with different
numerical results.

Proc. AVoCS 2013 6 / 14

http://www.cri.ensmp.fr/people/maisonneuve/lyafloat/resources/lyafloat_stability.nb
http://www.cri.ensmp.fr/people/maisonneuve/lyafloat/resources/lyafloat_stability.nb
http://www.cri.ensmp.fr/people/maisonneuve/lyafloat/resources/lyafloat_stability.pdf
http://www.cri.ensmp.fr/people/maisonneuve/lyafloat/resources/lyafloat_stability.pdf

ECEASST

4 Dcf = -1280

Theses matrices A f
c , B f

c , C f
c and D f

c will be used instead of Ac, Bc, Cc, Dc in the sequel of the
proof.

Apart from constants, the proof scheme for the first part of the program is unchanged:

5 xc = zeros(2,1);
% xc ∈ EP

6 receive(y, 2); receive(yd, 3);
% xc ∈ EP

7 while (1)
% xc ∈ EP

8 yc = max(min(y - yd, 1), -1);
% xc ∈ EP, y2

c ≤ 1
% zc ∈ EQµ

, Qµ =
(

µP 02×1
01×2 1−µ

)
, µ = 0.9991

9 u = Cc*xc + Dc*yc;

4.2 Invariant on u

Then, we consider the next instruction in the original proof scheme:

% zc ∈ EQµ
, Qµ =

(
µP 02×1

01×2 1−µ

)
, µ = 0.9991

9 u = Cc*xc + Dc*yc;
% zc ∈ EQµ

, u2 ≤ (Cc Dc) ·Q−1
µ · (Cc Dc)

−1

First of all, matrices Cc and Dc must be replaced by their floating-point counterparts C f
c and

D f
c both in the program instruction Line 9 and the ensuing invariant. This invariant relies only on

algebraic arguments and does not depend on the values in the matrices, it still holds considering
exact arithmetic operations. But this is not sufficient: indeed, this instruction is a sum of matrix
multiplications, i.e. a set of additions and multiplications on floating-point numbers that yield
rounding errors.

We can notice that entering this instruction, the values of matrices C f
c , D f

c and EQµ
are known,

and the values of xc and yc are bounded by the precondition

zc =
(xc

yc

)
∈ EQµ

,

that is

0.000673593x2
c1
+0.000085523xc1xc2 +0.00246288x2

c2
+0.9991y2

c ≤ 1. (1)

From (1), we deduce:
|xc1 | ≤ 3 ·105

√
13695

829322227639 < 38.5515

|xc2 | ≤ 105
√

33710
829322227639 < 20.1614

|yc| ≤ 100√
9991

< 1.00046

(2)

7 / 14 Volume X (2013)

From Real to Floating-Point Numbers

Here we are able to find algebraic solutions, but this may be impossible with ellipsoids of higher
dimension. Still, we would be able to find bounds using numerical methods.

In floating-point arithmetic, rounding errors created by addition and multiplication operators
can be bounded when the operands are known or bounded by (2), provided that overflow, under-
flow, and denormalized numbers do not occur [Gol91, Hig02].

Here, we need to compute

C f
c xc +D f

c yc =C f
c(0,0)xc1 +D f

c yc

where all values in the right-hand term are known or bounded. Thus, a constant can be computed
that bounds the absolute rounding error created when computing u. We used Rangelab [Mar11],
a static analysis tool to automatically validate the accuracy of floating-point or fixed-point com-
putations, to compute an upper bound e for the error term3:

e = 5.90 ·10−12

This way, starting from the algebraic result obtained on real numbers

|u| ≤
√

(Cc Dc) ·Q−1
µ · (Cc Dc)T

we can ensure that with floating-point numbers, the inequality holds:

|u| ≤U f =

√
(C f

c D f
c) ·Q−1

µ · (C f
c D f

c)T + e

which leads to the invariants:

% zc ∈ EQµ
, Qµ =

(
µP 02×1

01×2 1−µ

)
, µ = 0.9991

9 u = Cc*xc + Dc*yc;
% zc ∈ EQµ

, u2 ≤U2
f

4.3 Invariant on xc

The next instruction, considering constant changes, is:

10 xc = Acf*xc + Bcf*yc;

% xc ∈ EP̃f
, P̃f =

[
(A f

c B f
c) ·Q−1

µ · (A
f
c B f

c)T
]−1

, u2 ≤ (Cc Dc) ·Q−1
µ · (Cc Dc)

−1

where P̃f is defined the same way P̃ is, using floating-point terms A f
c , B f

c instead of the real-
valued counterparts Ac, Bc. Again, this invariant holds independently of matrices values.

Here, we compute{
A f

c(0,0)xc1 +A f
c(0,1)xc2 + yc

A f
c(1,0)xc1 + xc2

3 Rangelab source file is available at: http://www.cri.ensmp.fr/people/maisonneuve/lyafloat/resources/lyafloat_fp.m.

Proc. AVoCS 2013 8 / 14

http://www.cri.ensmp.fr/people/maisonneuve/lyafloat/resources/lyafloat_fp.m

ECEASST

Using the same method as above, absolute rounding errors introduced by floating-point opera-
tions can be bounded by constants

e1 = 7.42 ·10−15, e2 = 3.62 ·10−15

These constants must be taken into account in the postcondition. Also, invariant on u must be
replaced as previously. Then the postcondition can be replaced by

% xc ∈ E f
P̃f
, u2 ≤U2

f

where E f
P̃f

is an ellipse that includes EP̃f
plus the rounding error terms (see Figure 4). Replacing

the ellipse in the postcondition by another ellipse has the advantage of introducing little change
in the stability proof sketch (instead of using a different domain, which would involve using
different theorems), which can greatly facilitate tweaking the rest of the proof in longer codes.
Formally, E f

P̃f
must satisfy:

∀xc ∈ EP̃f
,∀x′c ∈ R2, |x′c1

− xc1 | ≤ e1∧|x′c2
− xc2 | ≤ e2 =⇒ x′c ∈ E f

P̃f
(3)

EP̃fE f
P̃f

xc1

xc2

e1

e2

Figure 4: Relation between EP̃f
and E f

P̃f

At the end of the proof scheme, the system is stable with floating-point numbers if and only if
the inclusion

E f
P̃f
⊂ EP

holds. To succeed, E f
P̃f

should be as narrow as possible with respect to Equation (3). This is not a

clear criterion, as several shapes are possible for E f
P̃f

with no clear winner. We propose to define

E f
P̃f

as the smallest homothety of EP̃f
centered around 0 that satisfies (3). It can be computed

rather easily, for any number of dimension; we give details for two dimensions.
Let a, b, c be the coefficients of EP̃f

:

EP̃f
= {(xc1 ,xc2) |ax2

c1
+bx2

c2
+ cxc1xc2 ≤ 1}.

9 / 14 Volume X (2013)

From Real to Floating-Point Numbers

a, b and c are known positive values. Then there exists k ≥ 0 s.t.

E f
P̃f
= {(xc1 ,xc2) |ax2

c1
+bx2

c2
+ cxc1xc2 ≤ k}.

As E f
P̃f

is wider than EP̃f
, k ≥ 1. We need a condition on k that guarantees (3).

We consider a point (xc1 ,xc2) located on the border of EP̃f
:

ax2
c1
+bx2

c2
+ cxc1xc2 = 1. (4)

By construction, for any values ε1,ε2 ∈ R s.t. |ε1| ≤ e1∧|ε2| ≤ e2, the relation

(xc1 + ε1,xc2 + ε2) ∈ E f
P̃f

must hold, that is to say:

a(xc1 + ε1)
2 +b(xc2 + ε2)

2 + c(xc1 + ε1)(xc2 + ε2)≤ k.

It develops into

(ax2
c1
+bx2

c2
+ cxc1xc2)+(2aε1 + cε2)xc1 +(2bε2 + cε1)xc2 +(aε

2
1 +bε

2
2 + cε1ε2)≤ k,

that is

1+(2aε1 + cε2)xc1 +(2bε2 + cε1)xc2 +(aε
2
1 +bε

2
2 + cε1ε2)≤ k.

due to (4).
Greatest values for the left-hand term are reached with ε1 = |e1|∧ ε2 = |e2|, depending on the

signs of xc1 and xc2 . As the ellipse EP̃f
is symmetric about the origin point (0,0), we can set

ε1 = e1, which lets only two cases to study. Finally, we numerically verify that greatest values of
the term are reached when ε2 = e2. This is the only case we detail here.

We can write:

1+αxc1 +βxc2 + γ ≤ k

with values α = (2ae1 + ce2), β = (2be2 + ce1) and γ = (ae2
1 +be2

2 + ce1e2).
We known that xc1 and xc2 are bounded, thus so is the term αxc1 +βxc2 : we can compute a

minimum bound δ s.t. αxc1 +βxc2 ≤ δ . So it is sufficient that k satisfies:

k ≥ 1+ γ +δ

Consequently, we define E f
P̃f

as the smallest homothety of EP̃f
that satisfy (3), obtained with

k = 1+ γ +δ . The instruction becomes:

% zc ∈ EQµ
, u2 ≤U2

f

10 xc = Ac*xc + Bc*yc;

% xc ∈ E f
P̃f
, u2 ≤U2

f

Proc. AVoCS 2013 10 / 14

ECEASST

In our case, starting from the ellipse

EP̃f
= {(xc1 ,xc2) |0.00269007x2

c1
+0.000341414xc1xc2 +0.00247323x2

c2
≤ 1}

we get the following values:

α = 1.03246 ·10−17, β = 1.84829 ·10−17, γ = 7.17582 ·10−32.

Using Mathematica, we found δ = 5.35754 ·10−16� γ and finally

k = 1+5.35754 ·10−16

that gives E f
P̃f

.

4.4 End of Proof Scheme

Then, what remains of the stability proof scheme becomes:

% xc ∈ E f
P̃ , u2 ≤U2

f

11 send(u, 1);

% xc ∈ E f
P̃

12 receive(y, 2);

% xc ∈ E f
P̃

13 receive(yd, 3);

% xc ∈ E f
P̃

% xc ∈ EP

14 end

As previously, the final assertion E f
P̃f
⊂ EP must be checked. Two cases are possible:

• either E f
P̃f
⊂ EP, then we proved that the program is Lyapunov stable on a floating-point

architecture;

• or E f
P̃f
6⊂ EP: as E f

P̃f
was obtained through overapproximations, we cannot conclude about

the program behavior.

In this open-loop case, we are able to check that E f
P̃f
⊂ EP (Mathematica script is available

online: see footnote 1). Thus, the stability of the open-loop system with a 64-bit IEEE 754
compliant implementation is formally proven to hold using our proof translation scheme.

5 Closed-Loop Stability Proof

We now show how the proof of state boundedness of the closed-loop system specifications can
be migrated to the level of the controller code and executable model of the system. To be more
precise, we exploit the invariance of the ellipsoid EP to develop a proof of proper behavior, that

11 / 14 Volume X (2013)

From Real to Floating-Point Numbers

is, stability and variable boundedness, for the computer program that implements the controller
as it interacts with the physical system. Unlike the developments related to open-loop controller,
this proof necessarily involves the presence of the physical system. In [Fer10], Feron chooses to
represent the physical system and the computer program by two concurrent programs, as shown
below.

Controller dynamics:

1c Ac = [0.4990, -0.0500;
0.0100, 1.0000];

2c Bc = [1; 0];
3c Cc = [564.48, 0];
4c Dc = -1280;
5c xc = zeros(2, 1);
6c receive(y, 2); receive(yd,

3);
7c while (1)
8c yc = max(min(y - yd, 1),

-1);
9c u = Cc*xc + Dc*yc;

10c xc = Ac*xc + Bc*yc;
11c send(u, 1);
12c receive(y, 2);
13c receive(yd, 3);
14c end

Physical system dynamics:

1p Ap = [1.0000, 0.0100;
-0.0100, 1.0000];

2p Bp = [0.00005; 0.01];
3p Cp = [1, 0];
4p while (1)
5p yp = Cp * xp;
6p send(yp, 2);
7p receive(up, 1);
8p xp = Ap * xp + Bp * up;
9p end

In this scheme, the computer program representation of the physical system is to remain un-
changed, since it only exists for modeling purposes and does not correspond to any actual pro-
gram, whereas the controller code is allowed to evolve to reflect the various stages of its imple-
mentation.

Establishing proofs of stability of the closed-loop system at the code level is necessarily tied to
understanding the joint behavior of the controller and the plant. The entire state space therefore
consists of the direct sum of state spaces of the controller and the physical system. The ap-
proach described in the previous sections is used to document the corresponding system of two
processes. One interesting aspect of these processes is their concurrency, which can complicate
the structure of the state transitions. However, a close inspection of the programs reveals that
the transition structure of the processes does not need to rely on the extensions of Hoare’s logic
to concurrent programs: one program at a time is running, through the blocking nature of the
receive primitive.

Feron’s stability proof with real numbers is much longer than for the open-loop system. We
do not detail it, the interested reader is referred to [Fer10] for full information. To be noticed,
the resulting comments are not much more complex than those available from the study of the
controller alone. On the good side, as already mentioned, the Hoare formalism is not significantly
affected by the concurrent structure of the closed-loop system.

Proc. AVoCS 2013 12 / 14

ECEASST

A floating-point representation of the closed-loop system consists of keeping the right column
of the listing above in its original settings, while replacing the left column with the corresponding
floating-point implementation, as we did in Section 4. Using similar techniques to the study of
the controller alone, proof invariants can be tweaked to take into account constant changes and
rounding errors resulting from the use of floating-point arithmetic. Unfortunately, using these
invariants it cannot be shown that the stability condition holds at the end of the loop body. In
this case, we are unable to prove the system stability on a floating-point architecture: either the
system is not stable with the floating-point based controller, or the proof parameters (EP, µ , . . .)
must be chosen more carefully by the controller designer.

6 Conclusion

The general idea is to replace some of the invariants in the original proof scheme by wider
ones that include rounding errors, with the hope that the stability condition is strong enough
and still holds. This approach is made possible by the fact that rounding errors introduced by
the operations used in the code are bounded on bounded inputs and bounded controller state
variables.

In this document, we study the case of a floating-point representation of real numbers. They
are not available on all architectures, especially on microcontrollers that are commonly used to
implement control systems. We quickly discuss the alternative real-number representations.

• We can deal with fixed-point arithmetic the same way we do with floating-point, as long
as we stand far enough from extremal values that can lead to overflows.

• Another way to represent real numbers is to use two integers, a numerator and a denomina-
tor. Considering that the input values are exact, the elementary operations do not introduce
rounding errors but can easily lead to overflows, e.g. when computing

p1

q1
+

p2

q2
=

p1q2 + p2q1

q1q2
.

A strategy must be used to prevent overflows by introducing approximations: in this case,
the question is to quantify the errors introduced by these approximations.

In our example, we exclusively used additions and multiplications: divisions are not involved
in linear control. Still, programs with divisions can also be analyzed, if the numerator can be
shown to be far enough from zero: it is a supplementary constraint, but it is reasonable to assume
that it should be respected on a realistic control system that uses divisions. Differentiable, peri-
odic functions such as (sin) can be computed with an abacus and an interpolation function, thus
with bounded error. In the same way, functions not periodic, but restricted to finite domains, can
also be approximated. Other functions, such as (tan) or √, should raise more issues.

13 / 14 Volume X (2013)

From Real to Floating-Point Numbers

Bibliography

[BEFB94] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan. Linear Matrix Inequalities in
System and Control Theory. Studies in Applied Mathematics 15. SIAM, Philadelphia,
PA, June 1994.

[CCF+13] P. Cousot, R. Cousot, J. Feret, A. Miné, X. Rival et al. The Astrée Static Analyzer.
2001–2013.
http://www.astree.ens.fr/

[Coq13] The Coq Proof Assistant. 1984–2013.
http://coq.inria.fr/

[Fer10] E. Feron. From Control Systems to Control Software. IEEE Control Systems Maga-
zine 30(6):50–71, Dec. 2010.
doi:10.1109/MCS.2010.938196
http://dx.doi.org/10.1109/MCS.2010.938196

[Gol91] D. Goldberg. What Every Computer Scientist Should Know About Floating Point
Arithmetic. ACM Computing Surveys 23(1):5–48, 1991.
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#689

[Hig02] N. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial
and Applied Mathematics, 2002.
http://books.google.fr/books?id=epilvM5MMxwC

[IEE08] IEEE Task P754. IEEE 754-2008, Standard for Floating-Point Arithmetic. Aug.
2008.
doi:http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

[Mar11] M. Martel. Rangelab. 2011.
http://perso.univ-perp.fr/mmartel/rangelab.html

[Pau13] L. Paulson. Isabelle. 1990–2013.
http://isabelle.in.tum.de/

[Pel01] D. Peled. Software Reliability Methods. Texts in Computer Science Series. Springer,
2001.
http://books.google.fr/books?id=jJ-lTSlB71kC

[PVS13] PVS Specification and Verification System. 1992–2013.
http://pvs.csl.sri.com/

[Wol13] Wolfram Research. Mathematica. 1988–2013.
http://www.wolfram.com/mathematica/

Proc. AVoCS 2013 14 / 14

http://www.astree.ens.fr/
http://coq.inria.fr/
http://dx.doi.org/10.1109/MCS.2010.938196
http://dx.doi.org/10.1109/MCS.2010.938196
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#689
http://books.google.fr/books?id=epilvM5MMxwC
http://dx.doi.org/http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://perso.univ-perp.fr/mmartel/rangelab.html
http://isabelle.in.tum.de/
http://books.google.fr/books?id=jJ-lTSlB71kC
http://pvs.csl.sri.com/
http://www.wolfram.com/mathematica/

	Introduction
	Motivating Example
	Open-Loop Stability Proof
	Stability Proof Scheme with Floating-Point Numbers
	Converting Constants
	Invariant on u
	Invariant on xc
	End of Proof Scheme

	Closed-Loop Stability Proof
	Conclusion

