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The Impact of Surface Area on the Radiative
Thermal Behavior of Embedded Systems

Karel De Vogeleer, Pierre Jouvelot, and Gerard Memmi

Abstract—A new global analytical model of the heat dissipation process that occurs in passively-cooled embedded systems is
introduced, and we explicit under what circumstances the traditional assumption that exponential cooling laws apply in such context is
valid. Since the power consumption and reliability of microprocessors are highly dependent on temperature, management units must
be able to rely upon accurate thermal models. Exponential cooling models are justified for actively-cooled microprocessors. For
passively cooled processors however, as frequently found in embedded systems such as mobile devices, an exponential law may not
be theoretically justified. Here, we analyzed the tractability of the cooling law for a passively cooled body, subject to radiative and
convective cooling. Focusing then on embedded microprocessors, we compare the performance difference between our new passive
cooling law and the conventionally-used exponential one. We show that, for isothermal cooling surfaces of the order of 1 dm2 or
greater, the radiative cooling effect may become comparable to the convective cooling one. Otherwise for surfaces below 1 dm2, we
show that the differences between the exact solution and the exponential cooling law are negligible. In the absence of accurate
temperature measurements, an exponential cooling law is shown to be accurate enough for small-sized SoC systems that require low
processing overhead.

Index Terms—Passive cooling, mobile embedded systems, cooling law approximation, radiative cooling, SoC, cooling laws.
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1 INTRODUCTION

G IVEN the crucial aspect of energy optimization in
embedded and mobile systems, even a tiny amount

of energy gained via a better understanding of thermal
effects may have significant business and ecological im-
pacts. Temperature is an important factor influencing energy
consumption of microprocessors while executing programs.
Understanding and accurately modeling this relationship
may bear impact beyond optimized system operation man-
agement. This point is particularly acute for any system
running on electrical battery such as mobile devices or
sensors which participate in the Internet of Things (IoT).

Moreover, temperature and its variations affect the re-
liability of circuits. Thermal gradients that occur both in
space and time, induced by the variability in microprocessor
load and operations, generate thermal cycles that have an
adverse affect on the failure rate of systems [1]. A 10◦C to
15◦C temperature increase may halve a microprocessor’s
lifetime [2]. The International Technology Roadmap for
Semiconductors (ITRS) even states that processor costs and
performance specifications may be limited by the lifetime
reliability and is of primary concern in the microproces-
sor’s design phase [3]. Since power consumption increases
exponentially with increasing silicon temperature [4], ther-
mal management techniques are required to avoid self-
destruction, to increase the Mean Time To Failure (MTTF)
and minimize power consumption. Such thermal techniques
may be used at the system design phase or can be deployed
dynamically at run time by Thermal Management Units
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(TMUs) and Dynamic Thermal Management (DTM) systems.
A plethora of thermal control methods for microprocessors
exist [5] and show trade-offs between temperature profile,
frequency settings, power consumption and implementa-
tion complexity.

Thermal management methods often incorporate a
model describing the temporal thermal behavior of the
microprocessor. Exponential-based models are popular, and
scientifically sound for systems without internal heat gener-
ation and subject to active cooling, e.g., forced air or water
cooling. It has also been shown that an exponential law may
be a good approximation when simulating the conduction
of heat, under very specific circumstances: when the average
system temperature is not too large and the system conducts
heat much faster than it gains heat from its surroundings [6].
However, passively cooled systems, as frequently found in
embedded devices particularly mobile devices, but also flats
screen TVs etc., are not always forcibly cooled. These are
subject to the same physical laws for dissipating their heat
to the environment, but rely on different aspects of the heat
dissipation process.

In this paper, we develop an accurate analytical solution
to the problem of modeling the passive cooling of embed-
ded systems. It is important to understand the difference
between an exponential cooling law and the cooling law of
passively cooled devices since, in the literature, the radiative
cooling aspect is frequently neglected. We believe that this
is because it is considered a secondary order factor and
because of its non-linear nature, which poses problems
in mathematical derivations and simulations. In the case
of active cooling, convective heat transfer dominates the
other heat transfer modes whereas, for passive cooling,
radiation may become equally important, sometimes even
more important, and may dominate the convective heat
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transfer mode. When radiation cannot be neglected, the
transient thermal behavior of the system will deviate from
an exponential cooling law. In this paper we analyze under
which circumstances the radiation is significant enough
for it not to be neglected. We show that the size of the
cooling surface plays an important role in this question.
In particular, in cases where the cooling surface of the
device is large (> 1 dm2), the difference between the ex-
ponential and passive cooling laws is significant. Based on
the passive cooling law’s complex formulation and in the
absence of accurate temperature measurement samples, our
work therefore suggests that an exponential cooling law
is accurate enough for SoC applications and systems that
require low processing overhead.

We compare the active and passive cooling of a micro-
processor in the context of a mobile embedded system, i.e., a
low-power processor subject to internal heating generation
and cooling. The main contributions of this paper are:

• the accurate analytical solution for the problem of
(passive) cooling of a microprocessor subject to radi-
ation, convection, and internal heat generation;

• approximations to the exact analytical solution for
use in practical applications;

• actionable rules-of-thumb to assess when passive
cooling becomes non-negligible compared to active
cooling in embedded systems;

The rest of the document is developed as follows. Section
2 highlights the use of cooling laws in existing research
related to thermal management units. Section 3 develops
the exact cooling law for microprocessors subject to passive
cooling; this law is also validated via finite-element simu-
lations and approximations are analyzed. Besides, the im-
pact of active cooling of microprocessors is also discussed.
Section 4 studies the performance difference between the
exponential cooling law and the passive cooling law. We
conclude in Section 5 with a summary and give directions
for future research.

2 RADIATIVE COOLING IN EXISTING THERMAL
MANAGEMENT TECHNIQUES

Thermal management techniques for microprocessors have
been devised to control their heat dissipation. Excessive
heat dissipation may have adverse effects on performance,
and the short term and long term failure rate of the micro-
processor. Basic run-time thermal management techniques
can be rudimentary, such as clock gating. Yet, if service
continuation is needed, more advanced thermal techniques
are required. Thermal-aware design of microprocessors can
also be effective to minimize peak and average heat dissi-
pation during run time. The challenge here, however, lies in
decision making based on incomplete design and run-time
details.

To get a current perspective on how such issues are
addressed in the literature, we surveyed top computer ar-
chitecture and Very-Large-Scale Integration (VLSI) confer-
ences for papers devoted to TMUs, DTMs and temperature-
aware design methods based on heat transfer theory. The
conferences surveyed are ISCA, MICRO, ASPLOS, HPCA,
PACT, ISLPED, ICCAD, DAC, DATE, ASP-DAC from 2010

to 2014. We identified 35 papers focusing on the thermal
optimization of microprocessors using heat transfer mod-
els. 90% of these papers base their results solely upon
simulation or numerical analysis; the remaining ones use
either actual measurements or a combination of simula-
tion and measurements to make their point. Beside custom
thermal simulators and models, non-commercial and open-
source thermal simulators are mostly used: these are based
on finite-element methodologies. Commercial applications
such as COMSOL Multiphysicsr, Autodesk Simulation CFD
or FLoTHERMr, which support the radiative heat transfer
mode, are not used in the selected papers. About 40% of
the selected papers deploy Hotspot for their thermal simu-
lations. Hotspot [7] is a self-proclaimed accurate and fast
thermal model designed for microprocessor architectural
analysis, e.g., floor planning. The basic setup of Hotspot
includes active cooling via a heat sink. No passive cooling
capabilities are available in Hotspot. Other experimental
simulators, such as LightSim [8], CONTILTS [9], ISAC [10]
and PowerBlurr [11], also allow for thermal analysis of
microprocessors, but are less popular and none support
radiative cooling. In most of the simulations, the tempera-
ture at steady state and transient temperatures are available,
where the steady-state case is much faster to compute than
the transient behavior.

It is worthwhile to ponder upon why no non-commercial
simulators support radiative cooling. One reason could be
that the non-linear behavior of radiation is not easy to
handle in mathematical formulations and advanced finite
element techniques need to be employed in numerical sim-
ulations. Also it is not always clear to what extent radiation
actually affects the thermal behavior of semiconductors. As
a result, given the lack of handling of passive cooling in
most simulators, it is not surprising that passive cooling
has not gotten much attention in the thermal management
research community. In fact, we only found one paper [12],
about 3D integrated circuits which mentions that radiation
may influences the thermal behavior of microprocessors;
yet in this work no further reference to radiation is found.
Nevertheless, 30% of the papers we surveyed claim that
their research is applicable to mobile embedded systems, a
situation in which passive cooling is usually of the essence.

Beside generic thermal microprocessor simulators, dedi-
cated embedded system thermal simulators were also devel-
oped. Therminator [13], for example, is a thermal simulator
designed to simulate heat dissipation in smartphones. Fi-
nite element methodologies are used to compute the heat
propagation through an arbitrary smartphone configura-
tion, which may include a printed circuit board (PCB),
battery, case, display etc. The authors show that their ded-
icated thermal simulator produces results that are close
to what commercial computational fluid dynamics (CFD)
software would calculate. Therminator takes the convective
and conduction heat transfer modes into account. Heat
loss via radiation, however, is not implemented in their
thermal simulator. Luo et al. [14] analyzed the issue of
thermal management on mobile phones based on numerical
simulation and basic thermal models. The authors came
up with design proposals on how to improve the thermal
management of mobile phones by studying the steady-state
behavior of the system. Even though radiation is mentioned
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in the introduction including formulations, radiation is not
present in their stead-state analysis. Gurrum et al. [15]
decomposed, just as Luo et al. [14], a hand-held device
in multiple subparts with different physical properties and
analyzed its thermal behavior. Radiation, however, did not
come to their attention.

From our literature survey we conclude that the numer-
ical tools used for thermal behavior of embedded systems
can be classified into three categories. First, we have the
general-purpose CFD software, which is able to simulate
arbitrary systems including all modes of heat transfer. These
systems require the most efforts to produce interesting re-
sults. The second class corresponds to dedicated embedded
system simulators. We have observed that the designers of
the simulators are aware of surface radiation but they do
not provide support in their simulators. And last, which are
the most popular, are the generic microprocessor thermal
simulators. We have not seen any of these microprocessor
simulators supporting the radiative heat transfer mode. This
provided us with a strong motivation for our work, which
strives to understand the possible impact of radiation on
the transient and steady-state thermal behaviors of micro-
processors in the context of embedded systems.

3 COOLING LAWS

The exponential cooling law is the most widely used cooling
law to model the thermal behavior of microprocessors, as
shown by our literature survey. The rationale behind an
exponential law is based on temperature traces of forcibly
cooled microprocessors, which indeed show clear exponen-
tial behavior [14], [15]. One may attribute the exponential
curve to Newton’s law of cooling. However, the presence
of internal heat generation, which renders the direct ap-
plicability of Newton’s law of cooling irrelevant for mi-
croprocessors, should not be forgotten. In the sequel we
show however that Newton’s law of cooling extended with
internal heat generation also yields an exponential cooling
law. For passively cooled microprocessors, the radiative heat
transfer mode, beside natural convection, also needs to be
taken into account.

In this section, after a brief overview of basic heat
transfer principles [16], we develop the cooling law for an
actively cooled body. We then extend this model with radia-
tive cooling to obtain our first contribution, a representative
model for passively cooled systems.

3.1 Basics of Heat Transfer

Heat transfer happens via a combination of the three fun-
damental modes: convection, conduction, and radiation. Each
of these modes follows its respective law. In the sequel we
assume an isothermal body that cools via convection and
radiation. Isothermal conditions may be approximated if the
body heats up uniformly, or if the internal heat conduction
happens considerably faster than the heat loss of the body
to the environment. Therefore we won’t discuss conduction
in detail.

A solid body immersed in a moving fluid, e.g, air or
water, is subject to energy exchange if the temperatures of
the body and the moving fluid differ. Energy is convected

from or to the body if the moving fluid has a different
temperature from the body. The energy transfer rate q [W]
between the moving fluid and the surface of the body is
formally known as Newton’s law of cooling:

q = C
dT

dt
= hacS(Tm − T ), (1)

where Tm is the temperature of the moving fluid (environ-
ment), S, the cooling surface area of the body, and hac, the
convective heat transfer coefficient [W/(m2·K)].

Radiative heat transfer happens through exchange of
electromagnetic waves, possible through both vacuum and
transparent media. Stefan-Boltzmann’s law states that the
power radiated from a blackbody is proportional to its tem-
perature. A blackbody is a body that absorbs all incident
radiation. In particular, Stefan-Boltzmann’s law states that
the radiative heat transfer rate q is proportional to the
blackbody’s temperature to the 4th power:

q = εσST 4, (2)

where ε ∈ [0, 1] is the emissivity of a gray body’s surface (di-
mensionless), and σ is the Boltzmann constant 5.6697×10−8

[W/(m2·K4)]. A gray body is a body that reflects a certain
amount of the incident radiation. The emission and absorp-
tion of a gray body can be well represented by a blackbody’s
behavior scaled by its emissivity: 0 < ε ≤ 1. In practical
situations the total heat loss of a body via radiation is equal
the emitted radiation minus the absorbed radiation:

q = εσS(T 4
a − T 4), (3)

where Ta is the radiation temperature of the environment.
Here we implicitly assumed that the environment has the
same emissivity as the body itself.

The total heat transfer from a body happens via the
combination of the basic heat transfer modes. Beside, a
body may also produce heat H(·) [W] which is referred
to as internal heat generation. The internal heat generation
is a function of space, time, temperature or others. In the
sequel we will assume that the internal heat generation is
homogeneously present throughout the entire body.

3.2 Active Cooling: the Newtonian Approach

Newton’s law of cooling states that the temperature rate
of change of an object is proportional to the difference
between the ambient temperature and the object’s temper-
ature. Thermal Management Units (TMUs) and Dynamic
Thermal Managements (DTMs) often assume the system to
cool down following Newton’s law of cooling. Accordingly
it is implicitly assumed that the system’s power consump-
tion as a result also exhibits exponential behavior over
time, comparable to an RC network. Such assumptions are
frequently found in thermal management systems [1], [17],
[18], [19], [20], [21], [22]. For actively cooled systems, i.e.,
cooled using forced convection (such as computer fans
or water cooling), an exponential assumption is a good
approximation when radiative and conductive cooling may
be neglected, as we explain now.

Assume that for such systems the stored energy is ap-
proximated by the sum of the heat transfer induced by con-
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vectional cooling: hacS(Tm−T ), and an internal heat generation
(ihg), which we deem linear as a first-order approximation:

C
dT

dt
= convection + internal heat generation

= hS(Tm − T ) + (η1T + η0). (4)

where C is the body’s heat capacity and Tm the ambi-
ent temperature. Note that, if the active cooling system
consists of a fan and heat sink, then hac depends upon
the dimensions of the heat sink or body surface area, and
the revolutions per minute (rpm) of the fan. Moreover, η1
and η0 are also dependant on the operating frequency of
the microprocessor and the load on the system. Similar to
Weissel and Bellosa’s [23] work, one gets, from Equation 4:

T − η0 + hacSTm
hacS − η1

= c0e
− (hacS−η1)

C t, (5)

while imposing the initial condition at t = 0: T (0) = T0.
Therefore c0 = T0 − η0+hacSTm

hacS−η1 , and thence

Tac(t) =
η0 + hacSTm
hacS − η1

+

(
T0 −

η0 + hacSTm
hacS − η1

)
e−

(hacS−η1)
C t.

(6)
It is clear that such a system is only stable if the cooling
process with constant hac convects heat away from the sys-
tem faster than the system is generating internal heat. The
system is stable if there exists an equilibrium temperature
Te for the system, which is equivalent to saying that

0 = hacS(Ta−Te)+(η1Te+η0) ⇒ hac =
η1Te + η0
S(Te − Ta)

, (7)

where all constants {Te, Tm, η1, η0} ∈ R+. We can state,
given that hac must be positive, that Te > Tm. We can
also conclude from Equation 6 that hac is always larger than
η1/S. If hac < η1/S, the exponent in Equation 6 would go
to infinity over time. In practical applications the value of
hac must be dimensioned properly such that the system’s
Te stays below the maximum operation temperature.

Not surprisingly, Newtonian cooling with linear internal
heat generation yields again an exponential relationship
between temperature and time. Consequently, the power P
consumed by the system, which is an affine transformation
of temperature (P = η1T +η0), will also exhibit exponential
behavior. An exponential model for actively cooled systems
with linear (or constant, η1 = 0) internal heat generation is
therefore a valid approximation. The exponential assump-
tion is however not quite the same as assuming simple
Newtonian cooling, as the coefficients in both models are
different, mainly due to the presence of the internal heat
generation. In the case of the presence of internal heat
generation the equilibrium temperature Te of the system
will be larger than the ambient temperature, see Equation 6
if t→∞.

3.3 Passive Cooling via Radiation, (Natural) Convec-
tion and subject to Internal Heat Generation
We now extend the previous model to better fit passively
cooled embedded systems. Bodies that are not actively
cooled must indeed rely on passive cooling to attain a
temperature equilibrium state. Passive cooling mechanisms
include radiation, and also convection. Note though that

convection, in this case, may be considerably smaller than
when the system is actively cooled. The convection arising
here may be originating from buoyancy forces, or natural
movement of air, e.g., wind. In the case of buoyancy forces,
sometimes the convection is referred to as natural convection
as the movement of air is not enforced on the system.

Assume an isothermal body subject to radiative cooling
and convection with internal heat generation. The temper-
ature change of such an object at any given point in time
is equal to the heat absorbed from the environment, plus
the internal heat generation, minus the heat released to
the environment. Absorption of heat happens via radiation
whereas the release of heat is happening both via radiation
and convection. The temperature change of such a system,
with internal heat generation (ihg), can be represented by
the following equation:

C
dT

dt
= radiation + convection + ihg

= εσS(T 4
a − T 4) + hS(Ta − T ) + (η1T + η0),(8)

where ε is the emissivity of the body, and σ is the Boltzmann
constant. Here it is assumed that the internal heat genera-
tion is linearly dependent on the temperature of the body:
H(T ) = η1T + η0. Yet, higher order polynomials (up to the
3th order) can be used as well for the following derivation
to hold (as we show in Appendix A). Also, Tm is presumed
to be equal to Ta.

By rearranging Equation 8 we obtain:

dT

dt
=

1

C
{−εσST 4+(η1−hS)T+(η0+S[hTa+εσT 4

a ])}. (9)

Here, the right-hand side is a 4th-order polynomial.
The derivation provided in Appendix B shows that the

exact solution to the problem of cooling of a body subject to
radiation, convection, and internal heat generation is given
by Equation 10.

t = − 1

κ4

(
A ln |T − ω1|+B ln |T − ω2|+

C

2
ln |(T − α)2

+β2|+ αC −D
β

arctan

(
T − α
β

)
+ co

)
, (10)

Here co must satisfy the initial conditions t(T0) = 0, if t(T )
denotes the right-hand side expression in Formula 10 :

co = −A ln |T0 − ω1| −
C

2
ln |(T0 − α)2 + β2|

−B ln |T0 − ω2| −
αC +D

β
arctan

(
T0 − α
β

)
,(11)

the ω∗ are the roots of the 4th-order polynomial given in
Equation 9 (ω1,2 are real, ω3,4 are complex conjugates), and

A =
1

(ω1 − ω2)((<(ω3)2 + =(ω3)2)− ω1(2<(ω3)− ω1))

B = −A<(ω3)2 + =(ω3)2 − ω1(2<(ω3)− ω1)

<(ω3)2 + =(ω3)2 − ω2(2<(ω3)− ω2)

C = − (A+B)

D = A(2<(ω3)− ω1) +B(2<(ω3)− ω2).

where < and = denote the real and imaginary parts of
complex numbers, respectively.
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Surprisingly, our result is the same solution as presented
by Besson [24], even though he modeled a different, but
similar, physical problem. Besson however assumed some
simplifications, different assumptions from ours, and solved
the differential equation via other methods. Nonetheless his
solution also contains three logarithms, one of them contain-
ing a second-order polynomial, and an arctan. Because of
Besson’s simplifying assumptions, however, his equation is
limited to the case where T−Ta = T+ η1

η0
, which is a special

case of our initial problem.
Similarly to actively cooled system, the passively cooled

system will tend towards an equilibrium temperature Te
only if Equation 9 equates to zero. Given that an equilibrium
temperature Te exists, the convective heat transfer coeffi-
cient hpc must be such that

hpc =
η1Te + η0 + εσS(T 4

a − T 4
e )

S(Te − Ta)
, (13)

where all constants {Te, Ta, e, S, η1, η0} ∈ R+. Conse-
quently, this is only possible if Te > Ta, as in the case of
active cooling, and η1Te + η0 > εσS(T 4

a − T 4
e ).

The accurate solution for passively cooled objects as
presented in Equation 10 is a function of the temperature:
t(T ). For practical reasons, such as for DTMs, TMUs, and
proportional-integral-derivative (PID) control techniques,
an analytical formulation in the form of T (t) is preferred.
Inverting the exact solution is however, not a straightfor-
ward task, mainly because the arctan is hard to deal with as
it keeps recurring. Numerical approaches will thus be pre-
ferred to compute this exact inverse solution. In Section 3.5
we will discuss approximations to the exact solution.

3.4 Experimental Validation of the Accurate Cooling
Law Applied to a Microprocessor

To validate the passive cooling solution defined in Equa-
tion 10, we setup a set of CFD simulations in COMSOL
where we analyze the transient thermal behavior of a slice
of silica glass (SiO2), as silica glass is closest to the thermal
properties of a microprocessor. A 3D conjugate heat transfer
scenario was created, with simulation settings as shown
in Table 1. The exact same values, as listed in this table,
were also used in our theoretical model. To approximate
an isothermal object in COMSOL we have multiplied the
thermal conductivity of the silica glass by 103. The silica
glass has a surface area of 0.01 m2. For the heating process
T0 is set to 25◦C and Te is scaled between T0 and 45◦C.
Similarly, for the cooling process T0=45◦C and Te is scaled
between T0 and 25◦C. The temperature values we chose
correspond to what is typically encountered when using a
mobile device. We used linear internal heat generation with
the parameters as shown in Table 1. The convective heat
transfer coefficient hac was set (Equation 13) such that with
the given internal heat generation the predefined equilib-
rium temperature is attained. We look at two different levels
of internal heat conversion, derived from ARM Cortex A15
quad-core processor power measurements on the Exynos
5210 Systems-on-Chip (SoC) [4]. The minimum internal heat
conversion represents the A15 processor running a single
applications at minimum processor frequency, whereas the

TABLE 1
Variables used for the COMSOL validation simulations. Specific values
were calculated for the convective heat transfer coefficient (hac) and

internal heat generation (ihg) such that a predefined equilibrium
temperature is attained.

CONSTANTS
symbol value dim.
σ 5.670× 10−8 W/(m2·K4)
ε 0.94 -
Ta 20 ◦C
D 2 mm
S 0.01 m2

C S ×D× 1548709 J/K
VARIABLES

symbol VALUE dim.
ihg min ihg max

heating : hac -4.359 11.144 W/(m2·K)
cooling : hac 2.764 76.939 W/(m2·K)

η1 1.053 9.407 W/K × 10−3

η2 0.098 1.318 W

maximum internal heat conversion represents the A15 pro-
cessor running at maximum frequency while executing four
applications in parallel.

Figure 1 shows the transient thermal behavior of the
silica glass as described above. On the left the case for max-
imum internal heat generation is shown and on the right
for minimum internal heat generation. Both the cooling and
heating process are shown in the same graph. We have also
generated data for various surface areas and equilibrium
temperatures; since all graphs look similar we don’t show
all of them. Our theoretical model curves follow the exper-
imental COMSOL curves well. The maximum temperature
difference between our model and the COMSOL results is
less than 0.5◦C. Interestingly, the COMSOL transient data
seems to have a slightly steeper slope than our theoretical
model. This could be originating from the fact that the
COMSOL object is not 100% isothermal. Despite the small
temperature discrepancy between our analytical model and
the COMSOL data we may deem our model an appropriate
solution for passive cooling with internal heat generation.

3.5 Approximations of the Accurate Cooling Law

The accurate solution for the passive heat Equation 10 is
of the form f(T ) = t. Ideally, for practical motivations, we
would like to know the inverse f(t) = T . For example,
this may be convenient for the equation to be used in PID
controller systems. Calculating the inverse of Equation 10
is, however, a challenging endeavor. Therefore, we will
utilize effective approximations to obtain an invertible heat
equation.

Finding a useful expression f(t) = T requires isolating
T in Equation 10. Mainly the presence of the arctan throws a
monkey wrench in the mathematical derivation. Lineariza-
tion or differential approximation will not provide any help
as the derivative within the pertinent temperature range,
i.e. between 25◦C and 45◦C, is far from being constant.
Converting the arctan into a logarithm introduces imaginary
numbers; yet, applying complex exponentiation rules will
not get rid of the arctan. The arctan keeps recurring further
on in the derivation. So we need to walk different paths to
come to a solution for f(t) = T .
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Fig. 1. Transient thermal behavior as per COMSOL and our analytical model.

TABLE 2
Overview of approximations to the accurate passive cooling law.

APPROXIMATION T (t)

Coefficient T = ω1±ω2coe
−κ2
A
t

1±coe−
κ2
A
t

O’Sullivan 1st T =
(
T0 − Ta + p

n

)
e−

n
C t − p

n + Ta

O’Sullivan 2nd T = ω1±ω2coe
−m
A
t

1±coe−
m
A
t

Table 2 shows an overview of three different approxima-
tions that we will consider. The derivation and motivation
behind each approximation, as well as the definition of
all the variables, are expounded in Appendix C. In short,
the coefficient approximation models the radiation within a
specific temperature range with a quadratic polynomial.
This reduces Equation 9 to a second-order problem. The first
and second O’Sullivan approximations are based on a binomial
expansion that mingles the coefficients of Equation 9 in a
deterministic manner. The advantage is that the resulting
equation is invertible when higher-order coefficients are
dropped. Also, the accuracy of the approximation can be
controlled by the degree of coefficients selected. As can be
observed from Table 2 the coefficient approximation and the
second-order O’Sullivan approximation are similar in shape.
However, the definition of their respective variables have no
common ground.

Let us analyze the accuracy of the approximations. We
define the measure of accuracy as the root-mean-square
error (RMSE) between the accurate cooling solution φ and
an approximate solution ψ for n samples:

RMSE =

√∑n
i=0(φi − ψi)2

n
, (14)

where n is the number of samples over which RMSE is
computed. We defined n=500 and equally spaced between
t ∈ {0, t(0.99 · Te)} (see Equation 10 for f(T )=t). The
accurate cooling law and its approximations are generated

with the same constants as the COMSOL simulation in
the previous section in Table 1. We investigate the accu-
racy while changing surface area S, internal heat genera-
tion (ihg), equilibrium temperature Te, for the cooling and
warming process separately. We set T0=25◦C for the heating
process and T0=55◦C for the cooling process. We variate the
equilibrium temperature Te between 25◦C and 55◦C. The
convective heat transfer coefficient is computed accordingly
to attain the respective equilibrium temperature based on
Equation 13. The variables generated for the accurate cool-
ing law are then used to compute the approximations.

Figure 2 shows the RMSE of the approximations for
different surface areas, internal heat generation and equilib-
rium temperature settings. From all graphs the coefficient
approximation is clearly performing best. Also, the second-
order O’Sullivan approximation is considerably better than
the first-order O’Sullivan approximation. However, for very
small surface area the errors in all approximations are ac-
ceptable. Interestingly, the first-order O’Sullivan approxima-
tion does well for small surface areas, because the radiative
part in the heat equation becomes negligible for smaller sur-
face areas, and so the passive heat equations tends towards
an exponential cooling law (see next section). Consequently
the first-order O’Sullivan approximation, being an exponen-
tial function, is able to approximate the accurate cooling law
well for very small surface areas: S < 0.005.

The errors for small internal heat generation seem to
be systematically larger than the errors for the maximum
internal heat generation case. The same observation can be
made for the heating and cooling processes. The heating
approximation seems to be more erroneous than the cooling
process.

For variable equilibrium temperatures we see that for
|T0 − Te| the error increases for the heating process and
decreases for the cooling process. In the derivation of the
O’Sullivan approximations we have assumed that T − Ta
remains relatively small. This implies that the larger T
departs from Ta the more imprecise the approximation
becomes. For the cooling process T0=55◦C and the equilib-
rium temperature Te was scaled between 25◦C and 55◦C.
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Fig. 2. Root mean-square error RMSE between the accurate cooling law and the approximations. On top (a,b) the surface area S is variable, whereas
the equilibrium temperature Te is variable in the bottom graphs(S = 0.01m2) (c,d). The Coefficient Approximation seems to outperform the other
approximations. The Second-order O’Sullivan approximation is performing acceptably as well for small values of |T − Ta|.

Similarly, for the heating process T0 was set to 55◦C and Te
was scaled between 25◦C and 55◦C. In both cases Ta was
fixed to 20◦C. Thus as the cooling process approaches Ta for
increasing |T0−Te|, T −Ta becomes smaller, and hence also
the error between the O’Sullivan approximations and the
exact cooling law. The reverse observation is also valid for
the heating process; RMSE becomes larger for larger values
of T − Ta. The error properties in the case of the coefficient
approximation is dependent on the fit of the second-order
polynomial on the (quadratic) radiation function.

Overall, we do not advise to use the first-order
O’Sullivan approximation, unless the surface area is really
small. The second-order O’Sullivan approximation can be
used but with caution. The equilibrium temperature should
not depart too much from the ambient temperature Ta;
T − Ta <15◦C seems acceptable. We recommend, however,
the use of the coefficient approximation, even though the
solution isn’t much elegant when the large polynomial
coefficients are introduced.

4 COMPARISON OF THE PASSIVE AND ACTIVE
COOLING LAWS

Given the intrinsic complexity of the (inverse) function de-
scribing passive cooling compared to the rather straightfor-
ward exponential specification of other cooling modes, it is
worth investigating in which cases dealing with it is neces-
sary in practice. We ran a series of simulations to understand
under what circumstances the passive and active cooling
laws differ from each other. The main difference between
the active and the passive cooling laws is the presence of
the radiative heat transfer mode. Thus, if the radiative heat
transfer is negligible compared to the convective heat trans-
fer, the passive cooling law will approach an exponential
cooling law. We explore when such situations occur based
on concrete microprocessor use cases.

Let us recall that, for an isothermal body with internal
heat generation, Equation 6 governs active cooling and
Equation 10 governs passive cooling, where H(T ) is a
function of the temperature T defining the internal heat
generation of the body. We have shown [4] that H(T ) is well



8

TABLE 3
Variables used for the simulation of the active and passive cooling laws.

CONSTANTS
symbol value dim.
σ 5.670× 10−8 W/(m2K4)
ε 0.94 -
Ta 20 ◦C
D 2 mm

VARIABLES
symbol value dim.
S [0, 6]×10−3 m2

C S ×D× 1708800 J/K
T [25, 85] ◦C
h (see Equation 7/13) W/(m2K)

αmin,max {0.396, 4.030} W
βmin,max {29.015, 32.010} -
γmin,max {82.738, 149.797} -

described by an exponential equation. Even more, within
the temperature range 25◦C < T < 55◦C , the exponen-
tial can be approximated well with a linear or quadratic
polynomial. Yet, for the more extended temperature range
25◦C < T < 85◦C , an exponential function is advised.

We compare the active and passive cooling of a micro-
processor in the context of an embedded system, i.e., a low-
power processor subject to internal heating generation and
cooling. In order to do so, we assume a simplified micro-
processor model: an isothermal volume, with the physical
properties of silica glass, and cooled via convection and
radiation. Table 3 shows the values used in our simulations.
The table lists the fixed variables: σ, ε, Ta and D. We chose
the emissivity of PVC for ε and fixed Ta to be a representa-
tive room temperature. The height of our microprocessor
D is characteristic for a modern SoC. The variables that
may vary during the analysis are also listed. We study the
impact of the surface area S over which the device cools
via convection and radiation. The minimum size was set to
a square with a side of 1 cm. This is representative for a
small SoC; for example, the Samsung Exynos 5 SoC has a
side length of 1.6 cm. The maximum surface area was set to
0.1 m2, which is a representative area for a large tablet. We
analyze the behavior of the system within the temperature
range T ∈ [25, 85]◦C. Throughout the analysis, we define
the internal heat generation H(T ) to be an exponential
function (α+e(T−γ)/β); the coefficients are shown in Table 3
as pairs. The left values are for minimal internal heat genera-
tion, the right values for maximum internal heat generation.
The values for α, β and γ were derived from power and
temperature measurements on a SoC sporting a CORTEX
A15 [4]. We measured the system’s power consumption
when the A15 is running at full capacity, i.e. at 1.6 GHz,
and when the A15 is running in low-power mode, i.e. at
800 MHz. The heat capacity of the body C is the product
of its volume S × D and its specific heat and density
(≈ 2.4× 106 · 0.712).

4.1 Relative Heat Transfers

First, we look at the ratio of the convective heat transfer
coefficients of the passive and active cooling cases. The
temperature T0 at t=0 is set to 25◦C. Then we compute

the respective convective heat transfer coefficients as per
Equation 13 and Equation 7 based on a series of equilibrium
temperatures Te. The ratio of the convective heat transfer
coefficients rcr is given by

rcr =
hpc
hac

=
εσS(T 4

a − T 4
e ) +H(Te)

H(Te)
.

rcr shows how much the active and passive cooling laws
will resemble. If rcr = 1, there is no difference between the
two cooling cases. The more rcr tends to zero, the more the
two cooling laws will deviate in behavior.

Figure 3 shows the ratio of the convective heat transfer
coefficient of the passive and active cooling cases. Given
that rcr stays well above 0.95, it is observed that, for a
small object, similar to SoCs (left most vertical dashed line),
the difference between active and passive cooling will be
very small for all equilibrium temperatures ranging between
20◦C to 85◦C. For a moderate surface area, e.g., the size of
an average smartphone (middle vertical dashed line), the
radiative cooling starts to become more prominent already
for temperatures close to the ambient temperature Ta. For
equilibrium temperatures more than about 5◦C above Ta,
signs of deviating behavior will become clearly visible.
Large surface areas and equilibrium temperatures close to
Ta will yield a rcr that is smaller than 0.95. This implies
that the radiative cooling for large surfaces has to be taken
into account. As a general rule of thumb, we can say that
the larger the equilibrium temperature and the cooling sur-
face, the more behavioral differences between passive and
active coolings will occur. So how large are the differences
temperature-wise in particular?

4.2 Temperature Differences

When looking at the temperature differences between the
passive and active cooling laws at specific points in time,
we must differentiate between the cooling and heating
processes. Convective heat transfer is proportional to the
difference of the body temperature and the ambient tem-
perature, and is therefore independent on the absolute tem-
perature of the body and environment. This results in a
symmetry between the heating and the cooling processes
for convective heat transfer. The radiative heat transfer, on
the other hand, is dependent on the absolute values of the
body and the environment. This is illustrated as follows for
the convective and radiative heat transfers respectively:

|hS(T − (T − x))| = |hS(T − (T + x))|
|εσS(T 4 − (T − x)4)| 6= |εσS(T 4 − (T + x)4)| (15)

As a consequence, due to the last inequality, the radiative
heat transfer process will not be symmetric for the cooling
and heating processes. Moreover, when radiative heat trans-
fer is combined with convective heat transfer, the symmetry
property of the heating and cooling processes will not hold
either.

Let us define the temperature lag ∆T between an ac-
tively and passively cooled identical body, measured at
the moment when the passively cooled body reaches a
reference temperature Tpc. The reference temperature Tpc is
henceforth defined as Tpc = 0.85(Te−T0)+T0, i.e., when the
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Fig. 3. Ratio between the convective heat transfer coefficients of active and passive coolings at a given equilibrium temperatures Te (see curve
labels in ◦C). In Figure (a) the internal heat generation is set to a maximum, while in (b) it is set to a minimum. The vertical dashed lines represent
typical surfaces of a SoC (≈ 2.5 cm2), a smartphone (≈ 70 cm2) and a tablet (≈ 5 dm2). A horizontal reference line is drawn at rcr = 0.95.

body temperature has reached 85% of its equilibrium tem-
perature, starting from T0. It is also assumed that both the
passively and actively cooled bodies have the same internal
heat generation process and initial condition T0 at t = 0.
Figure 4 shows the relative temperature lag ∆τ , which is
defined as the absolute temperature lag ∆T divided by the
temperature difference at t = 0 and at equilibrium |Te−T0|:

∆τ =
∆T

|Te − T0|
=
Tpc − Tac
|Te − T0|

. (16)

The relative temperature lag ∆τ is depicted in Figure 4 for
both a large and a small internal heat generation, as defined
before, and for the heating and cooling processes separately.

A reference line is drawn for ∆τ = 5%. Data points on
the right of the dashed blue line show configurations with
one or more negative convective heat transfer coefficients.
This implies that in these cases additional heat needs to be
added to attain the given equilibrium temperature. These
data points are however, not of concern in our work.

For the case of large internal heat generation, the relative
temperature lag ∆τ for small surfaces stays below 0.5%,
meaning that the presence of radiative heating will be
quasi unnoticeable here. ∆τ stays around 5% in the case
of small internal heat generation, which may be difficult
to spot. Contemporary on-die processor temperature sen-
sors report frequently temperatures in steps of 1◦C. Given
this quantization noise, a relative temperature lag of 5%
could be hard to identify when |Te − T0| > 20◦C. So for
small processor temperature variations, it is again unlikely
that a contemporary processor temperature sensor is able
to distinguish between active and passive cooling. For a
smartphone-size cooling surface, the relative temperature
lag varies significantly depending on the situation. For a
large internal heat generation and heating, there is less than
5% difference between passive and active cooling. For the
other cases, however, the discrepancy between the passive
and active cooling can run up from nil to as high as 10%,
depending on the equilibrium temperature. ∆τ = 10% is

already noticeable at |Te − T0| > 10◦C in the presence of
1◦C quantization noise. The data for the tablet-sized cooling
surfaces is mostly not of our concern as the convective
heat transfer coefficients for passive and active cooling are
negative. This means that heat needs to be added to the
system to attain the given equilibrium temperature.

Generally speaking, we notice that the relative tem-
perature lag ∆τ for heating cases is smaller than for the
cooling cases. This can be explained via the inequality of
Equation 15. The radiative heat transfer coefficient will have
greater weight when the body’s temperature is larger than
the equilibrium temperature than when the temperature
is below the equilibrium, hence inflating the discrepancy
between active and passive cooling. Also, the amount of
internal heat generation affects the relative temperature lag.
It appears that the larger the internal heat generation, the
smaller ∆τ becomes. Indeed, given the differential repre-
sentation of the cooling law in Equation 8, we see that
the internal heat generation can outweigh the radiative and
convective coolings the larger it becomes. Thus the larger
the internal heat generation, the less sensitive the body
becomes to changes in the radiative or convective cooling,
and the more active and passive cooling will resemble.

5 CONCLUSION

We have developed an accurate cooling law for passively
cooled objects subject to radiation, (natural) convection, and
internal heat generation. The passive cooling law is ana-
lytically more complex than the commonly accepted expo-
nential cooling law (which is technically sound for forcibly
cooled objects). Unfortunately, the accurate solution for the
passively cooled object is a function of temperature: t(T ).
Numerical approaches can be used for the computation of
the exact inverse: T (t). The validation of the passive cooling
law’s accurate solution via CFD simulations demonstrated
the cooling law’s adequacy.

Via analytical simulations, we showed that the differ-
ence between active and passive cooling depends on three
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Fig. 4. Relative time lag ∆τ (Equation 16) for the internal heat generation set to the maximum (a,c), and set to the minimum (b,d). The curves are
generated for different equilibrium temperatures (see curve labels in ◦C). On the top row, the heating process is depicted (a,b), with the cooling
process on the bottom row (c,d). The three vertical dashed lines represent typical surfaces for a SoC (≈ 2.5 cm2), a smartphone (≈ 70 cm2) and a
tablet (≈ 5 dm2). Data points on the right of the blue dashed lines have negative convective heat transfer coefficients.

factors: 1) the surface area of the object, 2) the internal
heat generation, and 3) the equilibrium temperature. For
large objects, we showed that the difference between active
and passive cooling can be significant. For medium-sized
ones, depending on the magnitude of the internal heat
generation and equilibrium temperature, the discrepancy
between active and passive cooling could tentatively go
unnoticed. For small surfaces, e.g., SoCs, an exponential
cooling law is shown to be an appropriate approximation.
We also highlighted that the quantization noise of temper-
ature sensors may conceal temporal information between
active and passive cooling. As the cooling law for passively
cooled devices is quite elaborate to work with and the
possible uses of a scientifically sound cooling law by TMUs
are limited by the lack of accurate temperature sensors, we
can state that, for systems minimizing overhead, assuming
an exponential cooling law will likely not induce large
perceptual deviations from reality.

In this work we considered the cooling of an isothermal
object. In practical situations this assumption doesn’t always

hold. To obtain a more realistic model we need to consider
internal conduction and hence also thermal hotspots. Their
impact on our heat model of these considerations is part
of our future work. Moreover, in embedded systems, a
microprocessor is usually mounted on a PCB and covered
by other objects, such as an LCD display, radio interface
and others. The presence of these objects also interacts
with the passive cooling of the microprocessor. Most likely
numerical methods will have to be deployed to gain more
understanding under such conditions.

APPENDIX A
APPLICABILITY OF THE PASSIVE HEAT EQUATION

Previously we assumed that the internal heat generation
H(T ) was a linear function, i.e., polynomial of the first-
order with coefficients elements of R+. Given that the
radiation absorbed or emitted by a body is described by
a 4th-order polynomial, we discuss the implications of an
arbitrary H(T ) up to the 3th-order. We will show via logical
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Fig. 5. Visualization of Equation 18 for several variations of the right-
hand side polynomial (K(T )). Polynomials: 1st order (dashed), 2nd
order (dotted), 3rd order (loosely dashed), and δT 4 (solid). The black
bullets represents the intersections of each polynomial with δT 4.

reasoning that the analytic solution in the paper holds for
H(T ) up to the 3th order under certain conditions.

Let us define a body that is radiating energy at a rate −δ,
and subject to other heat transfer mechanisms described by
a polynomial K(T ), e.g., internal heat generation. Let K(T )
be a polynomial of an order not larger than three. Then the
thermal energy storage rate into the body is equal to:

C
dT

dt
= −δT 4+K(T ) = −δT 4+(κ3T

3+κ2T
2+κ1T +κ0),

(17)
where we define δ ∈ R+

0 , κ0,1,2,3 ∈ R, and C is the
thermal capacity of the system. δ must be positive as −δT 4

represents the heat emitted by the body via radiation.
κ0,1,2,3 are the constants of a polynomial describing the
function K(T ). To solve the differential in Equation 17 the
roots need to be found. In particular, we have solved the
differential equation for a 4th-order polynomial assuming
two real and two complex conjugate roots. To find the roots
of Equation 17 we evaluate it at the equilibrium temperature
T = Te, then dT/dt = 0:

δT 4 = κ3T
3 + κ2T

2 + κ1T + κ0. (18)

This equality is visualized in Figure 5. There the solid blue
curve represents the contribution on the left-hand side and
the other dashed lines are possible examples of the poly-
nomial in the right-hand side. It can be seen that it is easy
to construct polynomials that have one or two intersections
with δT 4. Also curves can be constructed that intersect the
δT 4 only in one point (for example the dashed black line
in Figure 5); such points are counted as two roots. The
dashed gray line is an example of a polynomial without
any intersection with δT 4. Only those polynomials with one
or two intersections with δT 4 have physical meaning in the
context discussed in this paper. One or two intersections
with δT 4 produce two real roots and two complex conjugate
roots. No intersections with δT 4 would imply that there
exists no equilibrium temperature, i.e., the system is not
thermally stable.

APPENDIX B
SOLVING THE PASSIVE HEAT EQUATION

The differential formulation of a passively cooled object
with linear internal heat generation can be described as
follows, as per Equation 9:

dT

dt
=

1

C
(−εσST 4 + (η1 − hS)T + (η0 + S(hTa + εσT 4

a ))).

The right-hand side is a fourth-order polynomial and the
equality can be rephrased as:

dT

dt
= −κ4T 4 + κ3T

3 + κ2T
2 + κ1T + κ0, (19)

where the constants κ4 ∈ R+
0 and κ{0,1,2,3} ∈ R+. Rearrang-

ing this equation yields∫
1

T 4 − κ3

κ4
T 3 − κ2

κ4
T 2 − κ1

κ4
T − κ0

κ4

dT = −κ4
∫
dt.(20)

The integration of the fraction on the left-hand side can be
achieved via partial fractions decomposition:∫

1

(T − ω1)(T − ω2)(T − ω3)(T − ω4)
dT (21)

The roots ω∗ of the 4th order polynomial in the denominator
can be obtained via Ferrari’s theorem, and other approxi-
mate methods such as Netwon’s and the secant. Given that
there exist a maximum of one or two real unique values for
T that satisfy

κ4T
4 =

3∑
i=0

κiT
i,

we can state that two roots are real, say ω{1,2}; the other
two roots are complex conjugates1. This means that <(ω3) =
<(ω4) and =(ω3) = −=(ω4), which simplifies a few things.
As the initial differential equation is real, we are looking
for a real solution too; thus the imaginary part must equate
to zero. This is however automatically taken care of as the
product of the two complex roots yield a real sum:

1

(T − ω3)(T − ω4)
=

1

(T −<(ω3))2 + =(ω3)2
.

Whence, Equation 21 becomes∫
A

(T − ω1)
+

B

(T − ω2)
+

CT +D

(T −<(ω3))2 + =(ω3)2
dT. (22)

Henceforth we define α = <(ω3) and β = =(ω3). The
values for A, B, and D are found by equating Equation 21
and Equation 22, which can be expressed as a system of
equations:

0 = A+B + C

0 = D − ω1(B + C)− ω2(A+ C)− 2α(A+B)

0 = α2(A+B) + β2(A+B) + 2α(ω2A+ ω1B)

−(ω1 + ω2)D + ω1ω2C

1 = − α2(ω2A+ ω1B)− β2(ω2A+ ω1B) + ω1ω2D

1. Appendix A shows that for our applications this is the case.
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and can be solved via Gaussian elimination. So we obtain
the expressions for A, B, C and D:

A =
1

(ω1 − ω2)((α2 + β2)− ω1(2α− ω1))

B = −Aα
2 + β2 − ω1(2α− ω1)

α2 + β2 − ω2(2α− ω2)

C = − (A+B)

D = A(2α− ω1) +B(2α− ω2)

(23a)

(23b)

(23c)
(23d)

Continuing with Equation 22, this yields:

A ln |T − ω1|+B ln |T − ω2|+
∫

CT +D

(T − α)2 + β2
dT + c0,

where co is an integration constant. The last term on the
right-hand side may be integrated via substitution, where
u = (T −α)2, yielding du = 2(T −α)dT , and also v = T−α

β ,
giving dv = 1

βdT :∫
CT +D

(T − α)2 + β2
dT

=

∫
C(T − α)

(T − α)2 + β2
dT +

∫
αC +D

(T − α)2 + β2
dT

=
C

2
ln |(T − α)2 + β2|+ αC +D

β
arctan

(
T − α
β

)
+ c1.

where c1 is an integration constant. Then the solution to
Equation 22 is as follows

A ln |T − ω1|+B ln |T − ω2|+
C

2
ln |(T − α)2 + β2|

+
αC +D

β
arctan

(
T − α
β

)
+ c1, (24)

where A, B, C and D are given in Equations 23, and ω∗ are
the real roots of the polynomial in the denominator on the
left-hand side, α = <(ω3), β = =(ω3), and c1 is a (new)
integration constant satisfying the initial conditions.

Now we can complete Equation 20:

t = − 1

κ4

(
A ln |T − ω1|+

C

2
ln |(T − α)2 + β2|+ co

+B ln |T − ω2|+
αC +D

β
arctan

(
T − α
β

))
.

APPENDIX C
DERIVATIONS OF APPROXIMATIONS FOR f(T ) = t

The exact passive cooling law as presented is of the form
f(T ) = t. For practical reasons we desire a formulation
of the form f(t) = T . Unfortunately inverting the exact
passive heat equation is challenging. We develop three
approximations to the exact passive cooling law which are
more easily invertible.

C.1 Quadratic Approximation
Stefan-Boltzmann’s law of radiation states that the energy
emitted by radiation is proportional to T 4 (Equation 2).
Because of this term the polynomial of Equation 9 is of
the fourth-order. More specifically, it are the two imaginary
roots of the fourth order polynomial that introduce the
arctan in Equation 10. If we were to approximate T 4 with

a second-order polynomial and assert real roots, then we
could get rid of the dependency of the arctan, and isolating
T would be more straightforward. The quadratic approxi-
mation

T 4 = q0 + q1T + q2T
2

= 29700057265− 251483462T + 598262T 2 (25)

introduces an error between -0.041% and 0.072% for 20◦C
< T < 65◦C, which is very acceptable. Then the quadratic
approximation to Equation 19 would be equal to solving

dT

dt
= κ2T

2 + κ1T + κ0. (26)

The solution to this equation, assuming two real roots (ω =
(−κ1 ±

√
κ21 − 4κ2κ0/(2κ2))) and that κ2 < 0:

t = − 1

κ2
(A ln |T − ω1|+B ln |T − ω2|+ co) , (27)

where A = 1/(ω2 − ω1) and B = −A. Now we can isolate
T as follows:

t+
co
κ2

= − A
κ2

(ln |T − ω1| − ln |T − ω2|)

−κ2t+ co
A

= ln

( |T − ω1|
|T − ω2|

)
coe
−κ2A t =

|T − ω1|
|T − ω2|

.

Let’s define ω1 and ω2 such that ω1 < ω2. As we are operat-
ing in the temperature range 0◦C < T < 100◦C and given
the shape of the quadratic approximation, T will always be
larger than ω1. Hence we can assume that T − ω1 > 0. The
absolute value of T − ω2 forces us to distinguish two cases,
i.e. where T > ω2 and the case for T < ω2. Bear in mind
that ω2 is also the equilibrium temperature Te of the system.
This corresponds either to the heating or the cooling process,
respectively. For T > ω2 we have

T − ω1 = (T − ω2)coe
−κ2A t

T =
ω1 − ω2coe

−κ2A t

1− coe−
κ2
A t

and accordingly for T < ω2, or the heating process, we get:

T =
ω1 + ω2coe

−κ2A t

1 + coe−
κ2
A t

, (28)

where co is an integration constant to meet the initial condi-
tion f(0) = T0, and given by

co =
|T0 − ω1|
|T0 − ω2|

.

The roots ω∗ are are easily found as follows:

ω1 =
−κ1 +

√
κ21 − 4κ2κ0

2κ2
and ω2 =

−κ1 −
√
κ21 − 4κ2κ0

2κ2
.

The equilibrium temperature Te is defined by the positive
root ω2.

In the above derivation, we have fixed the coefficients q∗
in Equation 25. These values were chosen to fit best in a cer-
tain temperature range. To be more universally applicable,
however, the coefficients could be generated dynamically
such that they are optimally tailored to the temperature
range of concern.
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C.2 First Order O’Sullivan Approximation

O’Sullivan [25] presented an approximation for a cooling
law including convection and radiation, but without the
presence of internal heat generation. We extend his ap-
proximation with internal heat generation. We will use an
alternative formulation of the internal heat generation such
that we can more easily apply our variable substitution later
on: H(T ) = η1T + η0 = η1(T − Ta) + η1Ta + η0. The initial
definition of the passive heat Equation 9 then becomes:

−C dT

dt
= εσS(T 4 − T 4

a ) + (hS − η1)(T − Ta)

−(η1Ta + η0).

Let’s introduce the variable θ = T − Ta:

−C dθ

dt
= εσS((θ + Ta)4 − T 4

a ) + (hS − η1)θ − (η1Ta + η0).

Now, we can apply binomial expansion to (θ−Ta)4, whence:

−C dθ

dt
= εσS((θ4 + 4Taθ

3 + 6T 2
a θ

2 + 4T 3
a θ

+T 4
a )− T 4

a ) + (hS − η1)θ − (η1Ta + η0)

= kθ4 + lθ3 +mθ2 + nθ + p, (29)

where the coefficients for surfaces around 1 dm2 are as
follows:

k = εσS (∼ 10−10)

l = 4εσSTa (∼ 10−7)

m = 6εσST 2
a (∼ 10−5)

n = (hS − η1 + 4εσST 3
a ) (∼ 0.01)

p = −(η1Ta + η0) (∼ 1).

Now, if (T − Ta) is not too large the series on the right-
hand side of Equation 29 converges reasonably fast [25].
Depending on the accuracy desired, the higher-order coeffi-
cients may be dropped. Let’s see how well a first-order and a
second-order approximation behaves. As expected, the first-
order approximation yields also an exponential law:

−C dθ

dt
= nθ + p ⇒ θ = coe

− n
C t − p

n
,

where co is an integration constant such that θ(t = 0) =
T0 − Ta:

co = θ0 +
p

n
= (T0 − Ta) +

p

n
.

And so the first-order O’Sullivan solution is:

T =
(
T0 − Ta +

p

n

)
e−

n
C t − p

n
+ Ta. (30)

C.3 Second-Order O’Sullivan Approximation

The second-order O’Sullivan approximation is a bit more
complex compared to the first-order O’Sullivan approxi-
mation. Moreover, the derivation looks also significantly
different from the original derivation of O’Sullivan [25],
given the presence of the constant term p in Equation 29.
The second-order O’Sullivan approximation is similar to the
coefficient approximation in the sense that solving

−C dθ

dt
= mθ2 + nθ + p (31)

is similar to solving Equation 26. Thus the solution for the
second-order O’Sullivan approximation will be the same
as for the quadratic approximation, except for the con-
stants definition. We can thus state that the second-order
O’Sullivan approximation is given by:

T =
ω1 ± ω2coe

− m
AC t

1± coe−
m
AC t

+ Ta, (32)

where ”±” becomes ”+” for Te > T0, and ”−” for Te < T0.
ω∗ is given by:

ω1 =
−
√
n2 − 4pm− n

2m
and ω2 =

√
n2 − 4pm− n

2m
.

The constant A and co, such that θ(0) = θ0, are defined as:

A = − 1

ω2 − ω1
and co =

|θ0 − ω1|
|θ0 − ω2|

,

where θ0 = T0 − Ta. The equilibrium temperature Te is
defined by ω2 + Ta.
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