
Author Retrospective for
Semantical Interprocedural Parallelization:

An Overview of the PIPS Project

François Irigoin
MINES ParisTech

francois.irigoin@mines-
paristech.fr

Pierre Jouvelot
MINES ParisTech

pierre.jouvelot@mines-
paristech.fr

Rémi Triolet
Simulation Factory

remi.triolet@simulationfactory.net

ABSTRACT
The PIPS project was started in 1988 to investigate the
automatic detection of medium- and large-grain parallelism
in scientific programs thanks to summarization techniques
based on convex array regions. By 1992 the PIPS system
had reached its original goals, but it has morphed into a com-
prehensive, open-source platform still in use today. What
were the key scientific and engineering decisions that made
this possible in spite of some inevitable shortcomings?

Original paper: http://dx.doi.org/10.1145/109025.109086

Categories and Subject Descriptors:
D.3.4 [Processors]: Compilers, Optimization

Keywords:
Automatic Parallelization; Interprocedural Analysis

1. INTRODUCTION
The goals of the PIPS project were (1) to find automati-

cally medium and large grain interprocedural parallelism in
Fortran 77 scientific programs and (2) to express it thanks
to a source-to-source translation process targetting shared-
memory multiprocessors.

PIPS was based on polyhedral techniques for command
abstraction [16], procedure summarization with convex ar-
ray regions [31] and hence dependence tests, and was to be
the first polyhedral compiler.

2. ASSUMPTIONS AND KEY CHOICES

2.1 Six Key Assumptions
The necessary parallelism was to be found in loops deal-

ing with arrays indexed by affine expressions only. Unlike
data parallelism, task and instruction-level parallelisms were
deemed of no use because bounded by the code size and the
number of operators.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
ICS 25th Anniversary Volume. 2014
ACM 978-1-4503-2840-1/14/06.
http://dx.doi.org/10.1145/2591635.2591645.

Unstructured pieces of code did not require a precise anal-
ysis because they do not contain data parallelism.

Recursive functions were not used in scientific code and do
not contain data parallelism either. Functional parameters
are not common enough to be taken care of either.

Convex array regions are precise enough to find medium-
grain parallelism and polyhedral operators are fast enough
to analyze whole applications.

PIPS would perform whole program parallelization. The
source code of all modules is assumed available.

Finally, source-to-source is sufficient to express parallelism
and optimizations, while preserving key information for pro-
grammers and optimizers.

2.2 Scientific Choices
Because parallelism was to be found in DO loops, PIPS

internal representation is not based on a usual control flow
graph (CFG). Instead it uses a recursive combination of ab-
stract syntax trees for structured components and CFGs for
unstructured ones. This combination was called a hierarchi-
cal control flow graph (HCFG).

It was decided to use abstract commands to build abstract
stores for interprocedural analysis with only two traversals
of the call graph, and, later, to perform convex array region
propagation. Abstract commands are also useful to shorten
the analysis of nested loops, which are common in scientific
codes.

2.3 Design Choices
The design was guided by our knowledge of Parafrase [20]

and PTRAN [30] internals, and ended up with a minimal
internal representation both for control constructs and for
entities. No intrinsics, not even the assignment, are singled
out: they all are calls with side effects. Functions, variables,
commons... are all entities. Hence, the internal representa-
tion [11] is language-independent.

The Newgen [32] data description language was adopted
to implement PIPS internal representation. Newgen uses
dynamic typing to provide automatically compact data man-
agement features, thanks to a layer of macros and functions,
including higher-order generic traversal operators.

Multiple implementation languages were available for fast
prototyping, CommonLisp, and efficiency, C. Thanks to New-
gen, data structures could be shared by the two languages.

A unique symbol table was designed to ease interprocedu-
ral analyses.

Persistance was necessary for interprocedural analyses be-
cause of the memory size constraint and to allow interactive



uses. A make-like system was implemented to ensure the
PIPS database consistency and some pass ordering auto-
matically [11]. It also made PIPS modular and evolutive,
with an easy declarative way to add new passes [5].

A sparse implementation was chosen for the polyhedral
library because few variables are involved in each constraint.

Finally, an interactive window-based interface was added
for demonstrations and for pedagogical reasons.

2.4 Future Work of 1991
We anticipated the need for path transformers [18], prof-

itability analyses [36], programming rules, assertions about
key parameters and data transformations such as array ex-
pansion or privatization [12, 13], as well as improvement in
convex array region translation, and feared complexity due
to affine transformers.

We assumed that non-convex array regions would be use-
ful in signal processing codes and expected a lack of target
machines and parallel languages

3. LOOKING BACKWARD
PIPS later competitors such as Parafrase-2, Polaris, SUIF,

SUIF-2 are gone, but PIPS is still with us and has not been
rewritten in Java or C++. Why?

3.1 Strong Points
Polyhedral techniques are very flexible [2] and often not

too complex [35]. They support loop parallelization, with
neither control nor call restrictions [13], and automatic dis-
tribution [9, 23].

Interprocedural techniques, which PIPS pioneered, are
now key to compilers for heterogeneous targets [14, 1].

A langage-neutral high-level source-to-source internal rep-
resentation is useful for the user who can recognize her source
code, for debugging the compiler since the internal represen-
tation can be compiled and executed at any step, and for
supporting new input languages.

Automatic consistency is important to manage interpro-
cedural issues and to add new passes. Pass dependencies are
managed by PIPS, not by the pass programmer.

The data description language NewGen was useful to up-
date the internal representation without modifying PIPS
code. This proved key when adding C to Fortran as a source
language.

However, interactivity and multiple implementation lan-
guages turned out to be of little use.

3.2 Extensions
To process industrial code, we had to extend the initial

Fortran subset to cope with entries, stack allocation, depen-
dent types, while loops and the HPF/OpenMP directives.
And then we had to support C99 with pointers and dynamic
allocation.

We combined static and dynamic analyses to obtain both
safety and efficiency: array overflows, aliasing detection and
proper variable initialization [27, 26, 28]. We also had to
analyze non-integer variables and non-affine expressions be-
cause they control the behaviors of large applications.

To process C, we had to extend and/or to implement usual
code analyses and transformations such as use-def chains,
points-to analysis, dead-code elimination, control simplifica-
tion, induction variable substitution, scalarization and loop
fusion [5, 1, 22].

We also had to go beyond a simple interprocedural ap-
proach and to add procedure cloning, inlining and outlin-
ing: procedure boundaries must be moved to fit the target
machine [14].

Finally all kinds of parallelism must be detected. Com-
mutative and transitive expression optimization was added
to improve ILP [38]. Reduction detection [17], small vec-
tor parallelism, SSE or AVX [15], and GPU code generation
with data distribution [1, 3] were introduced later. Finally
task parallelism must be exploited with multicores [19, 33].

On the implementation side, list-based algorithms were
replaced by hash-tables to scale up when large applications
are analyzed, modules written in CommonLisp were rewrit-
ten in C, and exception management had to be introduced to
cope with magnitude overflows in polyhedral operators. A
Python embedding, pyps, was introduced to provide the flex-
ibility required with in- and out-lining [14]. The 1.x Par4All
initiative [33] also uses Python to increase PIPS robustness
and to simplify its use (see par4all.org).

4. CONCLUSIONS
PIPS has proved over the years to be a fertile ground

for the polyhedral model [21], data transformations [13],
communication synthesis [4, 7], compilation for distributed
memory machines [9, 23], ILP [37], code maintenance [29,
6], program verification [25], scratchpad management [8], of-
fload compilers [14, 1, 10], and task parallelism [18, 33].

These advances were made possible by PIPS modular and
evolutive structure, by its language-neutral internal repre-
sentation and by new analyzes and a better understanding
of their domains [36, 34, 13, 24, 22], but also by many con-
tributors to the PIPS infrastructure, to its classical pass
portfolio, to its tutorials and website. And PIPS grew from
50 KLOC in 1991 to about 600 KLOC in 2014.

New challenges are now addressed with PIPS: manycores,
heterogeneous systems, complex memory hierarchies, code
modelization, tool combinations and parallel languages. On
the infrastructure side, we intend to combine robustness for
industrial use and openness for research.

5. ACKNOWLEDGMENTS
We owe many thanks to the PIPS contributors, who are

too numerous to be all mentioned here, but whose names are
listed on its website, pips4u.org. Their work was funded by
many French and European programs, institutions and com-
panies: ANR, CEA, CNRS, DRET, EDF, ESPRIT, HPC
Project/SILKAN, Télécom SudParis and THALES.

We are also thankful to Claude Girault, who helped fund
and set up the so-called C3 group, and to the members of this
group, especially Corinne Ancourt, Philippe Clauss, Alain
Darte, Paul Feautrier, Catherine Montgenet, Guy-René Per-
rin, Patrice Quinton and Yves Robert.

6. ADDITIONAL REFERENCES
[1] M. Amini. Source-to-Source Automatic Program

Transformations for GPU-like Hardware Accelerators. PhD
thesis, MINES ParisTech, Paris, France, 2012.

[2] M. Amini, C. Ancourt, F. Coelho, F. Irigoin, P. Jouvelot,
R. Keryell, P. Villalon, B. Creusillet, and S. Guelton. PIPS
Is not (just) Polyhedral Software. In Intl. Workshop on
Polyhedral Compilation Techniques (IMPACT’11),
Chamonix, France, Apr. 2011.



[3] M. Amini, F. Coelho, F. Irigoin, and R. Keryell. Static
Compilation Analysis for Host-Accelerator Communication
Optimization. In LCPC, pages 237–251, Fort Collins,
Colorado., 2011.

[4] C. Ancourt. Génération automatique de code de transfert
pour multiprocesseurs à mémoires locales. PhD thesis,
Université Pierre et Marie Curie (Paris 6), Mar. 1991.

[5] C. Ancourt, F. Coelho, B. Creusillet, and R. Keryell. How
to Add a New Phase in PIPS: the Case of Dead Code
Elimination. In Sixth Workshop on Compilers for Parallel
Computers (CPC), pages 19–30, Aachen, Germany, Dec.
1996.

[6] C. Ancourt and T. V. N. Nguyen. Array resizing for
scientific code debugging, maintenance and reuse. In
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering, PASTE ’01, pages 32–37, New York, NY,
USA, 2001. ACM.

[7] C. Ancourt, T. Petrisor, F. Irigoin, and E. Lenormand.
Automatic Generation of Communications for Redundant
Multi-dimensional Data Parallel Redistributions. In IEEE
International Conference on High Performance Computing
and Communications, pages pp. 800–811, Zhangjiajie,
Chine, Nov. 2013.

[8] Y. Bouchebaba. Optimisation des transferts de données
pour le traitement du signal : pavage, fusion et

réallocation des tableaux. PhD thesis, École des mines de
Paris, Nov. 2002.

[9] F. Coelho. Contributions à la compilation du High

Performance Fortran. PhD thesis, École des mines de
Paris, Oct. 1996.

[10] F. Coelho and F. Irigoin. API Compilation for Image
Hardware Accelerators. ACM TACO, 9(4):49:1–49:25, Jan.
2013.

[11] F. Coelho, P. Jouvelot, F. Irigoin, and C. Ancourt. Data
and Process Abstraction in PIPS Internal Representation.
In Workshop on Internal Representations (WIR),
Chamonix, France, Apr. 2011.

[12] B. Creusillet and F. Irigoin. Interprocedural array region
analyses. IJPP, 24:513–546, Dec. 1996.

[13] B. Creusillet-Apvrille. Array Region Analyses and

Applications. PhD thesis, École des mines de Paris, Dec.
1996.

[14] S. Guelton. Building Source-to-Source Compilers for
Heterogenous Targets. PhD thesis, Télécom Bretagne, 2011.

[15] S. Guelton, A. Guinet, and R. Keryell. Building
retargetable and efficient compilers for multimedia
instruction sets. In Parallel Architectures and Compilation
Techniques, PACT, Oct. 2011. (poster).

[16] F. Irigoin. Interprocedural analyses for programming
environments. In Environments and Tools for Parallel
Scientific Computing, pages 333–350. Elsevier, Sept. 1993.

[17] P. Jouvelot, B. Dehbonei. A Unified Semantic Approach for
the Vectorization and Parallelization of Generalized
Reductions. In Proceedings of the 3rd International
Conference on Supercomputing (ICS ’89), pages pp.
186–194, Heraklion, Crete, June 1989.

[18] D. Khaldi. Automatic Resource-Constrained Static Task
Parallelization. PhD thesis, MINES ParisTech, 2013.

[19] D. Khaldi, P. Jouvelot, C. Ancourt, and F. Irigoin. Task
Parallelism and Data Distribution: An Overview of
Explicit Parallel Programming Languages. In LCPC, pages
174–189, 2012.

[20] D. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe. The
structure of an advanced vectorizer for pipelined
processors. In 4th International Computer Software and
Applications Conference, Oct. 1980.

[21] A. Leservot. Analyses interprocédurales du flot des
données. PhD thesis, Université Paris VI, Mar. 1996.

[22] A. Mensi. Analyse des pointeurs pour le langage C. PhD
thesis, MINES ParisTech, 2013.

[23] D. Millot, A. Muller, C. Parrot, and
F. Silber-Chaussumier. STEP: a distributed OpenMP for
coarse-grain parallelism tool. In Proceedings of the 4th
International Conference on OpenMP in a New Era of
Parallelism, IWOMP’08, pages 83–99, 2008.

[24] D. Nguyen. Robust and Generic Abstract Domain for
Static Program Analyses: The Polyhedral Case. PhD

thesis, École des mines de Paris, Nov. 2010.

[25] T. V. N. Nguyen. Efficient and Effective Software
Verification for Scientific Applications Using Static

Analysis and Code Instrumentation. PhD thesis, École des
mines de Paris, 2002.

[26] T. V. N. Nguyen and F. Irigoin. Alias verification for
Fortran code optimization. Journal of Universal Computer
Science, 9(3):270–297, Mar. 2003.

[27] T. V. N. Nguyen and F. Irigoin. Efficient and effective
array bound checking. ACM Trans. Program. Lang. Syst.,
27:527–570, May 2005.

[28] T. V. N. Nguyen, F. Irigoin, C. Ancourt, and F. Coelho.
Automatic detection of uninitialized variables. In
Proceedings of the 12th International Conference on
Compiler Construction, CC’03, pages 217–231, Berlin,
Heidelberg, 2003. Springer-Verlag.

[29] N. W. Preston. New type signatures for legacy Fortran
subroutines. In W. G. Griswold and S. Horwitz, editors,
PASTE, pages 76–85. ACM, 1999.

[30] V. Sarkar. Parallel functional languages and compilers.
chapter PTRAN – The IBM Parallel Translation System,
pages 309–391. ACM, New York, USA, 1991.

[31] R. Triolet, F. Irigoin, and P. Feautrier. Direct
parallelization of call statements. In SIGPLAN Symp. on
Compiler Construction, pages 176–185, 1986.

[32] R. Triolet and P. Jouvelot. NewGen : A
language-independent program generator. Technical Report

A-191, CRI, École des mines de Paris, 1989.

[33] N. Ventroux, T. Sassolas, A. Guerre, B. Creusillet, and
R. Keryell. SESAM/ Par4All: a tool for joint exploration
of MPSoC architectures and dynamic dataflow code
generation. RAPIDO’12, pages 9–16, New York, NY, USA,
2012. ACM.

[34] Y.-Q. Yang. Tests des dépendances et transformations de
programme. PhD thesis, Université Pierre et Marie Curie
(Paris 6), Nov. 1993.

[35] Y.-Q. Yang, C. Ancourt, and F. Irigoin. Minimal data
dependence abstractions for loop transformations. IJPP,
23:359–388, Aug. 1995.

[36] L. Zhou. Complexity estimation in the PIPS parallel
programming environment. In Parallel Processing:
CONPAR 92 – VAPP V, volume 634, pages 845–846. 1992.

[37] J. Zory. Contributions à l’optimisation de programmes

scientifiques. PhD thesis, École des mines de Paris, Dec.
1999.

[38] J. Zory and F. Coelho. Using algebraic transformations to
optimize expression evaluation in scientific codes. In
PACT, pages 376–384, Oct. 1998.


