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Abstract—In this paper we concentrate on embedded parallel
architectures with heterogeneous memory management systems
combining shared and local memories, and more precisely we
focus on efficient data communications between the various
architecture parts. We formulate explicit data transfers in a
polyhedral context and give several strategies for managing
efficient communications for redundantly stored/read data. This
allows automatic DMA-style code generation for a variety of data
mappings onto parallel processing elements. Our approach is
validated on a wide series of data redistribution examples linked
with a domain-specific parallelisation framework developed in
Thales, SpearDE. We give the solution for efficient data transfers
mathematically as well as under the form of generated C code.

I. INTRODUCTION

Since the power and frequency walls risen by transistor
miniaturization and Moore’s law have limited the performance
one can get from computing architectures, parallelism has
become again the obvious choice. This holds for very high
performance computing over huge amounts of distributed data
but also for embedded systems. Yet this did not quite solve the
problem of getting the maximum performance effortlessly, but
rather brought with it a huge exploration space for architecture
and application design and adequacy.

The nature of applications in terms of intrinsic parallelism,
data locality, computation type is equally diverse. There is
arguably no one-size-fits-all solution, and therefore architec-
tural heterogeneity is privileged for getting the most in terms
of performance and/or energy. Some common examples of
such embedded or high-performance architectures are general
purpose processors (GPPs) coupled with various accelerators
such as GPUs [1], FPGAs [2], DSPs [3], many-core platforms
such as CELL-BE [4], ST STHORM [5] etc. The multi-
processor components of these platforms will efficiently handle
parallelisable parts of an application, assuming they were
transformed at the right granularity (task, data etc.) for the
platform.

In addition to architecture heterogeneity in terms of pro-
cessing elements, there is also memory heterogeneity, usually
with large but slow shared memories combined with small but
very fast local memories close to computations. This usually
calls for explicit data transfers between all these memories and

thus efficient communication algorithms. Transfer efficiency
can be sought according to various criteria such as load
balancing, redundancy removal, loop fusion, etc.

In this paper, we explicitly concentrate on optimizing data
communications for multi-dimensional arrays already mapped
onto heterogeneous parallel parts of a given architecture. The
mapping operation may result in data replication inside differ-
ent local memories either for load balancing purposes or for re-
ducing the communication overhead between local and shared
memories, whenever possible. But, while this redundancy is
imposed by the explicit mapping, transferring the same element
several times is inefficient or may even result in data coherency
problems. Our goal is to generate consistent communication
code with appropriate redundancy handling both at sender
and receiver levels in the most general case, without prior
assumptions on a given architecture topology. This approach
is motivated by the need of a generic framework for fine-
grain parallelisation of dataflow applications (mainly in the
signal and image processing domains) onto a large variety of
configurations. The optimization of application placement onto
parallel cores is out of the scope of this paper. We concentrate
on the automatic generation of the data redistributions between
different, potentially hierarchical, parallel parts of a platform,
in a multi-dimensional DMA (Direct Memory Access) style.

Signal/image processing applications offer some speci-
ficities that make them very suitable candidates for fine-
grain parallelisation, due to the high amount of potential data
parallelism. This is because operations are usually performed
in a systematic manner on tiles of the multi-dimensional
signals and thus the computations are easily partitioned. More-
over, recurrent operations, like filtering, involve neighbourhood
processing (e.g. convolutions) and mapping these operations
onto several distinct processing elements usually introduces a
certain amount of data overlap (of the size of the convolution
kernel for instance); border handling in image processing is
another example where partitioned parts of an image will
overlap, data being thus found in different memories, in a
distributed architecture.

An efficient transfer of overlapping data in a source dis-
tribution involves a pre-processing step of redundancy elim-
ination which can be also dependent on the desired data



redistribution at the target. We have defined two strategies
for communication balancing between a source-distributed
memory and a destination one (potentially having a different
distribution). Via a polyhedral formulation we ensure correct
automatic generation of data transfers between a source dis-
tribution and a destination one. In this paper we will give the
solution for the efficient data transfer mathematically as well
as under the form of generated C code.

This paper is organized as follows. The next section
presents our motivations stemming from the requirements of
an industrial design environment for parallelisable dataflow
applications, as well as the positioning of our work with
respect to the state of the art. Then we will give the polyhedral
formulation for our problem and its linear algebra solution in
Sections III, IV and V. In Sections VI and VII we present the
different implemented optimizations. Section IX concludes the
paper.

II. CONTEXT

As data volumes grow, so does the need for more efficient
processing. As explained in the previous section, this is par-
ticularly true for the signal processing field where information
from various sensors needs to be put together and the potential
for parallelism is extremely high. Many applications such as
beam-forming, RADAR adaptive filtering, SONAR processing,
image analysis via different transforms, video coding, space-
time block coding, etc. can often be modelled as dataflow
graphs. Then different parts of these graphs can be mapped
onto various accelerators, this leading to an explicit need
for data communication in distributed memory systems. Our
industrial framework relies on a generic approach allowing
to address many different (usually embedded) architectures
with streaming processing capabilities. The main difficulty
consists in devising code generators that can efficiently handle
data communications in a correct-by-construction manner for
most scenarios of data-parallel mappings of multi-dimensional
arrays onto locally SPMD [6] segments of heterogeneous
platforms (both COTS and in-house ones).

A. Multidimensional arrays

In the general case, a signal can be seen as a multi-
dimensional array with usually independently processed di-
mensions. For instance, an antenna array in RADAR can be
described by a 3D array having as dimensions the antenna
axis, the range axis and the pulse axis. A video signal is usually
viewed as a 3D signal also, where the first two dimensions are
the rows and the columns of each video frame and the third one
is the temporal axis of the video. The possibility of processing
signal dimensions independently is quite valuable for data
parallelisation. Indeed the multi-dimensional array can be split
onto one of the directions and the resulting blocks can be
distributed between different processing elements in their local
memories. Moreover, a signal can be subsampled during its
different processing stages, like for instance when performing
the Fast Fourier Transform or the fast wavelet transform,
where filtering and subsampling stages are cascaded. Also,
redundancy can occur, for instance, with oversampled filter
bank transforms and in a data parallel context parts of the
signal might be replicated into different memories for local
processing purposes.

Fig. 1. Radar application modelling in SpearDE as a dataflow graph. The
tasks (nodes in the graph) can be individually mapped onto parallel segments
in the architecture.

In our industrial framework SpearDE [7], data flow ap-
plications are represented as directed acyclic graphs, as in
Figure 1, in which the nodes are elementary operations iterated
into nested loops allowing to consume the multi-dimensional
input data distributions represented as the edges in the graph.
Data handling in the application graph follows very similar
rules to the ArrayOL formalism [8], especially in terms of
data parallelism inside a node where a pattern (indivisible
portion of the input array) is repeated until the entire array
has been parsed. In this manner the iteration space can easily
be partitioned at the mapping stage.

In order to perform co-design stages like application
placement, here called mapping, code generation and per-
formance evaluation, SpearDE simultaneously provides an
abstract model of the target architecture, as the one given
in Figure 2. Here, we highlighted the different levels of
encapsulation of a multi-processor architecture on FPGA [9]
that can be addressed via our parallelisation framework. In this
example, the platform is composed of 4 clusters each having 3
tiles. Every tile consists of a CPU coupled with an accelerator.
Different memory levels are available and potentially need to
be accessed during a communication operation: the clusters
communicate via a shared memory, the tiles inside the cluster
equally access a cluster shared memory, while inside each tile
there are local memories for the computing elements. One
strength of this parallelisation framework is the potential of
modelling very heterogeneous architectures via this abstract
model, including non-COTS ones, as is the case in Figure 2.
One limitation however is the fact that data transfers only
include rectangular distributions at the moment and the need
to extend this to generic (polyhedral) distributions motivate
part of the work presented here. Note that the architecture
topology in the example given in Figure 2 amounts to a multi-
dimensional memory structure where the local memory in a
processing element will be indexed inside a 4× 3 array.

In the general case, when two linked nodes in the appli-
cation are mapped onto different parts of an embedded many-
core architecture, memory transfers are often explicit. In our
framework this operation introduces supplementary nodes in
the graph, as can be seen in Figure 3.

Inside the (mapped) graph nodes, data distributions have
explicit dimensions, the mapping operation adding the infor-
mation related to data parallelism, as in Figure 4. In this exam-
ple we considered the frontier between the “orange” and the
“green” segments in Figure 3. More specifically, we generate a
communication between the 5 distributed memories - column
“Arch0” in Figure 4 (corresponding to indexes (0, 1) to (1, 2)



Fig. 4. The two ends of a communication: multi-dimensional signals inside source (left) and destination (right) nodes in the mapped dataflow graph. The source
distribution is a 3D array split into 5 cubes of 25× 32× 5 points each, on the dimensions named rg, rec and ant, respectively. The number of data cubes is
given by the number of inter-cluster tiles associated with this task in the example architecture. The index stride on the rg axis in the 5 considered memories is
of 19, there is thus an overlap of 6 points on the rg axis. On the right-hand side, the destination distribution results from a different mapping on 4 inter-cluster
tiles in this architecture with different striding between the 4 associated memories, 20 in this case, and different data tiling: 36× 32× 5 points on rg, rec and
ant respectively.

Fig. 2. Example of hierarchical parallel architecture on FPGA - abstract
model in SpearDE. The model highlights the architecture topology, i.e. the
number of processing elements and their different levels of encapsulation, the
associated memories forming a multi-dimensional memory structure that needs
to be addressed by specific data communications and the different buses. These
main elements can be parametrised in terms of bandwidth, speed, capacity etc.
and will later serve for performance simulations in SpearDE.

Fig. 3. Mapping the example application onto the example architecture. The
application graph is partitioned into different coloured segments that work in
a Kahn Process Network-like manner. Each segment is mapped onto a part of
the architecture containing one or more processing elements intra/inter tile.

in the 4 × 3 memory topology of the example architecture)
and 4 distributed memories (indexes (2, 0) to (3, 1)). Note
that data redundancy on one of the signal dimensions (rg in
this example) occurs both at source and destination levels, and
different handling strategies are needed since its semantics is
different according to the transfer end.

A code generator will then need to integrate the corre-
sponding loop nests implementing these data transfers. The
difficulty of the communication task is enhanced by the fact
that the source and destination tasks may be mapped onto
different multi-dimensional architecture topologies as well. In
the same time, many applications require precise dimension
ordering for the multi-dimensional signals in order to ensure

the correctness of the often occurring transposition operations.
When data is scattered among different dimensions of multi-
processor architecture parts, a communication task must in
addition preserve dimension semantics, distinguishing archi-
tecture dimensions from data (signal) ones, in order to obtain
both correctness and efficiency.

Assume a mapping on a p-dimensional processing archi-
tecture of a one-dimensional array T, giving an n-dimensional
distribution, with n = p+ 1 (architectural + data dimensions).
The access function for this n-dimensional distribution can be
expressed in pseudo-code using the following nested loops.

forall arch0 = 0,m0

. . .

forall archp = 0,mp

forall data = 0,mp+1

T (s0 · arch0 + . . .+ sp · archp + sp+1 · data) = f(...);

where mi=0,p−1 are the number of local memories available
on each dimension i of the processing architecture and mp+1

is the number of data points per dimension in the signal.
Note equally the sampling steps si=0,p+1 that describe this
mapped distribution in the most general case. It is important
to retain the fact that there is a semantic difference between
the sampling steps of the data distributions which is func-
tional, application dependent, and the sampling steps of the
data distributions mapped onto the p-dimensional computing
architecture. The latter is imposed by the chosen mapping
and has no functional signification for the application. It only
represents the way data is distributed for parallel computing
on the considered platform.

Now, in order to express data transfers, equivalent access
functions for the target distribution into the source distribution
can be generated and we address this issue through a polyhe-
dral formulation that is explained in the next sections.

Possible overlaps of data points onto a given dimension k
will be expressed using multiple variables in the kth dimension
of the access function. In this case, the access function is
T (s0 · arch0+. . .+sk · archk + sok · ok+. . .+sp ·archp+sp+1 ·data)
where ok varies from 0 to mok and serves at accessing mok +1
possible redundant points (with stride sok ) either replicated in
a single memory or between different memory dimensions.

Handling transfers in the context of data replication in
distributed memories is one key point of our communication
framework. As mentioned above, duplication can be used to
share data between multi-processor parts of a heterogeneous



embedded platform, when shared memories are too inefficient
or even unavailable.

B. DMA Communication Generation

Fine grain optimization through data parallelism must
be combined with coarser grain optimizations such as task
parallelism in order to fully exploit heterogeneous parallel
architectures. Therefore, our objective is to express commu-
nications in DMA style, allowing further optimizations such
as software pipelining.

DMA engines allow some hardware subsystems to access
system memory directly. The DMA transfers do not block
the system and the computations can continue in parallel to
communications. Usual DMA engines have multiple channels
to process multiple transfer requests. Therefore they are very
efficient for coarse grain data transfers. They can transfer
blocks of either contiguous or strided data. Our work is in
line with the assumption that multidimensional DMAs being
able to transfer strided blocks exist in the architecture, which
is a common scenario in current platforms. To initiate a data
transfer, the DMA controller needs the address of the data d,
the offset ω of the first element, the number ν of elements to
transfer and the stride σ between the elements in the block,
for both the source and target destinations.

Our objective in this paper is to provide an algorithm
that generates communications in a DMA style from the
source and target distributions of data provided after the
mapping phase of an application. That means we have to
generate calls to DMA controllers for the input and output
channels (respectively at the target and source architectures).
DMA SEND(dsource, ωsource, νsource, σsource) and
DMA RECEIVE(dtarget, ωtarget, νtarget, σtarget) are exam-
ples of simplified DMA calls that we aim to generate.

The problem of finding an optimal transfer granularity to
balance computation and communication [10] is outside the
scope of this article.

C. Related Work

Many compiler techniques have already been proposed to
generate the communication codes for applications mapped
onto distributed memory machines [11], [12], especially in the
context of HPF applications [13], [14], [15], [16], [17], but,
to our knowledge, none of them deals with multidimensional,
potential replication on several processors, and DMA style code
(Section II-B).

In [11], Amarasinghe and Lam propose algorithms to
optimize data and computation decompositions and commu-
nications for SPMD programs. Their communication code
generation algorithm uses linear algebra plus some techniques
to optimize the communications at one level mapping. [12]
presents methods for array redistributions using Mathematica
for block/cyclic distributions in the PARADIGM compiler.
In [15], Lee and Chen address the problem of determining
the data distribution (block/cyclic/both) and generating the
communication sets on distributed memory multicomputers.
Generic solutions for send and receive transfers are proposed
but only for strict block or/and cyclic redistribution without
any overlapping. In [16], Ramanujam proposes code generation

techniques for scanning sequences of local memory addresses
accessed by processors based on integer lattices for HPF and
Fortran D, but only for two-level mapping. In [17], Adve
and Mellor-Crummey present many communication generation
techniques developed in the Rice dHPF compiler for message
passing systems, to optimize computation and commnications
at the message level. Their techniques use the Omega library
based on Presburger arithmetic. In [14] HPF remappings for
message passing parallel architectures are handled. Useless
remappings are removed at the global application level. The
only available redundant scenario concerns the replication of
an entire dimension. We do not restrain to this, any number of
points being possibly replicated onto different dimensions.

One important HPF distribution characteristic is that data
can be distributed over the processors in bloc or cyclic way.
Potentially replicated elements are duplicated on entire archi-
tectural dimensions.

Our redistribution hypotheses differ from the previous
related work because: 1) data can be replicated on a dimension
(e.g. an overlap of the size of a convolution kernel); 2) data can
be partially duplicated onto several local memories associated
to processors (e.g. for border handling in an overlapping block-
transform approach); 3) any number of points can be possibly
replicated onto one or different (architecture) dimensions.

Given two distributions mixing architecture and data di-
mensions, that is, a source and a target distribution result-
ing from the mapping of an application task onto a multi-
dimensional parallel architecture, we address the following
issues: partial data redistribution between processing steps,
multidimensional DMA communications, minimisation of the
number of transferred elements, improvement of memory
access locality and load balancing, as well as dynamic and
parametric redistributions.

III. MODELING WITH LINEAR ALGEBRA

We use linear algebra as in [13] to encode the mapping
of array elements at the source and target destinations and to
express the redistribution relation.

As explained in the previous section, we consider multidi-
mensional data arrays with independent dimensions. Therefore,
without loss of generality, to simplify the presentation and the
mathematical formulae we first introduce the mapping of a
one-dimensional array onto m architectural dimensions.

The array elements are linearly distributed over the archi-
tectural elements. Computations are distributed in the same
way. In an m-dimensional memory architecture including local
and shared memories, an array element t is identified by the
affine equation

t =

ma∑
i=1

αi · ai + α0 (1)

where ai represents the ith of the architecture element onto
which the data is distributed, αi is an integer stride between
two successive elements on ai and α0 is a constant origin.
Note that the ma architectural dimensions involved in the
distribution, may be a subset of the m hierarchical parallel
architectures.
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Fig. 5. Polyhedral representation of the source A and destination B distributions for a mono-dimensional array. For instance, the blue element t=15, of
coordinates (3,0,0), on the first row of A is mapped to t=15, of coordinates (3,0) in B.

Among the ai variables some represent architectural di-
mensions while other simply encode data overlaps onto a given
dimension. The difference between pure architectural and data
variables is that the data ones can be collapsed/compacted (as
explained in Section VI) and all the array elements belonging
to data memories al(l ≥ k) are on the same architectural
component al(l < k).

Note that the strides are not necessarily multiple of each
other such as it is the case in general block and/or cyclic
distributions. For example, in HPF, the general distribution
of template elements t can be written as the linear relation
t = C ·P · c+C · p+ l [13] between the processor coordinate
p, the number c of cycles and the local block coordinate l
(in respectively cyclic and block distribution). Strides of c, p
and l are respectively C · P,C, 1 multiples of each other. In
our context, we have to deal with arbitrary strides.

A distribution Mt,a of an 1-dimensional array t onto the
m-dimensional architecture a can be represented by a Z-
polyhedron having the lattice points defined by the hyperplane

Et,a
{
t =

∑ma

i=1 αi · ai + α0

and the domain Da characterizing a by the constraints:

Da

{
La1 ≤ a1 ≤ Ua1

. . .
Lama

≤ ama
≤ Uama

Lai and Uai are the lower and upper bounds of the ai memory.
These bounds are integer, but not necessarilly explicit con-
stants. They can be symbolic coefficients or affine expressions
of the other variables ai.

In Figure 5 we present a numerical example highlighting
the equivalence between the data distribution and a constraint
system for a communication scenario in which B (i.e. the
destination) has to be recovered from A (i.e. the source).

Since stride coefficients can be arbitrary and because the
domain bounds are not limited to the block and/or cyclic
distribution coordinates, some redundant array elements may
appear, even on one architectural dimension. In the example
of Figure 5, many elements are replicated at least once. Some
of them have been highlighted here in blue, red, green and
purple.

The redistribution relation that links data from the source
a to the target b can be expressed with affine equations
linking the distributions dimension by dimension as expressed
in Equation (2) for one dimension.

ma∑
i=1

αi · ai + α0 =

mb∑
i=1

βi · bi + β0 (2)

Thus, a communication aiming to find one distribution Mt,a
defined by the equation system Et,a and the domain Da into
another, Mt,b, described by Et,b and Db will then amount to
solving the following system:

Ea,b

Da

Db



∑ma
i=1 αi · ai + α0 =

∑mb
i=1 βi · bi + β0

La1 ≤ a1 ≤ Ua1
. . .

Lama
≤ ama ≤ Uama

Lb1 ≤ b1 ≤ Ub1
. . .

Lbmb
≤ bmb ≤ Ubmb

(3)

In fact, the redistribution problem comes down to enumerat-
ing the integer elements that are solutions of this constraint
system. Several classical algorithms of scanning polyhedra
can be used [18], [19] but they only give generic solutions
that need further processing in order to derive DMA-style
codes. Especially, the stride on each dimension must be clearly
identified (Section V-D).

From Equation (2), it is possible to derive the lattice basis

of



a1
..
ama
b1
..
bmb

 that is necessary to generate transfer codes in

a DMA style. This resulting lattice can be found via the
resolution of the diophantine equation

∑ma

i=1 αi · ai + α0 =∑mb

i=1 βi · bi + β0, which is of course equivalent to solving∑ma+mb

i=1 δi · xi = δ0 by separating the constant part repre-
senting the origin shift between the source and the destination,
and choosing appropriate δi-s. Section IV details this solution.

Furthermore, general algorithms for scanning polyhedra do
not address the problem of redundant items. They enumerate
all the elements that satisfy a constraint system. Section VII
presents different solutions for enumerating only once data
having to be transfered.

Note that this polyhedral formalization only characterizes
all the source array elements that have to be transferred to the



destination, that is the elements in A that are required in B
(A ∩ B). Since all array elements defined by Distribution B
have to be communicated, an additional test of the existence of
these elements in Distribution A should be added (B\A = ∅?)

To generalize to the n-dimensional array t, Equation (1)
for Element tj corresponding to the jthdimension of a signal,
for instance, is given by the linear equation

tj =

mj∑
i=1

αj,i · aj,i + αj,0 (4)

where aj,i represents the ith dimension of the architecture onto
which the jth dimension of the data is distributed, αj,i is an
integer stride between two successive elements on aj,i and αj,0
is a constant origin.

IV. DIOPHANTINE EQUATIONS AND INEQUATIONS

This section briefly presents some of the pre-existent
mathematical results that are needed later in the paper. The
first part expresses the general solution of a linear diophantine
equation with any number of variables. This formulation
using a lower diagonal matrix is particularly suited to the
loop nest generation of communication codes. The second
subsection provides references to the detection of particular
integer solutions in a Z-polyhedron, especially interesting to
check the existence of the source distribution elements.

This section is technical and can be glanced through
temporarily before returning studying the details.

A. General Solution of the linear diophantine equation∑m
i=1 δi · xi = δ0

If δ0 is a multiple of the greatest common divisor of the in-
teger coefficients δi this equation has an infinite number of so-
lutions. We use the extended Euclidean algorithm to compute
the solution for an arbitrary dimension m. The general solu-
tion [20] of the linear diophantine equation

∑m
i=1 δi · xi = δ0

can be expressed as:

~x = ~x0 +



d1 0 0 0 0

. . 0 0 0

−γ1xi,1 . di 0 0

. . . . 0

−γ1xm−1,1 . −γixm−1,i . γm

−γ1xm,1 . −γixm,i . −γm−1


· ~k (5)

where dj = pgcdj+1≤i≤m

(
δi

∆j−1

)
=

pgcdj+1≤i≤m(δi)

∆j−1

and γi = δi
∆i−1

, ∆n =
∏n
i=1 di, ∆0 = 1

~k are free variables. When the dimension of x is m only
m − 1 free variables are necessary to express the general
solution.

The x∗,k are the components of a particular solution of
Equation

∑m
i=k+1 δi ·xi,k = 1 and ~x0 is a particular solution

of Equation
∑m
i=1 δi ·xi = δ0. These particular solutions are

computed using techniques derived from the Bezout algorithm.

This expression of the general solution is very interesting
because the matrix is lower triangular. For each dimension i
only one new free variable ki is added. The expression of the
general solution for xi is

xi = x0i
+

i−1∑
j=1

−γj · xi,j · kj + di · ki (6)

x0i
, γj , xi,j and di are integer constants.

In our context, xi represent the hierarchical memories. Note
that the variable order is very important as it encodes the
logical access order for the source memories.

The expression of the solution can be seen as an offset part
x0i +

∑i−1
j=1 γj ·xi,j ·kj plus a variable part di ·ki. In our context

di is the transfer stride between two consecutive data elements
along the i-th dimension. For the last two dimensions:

xm−1 = x0m−1 +

m−2∑
j=1

−γj · xm−1,j · kj + γm · km−1 (7)

xm = x0m
+

m−1∑
j=1

−γj · xm,j · kj − γm−1 · km−1 (8)

They share the same free variable km−1 which implies that
the scanning strides for these dimensions are linked. This
is the reason why it seems appropriate to choose the latest
hierarchical memory dimension respectively in the source and
destination architectures for the last two dimensions of x
in the expression of the diophantine equation. In this case,
the source and destination memory controllers will access
regularly addressed components in the same way and direction.

B. Positive Integer Solution of the diophantine equation αx+
βy = δ

To test the existence of an element in a particular distri-
bution, we need to test whether equation αx + βy = δ has
positive integer solutions i.e. x, y ∈ N (architectural memories
are positive integer variables). The following Number Theory
theorems have been used to reduce the search space and to
obtain accurate results.

Theorem 1: (Paoli [21]) If q is the quotient of the division
of δ by αβ and r is the remainder, the number of non-zero
integer positive solutions of the equation αx+ βy = δ is q or
q+ 1 depending on whether the equation αx+βy = r admits
zero or one solution.

We deduce that it always exists a positive integer solution
to αx+ βy = r for x and y when r ≥ αβ.

The number of integers r between 0 and αβ−1 for which
the equation αx+ βy = r has a solution is given by Cesaro’s
theorem:

Theorem 2: (Cesaro [22]) There are exactly αβ − 1
2 (α −

1).(β−1) natural numbers r between 0 and αβ−1 for which
the equation αx+ βy = r has a solution.

When the integer r is between 1 and αβ− 1, to determine
if the equation αx+βy = r has a positive integer solution we
must compute the minimal integer point described as follows.



The point of αx+βy = r that is the closest to the origin has
positive rational coordinates. The only positive integer solution
(if it exists) corresponds to one point having the nearest integer
coordinates of this point. If (x1, y1) is a positive or negative
integer solution of the equation αx + βy = r, the unique
positive solution (if it exists) of the equation is to be found in
the pairs (x1 + βk1, y1−αk1) or (x1 + βk2, y1−αk2) where
k1 and k2 are the two nearest integers of αy1−βx1

α2+β2 . If neither of
these couples is in N2 the equation admits no positive solution.

V. ALGORITHMS FOR SCANNING ELEMENTS TO BE
TRANSFERRED

Based on the mathematical results presented in Section IV
we now give the basic algorithms for automatic code genera-
tion of data redistributions.

A. The Isolve Operator

The Isolve operator takes as input an equation eq and a
variable list L defining the enumeration order of a components
for the code generation.

Let eq be the redistribution equation:
∑ma

i=1 αi ·ai+α0 =∑mb

i=1 βi · bi + β0 and L be the list of its ma + mb variables
(ma variables ai and mb variables bi) which are subsequently
renamed xl with 1 ≤ l ≤ ma +mb, for readability.

Isolve gives as output the ma+mb new equations on xl
as described in the general solution of diophantine equations
(Section IV Equation 5). The expression of the general solution
for each xl has the form

xl = x0l
+

l−1∑
j=1

−γj · xl,j · kj + dl · kl

Note that this operation introduces ma + mb − 1 new free
variables kl in the system.

B. Scanning Polyhedra using the New bounds Algorithm

Algorithm New bounds is used to enumerate the data
having to be transfered and characterised by a polyhedron. It
has already been presented in [18] and developed in PIPS [23].
The equations represent the lattice of the regular points and
the inequations are domain constraints.

The algorithm takes as input a data set defined by a system
of linear equations and inequations and an ordered set of
variables. It gives as output the same polyhedron defined by a
new system of inequalities such that each variable is bounded
by min and max expressions containing only higher-ranked
variables. It is described as follows.

The basic idea here is to use a projection algorithm to find
loop bounds for each dimension. Fourier pairwise elimination
cannot be used without care because it is only valid for rational
and real polyhedra and provides a simple inclusion instead of
a strict equality for integer points.

The first step of the algorithm consists in projecting
as many useless variables as possible using the pair-wise
elimination method for constraints satisfying conditions that
maintain exact integer projections. At least one coefficient of

the variable to eliminate in the pairwise inequations should be
equal to 1 or -1 [18].

In the second step, redundant constraints are eliminated. All
redundant constraints on a useless variable can be eliminated
if the variable does not appear in a superior rank constraint.
At least two constraints on useful variables must be kept to
generate loop bounds.

Finally, the remaining useless variables are eliminated by
combining pairs of constraints and by introducing integer
divisions, if the variable does not appear in a constraint of
superior rank.

After these steps, the final system may still contain some
useless variables. Occurrences of these variables in the con-
straints express, like integer divisions, the non convexity of a
polyhedron affine image.

C. Ordered set of variables in L

In our context, we use a reception viewpoint for code
generation. Assume a three-level (dimensions) hierarchy for
the memories in a given platform for both the target and source
distributions: i.e. several clusters of processors communicating
through a shared cluster memory, local memories for each
processor in a cluster communicating only with the shared
cluster memory, and a linear address space inside each local
memory for data storage. From a target cluster processor PR,
from a local memory MR of PR, on which source processor PS
is the data to be communicated to PR? On which memory MS
of PS are they? How many elements NS have to be transfered
from MS to MR? What is the offset OS (resp. OR) of the first
referenced local cell CS on MS (resp. CR on MR)? What is the
stride SR (resp. SS) between two successive elements on MR
(resp. MS)? These are the questions that must be answered in
order to generate the DMA-like redistribution.

The following example illustrates the variable enumeration
order of the generated code expressed via L. In our context
we would generate the following kind of code:
for each target processor PR
for each memory MR of PR
for each sender processor PS
for each memory MS of PS
DMA_SEND(T,OS,NS,SS)
DMA_RECEIVE(T,OR,NS,SR)

Fig. 6. Generated code with L={PR,MR,PS,MS,CS,CR}

This enumeration order depends on the kind of code to be
generated and does not affect the techniques presented in the
paper.

D. Generating DMA style code

Our algorithm of code generation in DMA style uses the
previous techniques. It is the basic algorithm of redistribution
code generation used by the different optimizations detailed in
the following sections.

The algorithm takes as Input a source distribution Mt,s of
array elements ts characterised by a set of equations Et,s and
its domain Ds, a target distribution Mt,r of array elements
tr characterised by a set of equations Et,r and its domain



Dr, a variable list L defining the enumeration order of s, r
components for code generation.

The Output code is in DMA style. It transfers all the data
that respects the Mt,s and Mt,r constraints.

The algorithm proceeds as follows:

1) The system Es,r of equalities is generated from Et,s
and Et,r. For each array dimension i, the equation
tsi = tri is added to Et,s∪Et,r, then t’s variables are
eliminated by projection.

2) Each equation eq in Es,r is replaced by the list
of equations leq = Isolve(eq,L). This operation
introduces new free variables k in the system. Each
new equation has the form:

xl = x0l
+

l−1∑
j=1

−γj · xl,j · kj + dl · kl

We know that x0l
, γj , xl,j and dl are constant inte-

gers. Only xl, kj and kl are variables.
3) The scanning polyhedra algorithm is used on the Z-

polyhedron defined by Es,r and D to enumerate the
free variables k introduced in the previous step. All
the other variables are eliminated.

4) The equations of leq are used to generate DMA
information. For memory xl, the offset part is x0l

+∑l−1
j=1−γj ·xl,j ·kj , the stride between two successive

elements is dl and the number of elements to transfer
equals to Ukl − Lkl + 1 where Lkl and Ukl are the
lower and upper bounds of kl computed previously.

The following example illustrates the different steps of the
algorithm. From the 3-dimensional source and target distribu-
tions.

Et,s {ts = 200ps+ 50ms+ 5cs

Ds

 0 ≤ ps ≤ 1
0 ≤ ms ≤ 3
0 ≤ cs ≤ 9

Et,r {tr = 200pr + 40mr + 10cr

Dr

 0 ≤ pr ≤ 1
0 ≤ mr ≤ 4
0 ≤ cr ≤ 3

The redistribution problem is characterised by the following
polyhedron:

Es,r {200ps+ 50ms+ 5cs = 200pr + 40mr + 10cr

D

 0 ≤ pr ≤ 1 0 ≤ ps ≤ 1
0 ≤ mr ≤ 4 0 ≤ ms ≤ 3
0 ≤ cs ≤ 9 0 ≤ cr ≤ 3

The first step of the algorithm replaces the unique equation
with the Isolve operator result.

Es,r



pr = k1
mr = k2
ps = k3
ms = k4
cs = 40k1 + 8k2 − 40k3 − 10k4 + 2k5
cr = k5

D



0 ≤ pr ≤ 1
0 ≤ mr ≤ 4
0 ≤ ps ≤ 1
0 ≤ ms ≤ 3
0 ≤ cs ≤ 9
0 ≤ cr ≤ 3

In the second step, the scanning polyhedra algorithm gives
the following bounds for each free variables.

0 ≤ k1 ≤ 1
0 ≤ k2 ≤ 4
0 ≤ k3 ≤ 1
0 ≤ k4 ≤ 3

MAX(5 ∗ k4 + 20 ∗ k3 − 4 ∗ k2 − 20 ∗ k1, 0) ≤ k5
k5 ≤MIN(4 + 5 ∗ k4 + 20 ∗ k3 − 4 ∗ k2 − 20 ∗ k1, 3)

Finally Figure 7 illustrates the redistribution code generated
from these values. The offsets and strides for each memory
are directly deduced from the set of equations. Note that the
elements of cs are accessed with a stride 2 while elements
on cr are accessed contiguously. The fastest target and source
memories are accessed simultaneously and regularly.
int inf_k_1 = 0;
int sup_k_1 = 1;
int off_k_1 = 0;
int str_k_1 = 1;
for (int k1 = 0; k1 < sup_k_1 - inf_k_1 +1; k1++) {
int pr = off_k_1 + k1 * str_k_1;
int k_1 = inf_k_1 + k1;
int inf_k_2 = 0;
int sup_k_2 = 4;
int off_k_2 = 0;
int str_k_2 = 1;
for (int k2 = 0; k2 < sup_k_2 - inf_k_2 +1; k2++) {
int mr = off_k_2 + k2 * str_k_2;
int k_2 = inf_k_2 + k2;
int inf_k_3 = 0;
int sup_k_3 = 1;
int off_k_3 = 0;
int str_k_3 = 1;
for (int k3 = 0; k3 < sup_k_3 - inf_k_3 +1; k3++) {
int ps = off_k_3 + k3 * str_k_3;
int k_3 = inf_k_3 + k3;
int inf_k_4 = 0;
int sup_k_4 = 3;
int off_k_4 = 0;
int str_k_4 = 1;
for (int k4 = 0; k4 < sup_k_4 - inf_k_4 +1; k4++) {
int ms = off_k_4 + k4 * str_k_4;
int k_4 = inf_k_4 + k4;
int inf_k_5 = MAX(5*k_4+20*k_3-4*k_2-20*k_1,0);
int sup_k_5 = MIN(4+5*k_4+20*k_3-4*k_2-20*k_1,3);
int off_k_5 = 40*k_1+8*k_2-40*k_3-10*k_4+2*inf_k_5;
int str_k_5 = 2;
int off_last = inf_k_5;
int str_last = 1;
DMA_SEND(ts,off_k_5,sup_k_5-inf_k_5+1,str_k_5)
DMA_RECEIVE(tr,off_last,sup_k_5-inf_k_5+1,str_lst)

}}}}}

Fig. 7. Redistribution code with DMA calls

VI. OPTIMIZATION: COMPACTING DIMENSIONS

The goal of the Compact operator is to pack the elements
distributed on the data variables encoding the distribution of
the same array dimension, i.e. encoding data overlap. For ex-
ample, this situation can occur when performing a convolution.
Assume a convolution kernel of 10 points applied to a signal
of 50 points with a stride of 2 at each iteration. If this data
distribution is encoded in the described polyhedral formalism,
we obtain two variables, for instance d0 and d1, with loop
bounds between 0 and 9 or 49, respectively. Parsing this
entire distribution with the corresponding loop indexes would
then lead to 500 iterations involving repeated storage of many
elements of the original signal, while in fact storing signal
indexes between 0 and 107 (= 2 ∗ 49 + 9) suffice to address
the entire distribution. These artificial data dimensions can
sometimes be projected without increasing the cardinality of
the domain D and therefore we apply an algorithm to eliminate
them. This reduces the number of duplicated elements. In the
above example, we can thus replace d0 and d1 by a new
variable, d, indexed by Ets,a : {ts = d} (note the new stride
of 1) and the domain Da : {0 ≤ d ≤ 107}.

Let Mt,a be a distribution of Array t onto the memories
a defined by the equation system Et,a and the domain Da.
The Compact operator takes as input Mt,a and gives as
output a new distribution Mt,a′ such that Mt,a ⊂ Mt,a′ and
|Da′ | ≤ |Da| and dim(Da′) is minimal.



Let be the set of reduced distributions:

RD(Mt,a) =
{
Mt,a′/Mt,a ⊂Mt,a′ , |Da′ | ≤ |Da|, dim(Da′ ) ≤ dim(Da)

}
Let CD(Mt,a) be the subset of RD(Mt,a) with the minimal

cardinal domain.

CD(Mt,a) =
{
Mt,a′ ∈ RD(Mt,a)/|Da′ | = minMt,a”∈RD(Mt,a)(|Da”|)

}
Compact is defined as follows:

Compact(Mt,a) =
{
Mt,a′ ∈ CD(Mt,a)/

dim(Da′ ) = minMt,a”∈CD(Mt,a)(dim(Da”))
}

Figure 8 illustrates the different steps of the compaction of
the distribution Mt,a. First, a1 and a2 are collapsed because
|Da′ | = 180 < |Da| = 360. Second, a′1 and a′2 are
compacted because this reduces the dimension of Da′′ . No
other dimension can be compacted because the constraint
Mt,a ⊂Mt,a′ must be preserved.

t = a1 + 2a2+
12a3 + 100a4

Da


0 ≤ a1 ≤ 5
0 ≤ a2 ≤ 3
0 ≤ a3 ≤ 4
0 ≤ a4 ≤ 2

|Da| = 360
dim(a) = 4

t = a′1 + 12a′2+
100a′3

Da′

 0 ≤ a′1 ≤ 11
0 ≤ a′2 ≤ 4
0 ≤ a′3 ≤ 2

|Da′ | = 180
dim(a) = 3

t = a′′1 + 100a′′2

Da′′

{
0 ≤ a′′1 ≤ 59
0 ≤ a′′2 ≤ 2

|Da′′ | = 180
dim(a) = 2

Fig. 8. Example of Compaction of distribution Mt,a

In our context only source distributions will be compacted
because if redundancy exists at the target distribution that
means the same element has to be transferred into different
memories at destination, but only one copy of the source
element has to be communicated.

VII. OPTIMIZATION: ELIMINATION OF REDUNDANT
TRANSFERS

This section presents the additional steps in the algorithm
of redistribution code generation necessary to avoid redundant
transfers. We start with the case of a two-dimensional distri-
bution before extending the technique to an arbitrary number
of dimensions.

Let us first define what we call a redundant transfer. A
redundant transfer is the communication of a given data several
times unnecessarily. This occurs when a piece of data is present
on different source processors of the distribution. This element
has to be communicated but it is not necessary to transfer
all its occurrences; only one is enough. Quite the opposite, if
an element appears more than once in the target distribution,
it must be repeatedly communicated to the different target
processors when in a distributed memory scenario.

Therefore it is useful to detect the different occurrences of
an array element in the source distribution.

Let t = αx + βy be a source distribution
equation. Several occurrences of t exist if
{(x, y) ∈ D/∃(x′, y′) ∈ D, (x′, y′) 6= (x, y), αx+ βy = αx′ + βy′}
is not empty. This system admits the solutions
(βγ,−αγ), γ ∈ Z.

Let D be the domain {Lx ≤ x ≤ Ux, Ly ≤ y ≤ Uy}.
Thus there exist some duplicated data if (Ux − Lx ≥ β) and
(Uy − Ly ≥ α) are verified.

Moreover each block (β, α) of data is repeated at least
once if min(Ux−Lx+1

β ,
Uy−Ly+1

α ) ≥ 2.

A. Cutting Planes

To eliminate the redundant elements it is sufficient to
cut the redundant part of the domain D. According to the
previous redundancy distance vector (βγ,−αγ), γ ∈ Z, two
possibilities occur:

Case A: cut the {x > Lx + β, y < Uy − α+ 1} part or

Case B: cut the {x < Ux − β + 1, y > Ly + α} part of
domain D.

Figure 9 illustrates these two possible cuts. The ini-
tial source distribution is defined by t = 5x + 2y and
{0 ≤ x ≤ 7, 0 ≤ y ≤ 12}.

t = 5x+ 2y (α = 5, β = 2){
0 ≤ x ≤ 1
0 ≤ y ≤ 7

or
{

0 ≤ x ≤ 7
8 ≤ y ≤ 12

t = 5x+ 2y (α = 5, β = 2){
0 ≤ x ≤ 5
0 ≤ y ≤ 4

or
{

6 ≤ x ≤ 7
0 ≤ y ≤ 12
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Fig. 9. Cuts for redundancy elimination - Case A (left) and Case B (right)

We can observe that cutting the redundant part leads to
a non-convex domain (in blue color). So we translate the
redistribution problem into two new redistribution problems to
match two convex domains (surrounded by gray hashed lines).

To sum up, let Mt,s be the initial source distribution defined
by the equation system Et,s = {ts = αx+ βy} and the domain
Ds = {Lx ≤ x ≤ Ux, Ly ≤ y ≤ Uy}. In case of redundant
data in this source distribution, we apply instead the Algorithm
presented in Section V-D on the two new source distributions
Mt,s1 and Mt,s2 defined such as:

Case A:

1) Mt,s1 is characterized by the equation system
Et,s1 = {ts1 = αx+ βy} and the domain
Ds1 = {Lx ≤ x ≤ β − 1, Ly ≤ y ≤ Uy − α};

2) Mt,s2 is characterized by the equation system
Et,s2 = {ts2 = αx+ βy} and the domain
Ds2 = {Lx ≤ x ≤ Ux, Uy − α+ 1 ≤ y ≤ Uy}.



Case B:

1) Mt,s1 is characterized by the equation system
Et,s1 = {ts1 = αx+ βy} and the domain
Ds1 = {Lx ≤ x ≤ Ux − β, Ly ≤ y ≤ Ly + α− 1};

2) Mt,s2 is characterized by the equation system
Et,s2 = {ts2 = αx+ βy} and the domain
Ds2 = {Ux − β + 1 ≤ x ≤ Ux, Ly ≤ y ≤ Uy}.

B. Sliding windows

The cutting plane strategies presented in Section VII-A
imply generating a number of transfers that is not always load-
balanced, especially when the strides α and β are small and
the domain is large. This section suggests another strategy to
divide the domain in a more balanced way.

As for the cutting plane strategy, the constraints can be
added on any dimension.

Case A (load balancing on x): Data are duplicated every
β items on x. h is the number of blocks on x.

h =
x

β
(9)

First α elements are assigned to each block. We compute the
block size BS of additional data y that can be fairly distributed
in each block h.

BS =
Uy + 1− α
Ux−Lx+1

β

(10)

Once data are equitably distributed, some constraints on y
should be added to avoid the enumeration of duplicates be-
longing to a previously scanned block.

BS.h ≤ y ≤ BS.h+ α+BS − 1 (11)

Case B (load balancing on y) is symmetric of the previous
one on x.

Figure 10 illustrates the sliding windows strategy - case A
- that avoids redundant transfers from the source distribution
in the code generation algorithm and load balances the non-
redundant transfers on x.

Theorem 3: The condition (Eq 11) is sufficient to avoid
redundancy.

Proof 1: The redundancy distance vector on (x, y) is (β,−α).
Assume it exists t = αx + βy and t′ = αx′ + βy′ two redundant
elements; we want to prove by contradiction that y, y′ cannot both
verify the constraints

BS.h ≤ y ≤ BS.h+ α+BS − 1 (12)
BS.h′ ≤ y′ ≤ BS.h′ + α+BS − 1 (13)

t and t′ are redundant implies x′ − x ≥ β and y − y′ ≥ α. From
Equations (12) and (13), the following constraint on y − y′ holds:

BS.(h− h′)−α−BS +1 ≤ y− y′ ≤ BS.(h− h′) +α+BS − 1

Since h = x
β
< h′ = x′

β
then y−y′ ≤ α−1. This is in contradiction

with y − y′ ≥ α.

To generate code with the sliding windows strategy, Con-
straints (9) and (11) are added to the polyhedra describing the
source distribution. Constraint (9) is translated into inequations
using the integer division rules because integer division cannot

be directly introduced in the polyhedral system. The values of
h should be computed dynamically because it depends on x.

Constraint (10) can be computed at compile time because
α, β and the domain bounds are known. The upper bound of
Constraint (11) is relaxed for the last value of h.

t = 5x+ 2y
0 ≤ x ≤ 7
0 ≤ y ≤ 12
h = x/2

2h ≤ y ≤ 2h+ 6
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Fig. 10. Load-balanced cuts for redundancy elimination

C. Generalization to arbitrary dimensions in the redistribution
equation

The previous two strategies to avoid redundant transfers
can be generalized to an arbitrary number of dimensions in
the redistribution. Constraints characterizing the cuts on the
different dimensions of the source distribution can be added
recursively in the systems. Then the code generation algorithm
is applied onto these different non-redundant convex parts of
the domain. If the source distribution is n-dimensional and
in case of redundancy, there will be at most 2n−1 polyhedral
subsystems.

However, because the coefficients in the redistribution
equation are arbitrary, some elements may be missed. This
section presents the cases of missing points, the techniques to
detect them and how to generate their relative communications.

Missing points in a lattice: To illustrate the case of
missing points when adding the non-redundant constraints, we
choose the following 3-dimensional distribution equation

t = αx+ βy + γz

and the domain {0 ≤ x ≤ Ux, 0 ≤ y ≤ Uy, 0 ≤ z ≤ Uz}.
First, constraints to eliminate redundancy on the 2-dimensional
domain of (x, y) are added. Secondly, the following change of
basis v = α′x + β′y where d = gcd(α, β), α′ = α

d , β
′ = β

d
is applied and the following new distribution equation is
considered:

t′ = dv + γz (14)

Finally the second cuts to eliminate redundancy relative to
(v, z) components are added.

Figure 11 shows the elements of the distribution on
the example t = 3x + 5y + 19z with the domain
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Fig. 11. Cuts for a 3-dimensional distribution

D = {0 ≤ x ≤ 15, 0 ≤ y ≤ 4, 0 ≤ z ≤ 2}. We use the cutting
planes strategy to eliminate the redundant elements. The non-
redundant part for Domain (x, y) is represented in blue, and the
non-redundant part for Domain (x, y, z) is coloured in purple.

We can observe that the data indexed by 20, 21, 23 and 26
are eliminated by the second cuts and thus are not present
in the final domain. In fact, this problem occurs because
the lattice of the linear application 3x + 5y has a unit base
(gcd(3, 5) = 1) but, on the selected domain D ⊂ N2, Elements
indexed by 1, 2, 4 and 7 are not referenced 1. Cesaro’s
theorem (Section IV-B) confirms that 4 elements have no
solutions for x, y ∈ N, 0 ≤ 3x + 5y ≤ 15. Note that because
our domain is finite, four other symmetric elements will be
missing at the upper bounds of the domain. But on the interval
[αβ, α.Ux + β.Uy − αβ] all the elements are referenced:

∀g ∈ [αβ, α.Ux + β.Uy − αβ]
∃x, y ∈ N, 0 ≤ x ≤ Ux, 0 ≤ y ≤ Uy/g = αx+ βy

Before adding the cutting planes relative to the redundant
elements on z, the change of basis is applied: v = 3x + 5y
and, from Equation t′ = 1v+ 19z, the second cuts are added,
but this assumes the domain of v is dense. Since the points
indexed by 1, 2, 4 and 7 are missing, 20(1 + 19), 21(2 + 19),
23(4 + 19), 26(7 + 19) are not referenced anymore.

We use the Paoli’s theorem and the computation of the
minimal integer point (Section IV-B) to develop an algorithm
testing the existence of missing points in the intervals [1, αβ−
1] and [α.Ux + β.Uy −αβ+ 1, α.Ux + β.Uy] and giving their
list G.

The cuts of Sections VII-A, VII-B are designed to add
additional constraints to remove redundant data. The second
cuts relative to redundant elements on z intend to eliminate

1This problem is well-known and has been encountered in several compi-
lation domains [24], [25]

elements belonging to the two lattices t = αx + βy and t′ =
dv + γz (Eq. 14).

The goal now is to find the elements P that have been
unintentionally eliminated by these cuts because of missing
points, then to characterize them to enable their transfer if
they belong to the target distribution. For each element g of
G, these points are characterized by the following constraints:

Case A (refers to Section VII-A-Case A-1)

When g ≤ γ− 1 then P satisfies the additional constraints
{g = α′x+ β′y, z <= Uz − zp}

Case B (refers to Section VII-A-Case A-2)

When g ≥ γ then P satisfies the additional constraints
{g = α′x+ β′y, z <= Uz − zp, Uz − zp − d+ 1 <= z}
where zp is the smallest value in the set
{zp/∃x, y ∈ D, 0 ≤ zp ≤ Uz, α′x+ β′y = g + γzp}.

These constraints are added to the redistribution systems af-
ter the first cuts. The two resulting systems represent additional
redistribution polyhedra, used as input of our code generation
algorithm to transfer missing points (when they exist, i.e. when
the polyhedron is not empty).

In real applications and mappings to architecture, the num-
ber of distribution architectural dimensions are small. Missing
elements therefore are very limited, and will be even more
often non-existent because the problem occurs only when
gcd(α, β) 6= min(α, β). In particular, it does not appear in
general block/cyclic distributions without sampling.

VIII. TESTBENCH AND EXPERIMENTS

The proposed techniques have been successfully imple-
mented using the LinearC3 library which is a robust, open
source and free license (LGPL) library of the PIPS Project [23]
developed since 1988.

To validate our approach we have gathered a test bench
of about 50 significant redistribution examples covering the
different criteria we want to optimize. First, for a given multi-
dimensional architecture scenario, we have tested exhaustive
combinations of mappings of a one-dimensional signal: block
distribution at the source versus block distribution at the
destination, block versus cyclic, and so on and so forth,
with and without redundancy both at the source and the
destination, with or without offset on one dimension, etc. We
have developed a validation code to test the correctness of
the generated redistributions for the entire test bench and for
any randomly generated case. In addition, for some specific
distributions, where a simple particular solution to each stage
of the diophantine equation solution process can be given, we
also provide parametric and generic communication code with
our techniques.

Note that our industrial environment aims above all to
reduce the development costs linked to parallelising both
legacy and emerging applications onto a wide variety of
architectures without any assumptions on the mapping type.
We mostly privilege the man-in-the-loop approach for mapping
domain-specific applications especially when having to deal
with non-COTS architectures for which mapping optimisation
engines do not exist. Our validation framework relies on the



generality of the approach in terms of worst-case redundant
mapping scenarios for multi-dimensional architectures which
are covered by our extended example suite. Generating correct
and also simpler than manual code is a highly sought for
feature in the industrial world.

The potential gains of our techniques are numerous. DMA
engines accelerate memory transfers and computations can be
executed in parallel with communications. Our DMA-style
code provides obvious gains for this kind of architectures,
but not only, because the generated codes promote regular
and contiguous communications which cause gains comparable
to those observed when restructuring memory accesses. Our
experiments to compare the costs of non-redundant and redun-
dant communications show that the gain in terms of time is
proportional to the number of unnecessary transfers eliminated.
Moreover, the non-redundancy strategy leads to simpler com-
munication codes: more regular, with fewer calls to functions
such as min, max, and integer divisions. On our testbench
the gains in number of cycles are systematic when compared
to original communication code without redundancy handling.
Pushing exploration, we observe that, by explicitly evaluating
architectural dimensions, the generated code is more efficient
than the generic polyhedral codes. Additional experiments
should be performed to evaluate, for a particular architecture,
the trade-off between the numbers of DMA transfer calls and
the DMA initialization costs depending on the machine and
its run-time.

IX. CONCLUSION

In this paper, we have presented algorithms for automat-
ically generating correct-by-construction communication code
that is redundancy-optimized for multi-dimensional redistribu-
tions. Our developments stem from the goals of an industrial
parallelisation framework, SpearDE, in terms of code genera-
tors for a very wide range of multi-dimensional communica-
tions in redundant mappings scenarios. The main advantage of
this approach is the relaxation of parallel programming con-
straints for application developers, while considering efficient
tradeoffs between communications and computations at the
mapping stage. Then, the very error-prone task of explicit data
transfers within heterogeneous memory systems is performed
automatically and efficiently, while preserving the functional
semantics of the application. We have considered the somewhat
worst-case scenario in which a communication can be any
linear multi-dimensional distribution between the source and
the target, not only block and/or cyclic distributions, and we
have used a polyhedral formulation to find the solution for the
desired transfers. The generated code follows DMA principles
and several optimisations where performed for redundancy
handling, either at data level or at architecture level. The
proposed optimisations ensure a minimization of transfer time
through load balancing performed on the architecture dimen-
sions. Note also that these optimisations stand for different
criteria as well, as they are linked to our considered variable
semantics. By changing this semantics (cuts on data dimen-
sions for instance instead of the architecture ones), other types
of communications can be obtained.
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