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ABSTRACT
The PIPS project was started in 1988 to investigate the
automatic detection of medium- and large-grain parallelism
in scientific programs thanks to summarization techniques
based on convex array regions. By 1992 the PIPS system
had reached its original goals, but it has morphed into a com-
prehensive, open-source platform still in use today. What
were the key scientific and engineering decisions that made
this possible in spite of some inevitable shortcomings?
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1. INTRODUCTION
The goals of the PIPS project were (1) to find automati-

cally medium and large grain interprocedural parallelism in
Fortran 77 scientific programs and (2) to express it thanks
to a source-to-source translation process targetting shared-
memory multiprocessors.

PIPS was based on polyhedral techniques for command
abstraction [16], procedure summarization with convex ar-
ray regions [31] and hence dependence tests, and was to be
the first polyhedral compiler.

2. ASSUMPTIONS AND KEY CHOICES

2.1 Six Key Assumptions
The necessary parallelism was to be found in loops deal-

ing with arrays indexed by affine expressions only. Unlike
data parallelism, task and instruction-level parallelisms were
deemed of no use because bounded by the code size and the
number of operators.
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Unstructured pieces of code did not require a precise anal-
ysis because they do not contain data parallelism.

Recursive functions were not used in scientific code and do
not contain data parallelism either. Functional parameters
are not common enough to be taken care of either.

Convex array regions are precise enough to find medium-
grain parallelism and polyhedral operators are fast enough
to analyze whole applications.

PIPS would perform whole program parallelization. The
source code of all modules is assumed available.

Finally, source-to-source is sufficient to express parallelism
and optimizations, while preserving key information for pro-
grammers and optimizers.

2.2 Scientific Choices
Because parallelism was to be found in DO loops, PIPS

internal representation is not based on a usual control flow
graph (CFG). Instead it uses a recursive combination of ab-
stract syntax trees for structured components and CFGs for
unstructured ones. This combination was called a hierarchi-
cal control flow graph (HCFG).

It was decided to use abstract commands to build abstract
stores for interprocedural analysis with only two traversals
of the call graph, and, later, to perform convex array region
propagation. Abstract commands are also useful to shorten
the analysis of nested loops, which are common in scientific
codes.

2.3 Design Choices
The design was guided by our knowledge of Parafrase [20]

and PTRAN [30] internals, and ended up with a minimal
internal representation both for control constructs and for
entities. No intrinsics, not even the assignment, are singled
out: they all are calls with side effects. Functions, variables,
commons... are all entities. Hence, the internal representa-
tion [11] is language-independent.

The Newgen [32] data description language was adopted
to implement PIPS internal representation. Newgen uses
dynamic typing to provide automatically compact data man-
agement features, thanks to a layer of macros and functions,
including higher-order generic traversal operators.

Multiple implementation languages were available for fast
prototyping, CommonLisp, and efficiency, C. Thanks to New-
gen, data structures could be shared by the two languages.

A unique symbol table was designed to ease interprocedu-
ral analyses.

Persistance was necessary for interprocedural analyses be-
cause of the memory size constraint and to allow interactive



uses. A make-like system was implemented to ensure the
PIPS database consistency and some pass ordering auto-
matically [11]. It also made PIPS modular and evolutive,
with an easy declarative way to add new passes [5].

A sparse implementation was chosen for the polyhedral
library because few variables are involved in each constraint.

Finally, an interactive window-based interface was added
for demonstrations and for pedagogical reasons.

2.4 Future Work of 1991
We anticipated the need for path transformers [18], prof-

itability analyses [36], programming rules, assertions about
key parameters and data transformations such as array ex-
pansion or privatization [12, 13], as well as improvement in
convex array region translation, and feared complexity due
to affine transformers.

We assumed that non-convex array regions would be use-
ful in signal processing codes and expected a lack of target
machines and parallel languages

3. LOOKING BACKWARD
PIPS later competitors such as Parafrase-2, Polaris, SUIF,

SUIF-2 are gone, but PIPS is still with us and has not been
rewritten in Java or C++. Why?

3.1 Strong Points
Polyhedral techniques are very flexible [2] and often not

too complex [35]. They support loop parallelization, with
neither control nor call restrictions [13], and automatic dis-
tribution [9, 23].

Interprocedural techniques, which PIPS pioneered, are
now key to compilers for heterogeneous targets [14, 1].

A langage-neutral high-level source-to-source internal rep-
resentation is useful for the user who can recognize her source
code, for debugging the compiler since the internal represen-
tation can be compiled and executed at any step, and for
supporting new input languages.

Automatic consistency is important to manage interpro-
cedural issues and to add new passes. Pass dependencies are
managed by PIPS, not by the pass programmer.

The data description language NewGen was useful to up-
date the internal representation without modifying PIPS
code. This proved key when adding C to Fortran as a source
language.

However, interactivity and multiple implementation lan-
guages turned out to be of little use.

3.2 Extensions
To process industrial code, we had to extend the initial

Fortran subset to cope with entries, stack allocation, depen-
dent types, while loops and the HPF/OpenMP directives.
And then we had to support C99 with pointers and dynamic
allocation.

We combined static and dynamic analyses to obtain both
safety and efficiency: array overflows, aliasing detection and
proper variable initialization [27, 26, 28]. We also had to
analyze non-integer variables and non-affine expressions be-
cause they control the behaviors of large applications.

To process C, we had to extend and/or to implement usual
code analyses and transformations such as use-def chains,
points-to analysis, dead-code elimination, control simplifica-
tion, induction variable substitution, scalarization and loop
fusion [5, 1, 22].

We also had to go beyond a simple interprocedural ap-
proach and to add procedure cloning, inlining and outlin-
ing: procedure boundaries must be moved to fit the target
machine [14].

Finally all kinds of parallelism must be detected. Com-
mutative and transitive expression optimization was added
to improve ILP [38]. Reduction detection [17], small vec-
tor parallelism, SSE or AVX [15], and GPU code generation
with data distribution [1, 3] were introduced later. Finally
task parallelism must be exploited with multicores [19, 33].

On the implementation side, list-based algorithms were
replaced by hash-tables to scale up when large applications
are analyzed, modules written in CommonLisp were rewrit-
ten in C, and exception management had to be introduced to
cope with magnitude overflows in polyhedral operators. A
Python embedding, pyps, was introduced to provide the flex-
ibility required with in- and out-lining [14]. The 1.x Par4All
initiative [33] also uses Python to increase PIPS robustness
and to simplify its use (see par4all.org).

4. CONCLUSIONS
PIPS has proved over the years to be a fertile ground

for the polyhedral model [21], data transformations [13],
communication synthesis [4, 7], compilation for distributed
memory machines [9, 23], ILP [37], code maintenance [29,
6], program verification [25], scratchpad management [8], of-
fload compilers [14, 1, 10], and task parallelism [18, 33].

These advances were made possible by PIPS modular and
evolutive structure, by its language-neutral internal repre-
sentation and by new analyzes and a better understanding
of their domains [36, 34, 13, 24, 22], but also by many con-
tributors to the PIPS infrastructure, to its classical pass
portfolio, to its tutorials and website. And PIPS grew from
50 KLOC in 1991 to about 600 KLOC in 2014.

New challenges are now addressed with PIPS: manycores,
heterogeneous systems, complex memory hierarchies, code
modelization, tool combinations and parallel languages. On
the infrastructure side, we intend to combine robustness for
industrial use and openness for research.
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Project/SILKAN, Télécom SudParis and THALES.

We are also thankful to Claude Girault, who helped fund
and set up the so-called C3 group, and to the members of this
group, especially Corinne Ancourt, Philippe Clauss, Alain
Darte, Paul Feautrier, Catherine Montgenet, Guy-René Per-
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A-191, CRI, École des mines de Paris, 1989.

[33] N. Ventroux, T. Sassolas, A. Guerre, B. Creusillet, and
R. Keryell. SESAM/ Par4All: a tool for joint exploration
of MPSoC architectures and dynamic dataflow code
generation. RAPIDO’12, pages 9–16, New York, NY, USA,
2012. ACM.
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