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Abstract

A crucial point in program analysis is the computation of loop invariants. Accurate
invariants are required to prove properties on a program but they are difficult to compute.
Extensive research has been carried out but, to the best of our knowledge, no benchmark
has ever been developed to compare algorithms and tools.

We present ALICe, a toolset to compare automatic computation techniques of affine
loop scalar invariants. It comes with a benchmark that we built using 102 test cases which
we found in the loop invariant bibliography, and interfaces with three analysis programs,
that rely on different techniques: Aspic, ISL and PIPS. Conversion tools are provided to
handle format heterogeneity of these programs.

Experimental results show the importance of model coding and the poor performances
of PIPS on concurrent loops. To tackle these issues, we use two model restructurations
techniques whose correctness is proved in Coq, and discuss the improvements realized.

1 Introduction
The standard state-based model checking problem is to characterize the set of all reachable
states of a transition system modeling some program. This information is generally used to
check safety properties on the system, ensuring that “bad” configurations cannot be reached.
The accuracy of computed invariants is very important, as it plays an essential role in the
success of the program analysis.

Dealing with potentially infinite-state models requires to overapproximate invariants into
a mathematical model (or abstract domain) whose representation is finite and that allows to
make the required computations. Many such domains exist in the literature, but we focus on
the domain of affine invariants, first introduced by N. Halbwachs [13, 25], which offers a good
trade-off between invariant accuracy and computational complexity.

Most of the usual analysis techniques consist in starting from a set of supposed predicates
about a particular control position in the transition system, and then propagating it to other
positions by evaluating the effect of each transition on the predicates. This is pretty straightfor-
ward, except in the case of loops that needs special treatment. This lead to intensive research,
with many approaches based either on abstract interpretation [32, 16, 38], that is, using widen-
ing operations, or on direct computation [2]. The case of concurrent loops, i.e. when there are
different possible loops on the same control point, is particularly challenging.

As of today, several tools for linear relation analysis use a vast pattern of algorithms and
heuristics to handle loops, aiming to maximum accuracy. We propose a toolset that compares
these tools on a common set of small-scale, previously published test cases and to test the
sensibility of these tools to different encoding schemes. In Section 2, we introduce our toolset,

*We thank Laure Gonnord and Sven Verdoolaege who helped us to use their tools Aspic and ISL.
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ALICe, and present the set of test cases and of analysis programs that we use. The different
encodings are discussed in Section 3, after which the results of our experiments are shown.

2 The ALICe Benchmark
The ALICe benchmark project aims to provide tools and a standardized set of test cases to com-
pare as fairly as possible different polyhedral analysis techniques and softwares. ALICe is a free
software distributed under GPLv3, and is available at http://alice.cri.mines-paristech.
fr/.

There are several motivations behind the ALICe project. First, we want to use it as a
tool to compare polyhedral invariant computation tools on a common ground, using a set of
published test cases issued from various sources, instead of evaluating their performances on ad
hoc examples only, in the spirit of the TPTP library [44] and the CASC competition [43, 39].
ALICe also gives the opportunity to evaluate the benefits of model-to-model restructurations
prior to analysis (Section 3).

2.1 Program Model
Test cases in ALICe are particular interpreted automata called models, and traditionally repre-
sented as graphs. In a nutshell, a model in ALICe is a transition system constituted by a set
of control points (nodes), connected by guarded commands acting on integer variables (edges),
and comes with initial and error states. An example of model in shown in Figure 1.

k1 k2
t1 : x ≥ 0 ?

t2 : x ≤ 0 ?x++

t3 : x ≥ 1 ?x--

Error condition: x < 0 in k2

Figure 1: An example of model

Definitions Let X be a finite set of integer variables (boolean variables, if any, are cast
to integers) and K be a finite set, whose elements are called control points. In our example,
X = {x} and K = {k1, k2}.

• A valuation on X is a function v :X → Z mapping each variable to an integer value. Let
V = ZX be the set of valuations on X.

• A (global) state of the model is a pair q = (k, v) ∈K × V , for instance: (k2,0). The set of
global states is noted Q.

• A guard is a function g : V → B = {�,⊺}, giving the value of a logic formula on a
valuation v. In the example model, the guard in t2 is:

g2 : v ↦ v(x) ≤ 0, simply noted “x ≤ 0”.

In practice, the guard is assimilated to its truth set {v ∣ g(v) = ⊺}. The set of guards is
noted G.
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• An action a is a binary relation on valuations: a ⊆ V ×V and represent possible valuation
changes; it is not necessarily a function. In t2, the corresponding action is:

a2 = {(v, v′) ∈ V × V ∣ v′(x) = v(x) + 1}, simply noted “x++”

with X = {x}. The set of actions is noted A.

• A transition t is a quadruplet t = (k, g, a, k′) ∈ K × G × A × K. Intuitively, when the
automaton is at control point k, and if the current valuation v satisfies the guard g (i.e.
g(v) = ⊺), the transition execution moves to the control point k′, with a valuation v′ such
that (v, v′) ∈ a. The transition t = (k, g, a, k′) is usually noted:

t : k
g ? aÐÐ→ k′

Transitions are not necessarily deterministic.
In the example model, t2 is a transition from control point k2 to control point k2 with
guard g2 and action a2, that is t2 : k2

x≤0 ? x++ÐÐÐÐÐ→ k2. The set of transitions is noted T .

Formalism Using these definitions, a model can now be formally defined as a tuple m =
(X,K,T,Qinit,Qerr) where

• X is a finite set of variables;

• K is a finite set of control points;

• T is a finite set of transitions on X and K;

• Qinit and Qerr are subsets of Q, called respectively initial states and error states of m.
In the example model of Figure 1, there is an initial control point k1 with no valuation
constraint so Qinit = {k1} × V . The error region is at control point k2 with x < 0, that is:
Qerr = {k2} × (x < 0).

The set of models is noted M.

Semantics The semantics of a model is defined in terms of transition systems. The model
m = (X,K,T,Qinit,Qerr) is associated to the transition system (Q,→,Qinit), which transition
relation obeys to:

(k, v)→ (k′, v′)⇐⇒ ∃(k, g, a, k′) ∈ T, g(v) = ⊺ ∧ (v, v′) ∈ a. (1)

Accessibility and Verification A safety property expresses that “something bad never hap-
pens”. We consider accessibility properties, a subset of safety properties, expressing that the set
of error states Qerr — representing “something bad” — cannot be reached. Their verification
involves the computation of accessible states from the initial states Qinit.

Let R be a subset of states Q. We note

Post(R) = {q′ ∈ Q ∣∃q ∈ R, q → q′}

the set of successor states of all states in R, and

Acc(R) = ⋃
n≥0

Postn(R)
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the set of all accessible states from some state in R (Acc is the transitive closure of Post).
The model m is correct if and only if:

Acc(Qinit) ∩Qerr = ∅. (2)

The test cases available in ALICe are all correct models.

Challenging a Tool In general, it is not possible to compute exactly the set of accessible
states Acc(Qinit). Instead, analysis tools tested by ALICe compute supersets Q′ of Acc(Qinit):
if a given Q′ does not intersect with Qerr, then the tool that generated this Q′ has verified that
states in Qerr are unreachable (Figure 2), thus the test case is considered a success for that tool.
However, if the intersection Q′ ∩Qerr is not empty, the tool user cannot conclude whether the
property is violated or if the overapproximation is too inaccurate: this corresponds to a failure
for the tool.

Acc(Qinit) Q′

Qerr

Figure 2: Model checking

Note that we could use backward analysis instead: starting from error states Qerr, computing
iteratively the set of coaccessible states and testing the intersection with Qinit. But as all
analysis tools used within ALICe rely on forward analysis (see Section 2.3), this is not explored
further.

2.2 Test Cases
The benchmark itself consists in 102 previously published test cases, including work from
L. Gonnord [16, 1], S. Gulwani [8, 21, 22, 23, 24], N. Halbwachs [26, 28, 27, 25], B. Jean-
net [32] et al. The comprehensive list of model sources can be found in the bibliography [3, 36,
5, 6, 8, 9, 10, 11, 12, 18, 19, 20, 29, 30, 34, 38, 40, 41], as well as on the ALICe website. They
come mostly from works on loop invariant computation, loop bound analysis and, to a lesser
extent, protocol verification. Test cases are usually relatively small: typically 1 to 10 states and
2 to 15 transitions. Histograms showing distribution of test cases according to their sizes are
shown in Figure 3.

These test cases come in many forms and had to be hand-encoded to a common format,
described in Section 2.4.

2.3 Three Supported Tools
For now, ALICe is interfaced with three invariant computation tools: Aspic, ISL and PIPS.

• Aspic [17], a polyhedral invariant generator developed by L. Gonnord. Aspic relies on
classic linear relation analysis, improved with abstract accelerations, identifying classes of
loops in the abstract polyhedral domain whose effect can be computed directly instead of
using widening operations, thus granting better accuracy.
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Figure 3: Distribution of test cases

• ISL: “the Integer Set Library” [46], developed by S. Verdoolaege. ISL is a library for
manipulating sets S and relations R on integer tuples bounded by affine constraints in
the following form:

S(s) = {x ∈ Zd ∣∃z ∈ Ze : Ax+Bs+Dz ≥ c},
R(s) = {(x1, x2) ∈ Zd1 ×Zd2 ∣∃z ∈ Ze : A1x1 +A2x2 +Bs+Dz ≥ c}.

These definitions allow greater expressiveness than polyhedral constraints: in terms of
logical expressiveness, they are equivalent to Presburger arithmetic constraints.

• PIPS [7], an interprocedural source-to-source compiler framework for C and Fortran pro-
grams, initiated at MINES ParisTech, that relies on a polyhedral abstraction of program
behavior. Unlike other tools, PIPS performs a two-step analysis. First, the program is
abstracted: each program command instruction is associated to an affine transformer
representing its underlying transfer function. This is a bottom-up procedure, starting
from elementary instructions, then working on compound statements and up to func-
tion definitions. Second, polyhedral invariants are propagated along instructions, using
transformers previously computed.

We do not consider the Omega+ [42] library, as it appears to be superseded by ISL [45]. It
would be very interesting to be able to use more tools, such as FASTer [35, 4] or NBAC [33, 31],
but adding support is a time-consuming task, as explained below, and we have not been able
to do it up to now.

2.4 Heterogeneity of Tools
ALICe test cases are written in the fsm format. This is a simple language that directly represents
models, originally used in FAST [35] and then in Aspic. An example of fsm program for the
model in Figure 1 is given in Listing 1.

As we wish to analyze these test cases with different tools and compare results, we have to
convert input and output formats. Basically, each tool uses different input and output formats:

• Aspic uses the fsm format both as input and as output;

• ISL uses a custom format to describe both the input model as a relation on states with
conditions on variables, and the output invariant, given as a map from states to domains;
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1 model m {
2 var x;
3 states k1, k2;
4 transition t1 {
5 from := k1;
6 to := k2;
7 guard := x >= 0;
8 action := ;
9 }

10 transition t2 {
11 from := k2;
12 to := k2;
13 guard := x <= 0;
14 action := x' = x + 1;
15 }
16 transition t3 {
17 from := k2;
18 to := k2;
19 guard := x >= 1;
20 action := x' = x - 1;
21 }
22 }
23 strategy s {
24 Region init := {state = k1};
25 Region bad := {x < 0};
26 }

Listing 1: Source code in fsm format

• PIPS processes a structured C program according to a script written in a custom script-
ing language, called tpips, while resulting invariants are given as comments surrounding
instructions in the output C code.

To check whether an analyzer works successfully on a test cases, we follow these steps:

1. if necessary, convert the model (originally in fsm) into the analyzer’s input format;

2. run the analyzer and get the computed model invariant;

3. if necessary, convert the model invariant into ISL format;

4. use ISL to check whether the intersection of the model error region and the invariant
computed by the analyzer is empty, i.e. whether the analyzer is able to solve the test
case.

Those steps are illustrated in Figure 4.
Implementing these steps required to develop several translation programs, from and to

Aspic, ISL and PIPS formats. In particular, the tools fsm2c and fsm2isl respectively convert a
fsm model into C code or ISL relation. There is also an export tool for fsm in dot format that
allows visualization, fsm2dot. They are available within ALICe.
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in.fsm in.isl

in.c

Aspic

ISL

PIPS

out.asp

out.isl

out.c

out.isl

out.isl ISL

ISL

ISL

Figure 4: Analysis steps within ALICe

Conversely, it is possible to use ALICe to analyze simple models written in C by first trans-
lating them into fsm automata, using the c2fsm utility developed by Paul Feautrier [14, 15].

2.5 Results for the Raw, Hand-Encoded Test Cases

In this section, we present experimental results obtained with ALICe. Benchmarks were run on
a computer with a Quad-Core AMD Opteron Processor 2380 at 2.4 GHz and 16 GB of memory,
using the following versions of analyzers (latest versions at the time of writing):

• Aspic version 3.1;

• ISL from Barvinok version 0.36;

• PIPS revision 22 105 (April 2014).

Results obtained by these three tools are displayed in Table 1, along with the corresponding
execution times. Aspic stands out as the winner in this comparison, with ISL coming second
and PIPS, which is not primarily targeted at invariant analysis, being placed last, both in terms
of success rate and of execution time.

Aspic ISL PIPS
Successes 75 63 43
Time (s.) 10.9 35.5 46.2

Table 1: Benchmark results

This ranking is lessened by by the fact that no tool is strictly better than another: for each
tool, there is at least one model that is successfully analyzed only by this tool, as shown in
Figure 5; and it appears in Table 2 that there is no clear trend as for the quality of generated
invariants, in terms of invariant inclusion.

A closer analysis shows that ISL performs comparatively well on test cases encoded with
concurrent loops (several loops on a single control point, similar to what is shown Figure 7),
unlike PIPS whose results are particularly bad. On the other hand, ISL can be quite slow on
test cases that display a large, intricate control structure. Finally, despite its successes, Aspic
has greater difficulty to deal with transitions featuring complex formulas, that it is not able to
accelerate. This leads us to wonder if the tools are sensitive to the encoding, since a problem
can be presented under many guises. This is the topic of the next section, and the other original
contribution of this paper.
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Aspic

ISL PIPS

12

1 1

22

1

2
39

successes: 78
failures: 24

Figure 5: Venn diagram of successes for each tool

⊇¼ Aspic ISL PIPS
Aspic – 21 23
ISL 49 – 54

PIPS 33 23 –

Table 2: Invariant inclusions

3 Model-to-Model Restructurations: Sensitivity to En-
coding

We mentioned above the possibility to use ALICe to test the efficiency and relevance of model-to-
model restructurations. An initial motivation was to try to improve results in PIPS by playing
on the model structure.

Formally, a sound model restructuration is a function ρ :M→M that maps a model m1 to
a model m2 such that: if m2 is correct (i.e., its error region is not reachable), then m1 is also
correct:

∀m1,m2 ∈M,m2 = ρ(m1) ∧ correct(m2)Ô⇒ correct(m1). (3)

Thus, given a model m1 and a restructuration ρ, it is sufficient to prove the correctness of m2 =
ρ(m1) to deduce that m1 is also correct. In addition, the restructuration ρ can be equivalent
(m1 is correct if and only if m2 is correct), although we are not interested in proving such
properties in our toolchain. So, for instance, the restructuration that to any model associates
the same trivial, inconsistent model is sound (but not very interesting).

For analysis purposes, a model that fails to be checked can be rewritten into another one,
hopefully easier to analyze. Within ALICe, we have implemented two restructurations on model
states, to test analysis tools on a wider range of models and on specific model schemes, and
explore the impact of model encoding. Model restructurations are performed at the very be-
ginning of ALICe execution, just before Step 1., as an additional, preliminary stage to Figure 4.
Both these restructurations were proved sound in Coq, using a trace-equivalence scheme: con-
sidering an arbitrary, possible state trace with transitions

θ1 = (k0, v0)
t1Ð→ (k1, v1)

t2Ð→ (k2, v2)
t3Ð→ ⋯

in the original model m1, we show that for any corresponding trace θ2 in the transformed model
m2 (corresponding to the same behavior, once the model has been transformed), then:

(∀q2 ∈ θ2, q2 /∈ Qerr2)Ô⇒ (∀q1 ∈ θ1, q1 /∈ Qerr1),

thus ensuring (3).

3.1 Control-Point Splitting Heuristic
The first restructuration we use is a heuristic to split control nodes that contain several self loops.
The global idea is to get rid of such nodes, that are usually the most difficult to automatically
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analyze, by splitting them with respect to the guards of the transitions, and adjusting the initial
and error regions accordingly. This heuristic was initially designed for PIPS and is presented in
details in [37].

k1

k2 (x ≤ 0)

k′2 (x ≥ 1)

t1 : x = 0?

t′1 : x ≥ 1 ?

t2 : x++ t3 : x = 1?x--

t′3 : x ≥ 2 ?x--

Figure 6: Model of Figure 1 transformed by the splitting heuristic

In Figure 6, we show the effect of this heuristic applied on the same model as in Figure 1,
where the control point k2 is split into two components with respect to the guards of transitions
t2 and t3. The initial state set is unchanged. Proving that the new error state set {k2, k′2}×(x <
0) cannot be reached is easier than in the original model: it is true by construction for the
control point k′2, and can be easily deduced by looking at guards of entering transitions for
control point k2.

3.2 Reduction to a Unique Control Point
The other model restructuration reduces the set of controls to a unique control point `, with all
transitions turned into loops on `, adding an extra boolean variable xk for each original control
point k in both guards and actions (assuming symbols ` and {xk} are not bound in the original
model), to represent the corresponding control point of the original model. We assure that, in
every state of the system, exactly one xk is set to 1. Formally, a transition t between control
states ki, kj , with guard g and action a

t : ki
g ? aÐÐ→ kj

is turned into the transition

t′ : `
g∧xi=1∧⋀k≠i xk=0 ? a∧x′j=1∧⋀k≠j x′k=0
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ `.

Again, the initial and error set states are adjusted accordingly.
A more direct approach is to encode control information on a unique integer variable instead

of several boolean variables, by numbering the control points in the initial model. We did
not adopt it because it introduces encoding issues. Indeed, some relations on control points
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might or might not be expressed in terms of affine constraints, depending on the control-point
encoding. For instance, being in k1 or k′2 in the model of Figure 6 cannot be expressed if the
third control point k2 is encoded with a value between those of k1 and k′2. This issue is avoided
with our boolean variable scheme.

The resulting model of this restructuration applied on the initial model of Figure 1 is shown
in Figure 7. The corresponding initial state set is: Qinit = {`} × {b1 = 1 ∧ b2 = 0}. The error
state set is: Qerr = {`} × {b1 = 0 ∧ b2 = 1 ∧ x < 0}.

`

t1 : b1 = 1, b2 = 0, x ≥ 0 ?
b1 = 0, b2 = 1

t2 : b1 = 0, b2 = 1, x ≤ 0 ?
x++

t3 : b1 = 0, b2 = 1, x ≥ 1 ?
x--

Figure 7: Model of Figure 1 reduced to a unique control point

This restructuration has three purposes. First, it stresses the tool with more difficult test
cases. It also reduces bias factors related to encoding choices. Finally, if used before the
control-point splitting heuristic, merging increases the effect of splitting by generating the
control-point structure to which it applies.

3.3 Combining Restructurations
These model restructurations can be used independently or together: first the model is reduced
to a unique control point, then this control point is split, widening the scope of the splitting
heuristic. Therefore, ALICe works with four version of each model:

• The original version, with no restructuration (noted “direct” in the tables below);

• With all control points merged into a unique one, as described in Section 3.2 (“merged”);

• Using the control-point splitting heuristic presented in Section 3.1 (“split”);

• Combining both approaches (“merged-split”).

3.4 Impact of Restructurations on Experimental Results
The results obtained using these restructuration schemes are displayed in Table 3.

We notice that the control state splitting heuristic leads to improved results for all tools, as
shown by the comparison of Tables 3a and 3c on the one hand, and Tables 3b and 3d on the
other. These results also confirm that ISL is significantly better in the treatment of concurrent
loops, as previously noticed in Section 2.5: it outperforms the other tools on merged models
(Table 3b). Aspic has lower scores than ISL on split models, with or without merging (Tables 3c
and 3d), because it cannot accelerate transitions that are generated by control node merging.
PIPS is the worst performer in all cases, but we managed to increase its success rate by about
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Aspic ISL PIPS
Successes 75 63 43
Time (s.) 10.9 35.5 46.2

(a) Direct

Aspic ISL PIPS
Successes 59 70 40
Time (s.) 16.7 26.2 50.0

(b) Merged

Aspic ISL PIPS
Successes 79 72 50
Time (s.) 12.8 43.0 61.7

(c) Split

Aspic ISL PIPS
Successes 70 83 63
Time (s.) 11.3 40.8 59.5

(d) Merged-split

Table 3: Benchmark results with different encodings

50 % (from Table 3a to Table 3d). The merge-splitting strategy gives the best results for ISL
and PIPS.

Once again, detailed results are more contrasted. There is still no inclusion relation between
successful test cases for different tools, whatever the restructuration scheme is chosen (Figure 8).
The same holds for invariant sharpness.

Aspic

ISL PIPS

12

1 1

22

1

2
39

successes: 78
failures: 24

(a) Direct

Aspic

ISL PIPS

1

11 1

21

2

1
36

successes: 73
failures: 29

(b) Merge

Aspic

ISL PIPS

2

2 1

29

1

8
40

successes: 83
failures: 19

(c) Split

Aspic

ISL PIPS

1

4 2

20

12

2
47

successes: 88
failures: 14

(d) Merge-split

Figure 8: Venn diagrams of successes for each tool

Globally, the merge-split restructuration leads to the best results with 88 out of 102 test
cases correctly solved.
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4 Conclusion and Future Work

In this paper, we described ALICe, a benchmark for automatic tools that compute affine loop
invariants. The benchmark consisted in 102 test cases taken from previously published papers
from the relevant literature, and helper tools that allowed to compare three invariant generators,
Aspic, ISL and PIPS, handling their different formats. We also presented two model restruc-
turations, splitting and merging, that can be used separately or together to improve results and
highlight the differences between tools. Finally, we gave some insight on the benchmark results.

The ALICe toolset provides a framework to improve current results, either by working more
deeply on the model restructurations, or improving the loop computation algorithms used in
PIPS or other tools to deal with weaknesses in concurrent loop computation.

There are two ways to further pursue this work. The benchmark can be expanded, either
by adding more test cases, which is relatively easy but time-consuming, or by integrating other
analysis tools, such as FASTer [35, 4] or NBAC [33, 31]. Before adding new tools, it may be
interesting to equip the models with a “minimum invariant”, of which computed invariants
should be supersets to be considered correct. This would reduce the problems posed by the
presence of a buggy or cheating tool, that could generate wrong, too narrow invariants and
would apparently pass all test cases. Adding deliberately incorrect models could also address
this issue.
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