
The Subject Reduction Property in the λΠ-calculus modulo

Ronan Saillard
MINES ParisTech

ronan.saillard@cri.ensmp.fr

ABSTRACT
In type theory, the subject reduction (or type preservation)
property states that the type of a λ-term is preserved under
reduction. This article studies this property in the context of
the λΠ-calculus modulo, a variant of the λ-calculus with de-
pendent types (λΠ-calculus) where β-reduction is extended
with user-defined object-level and type-level rewrite rules.
We show that it is equivalent to the following property called
Π-injectivity or product-compatibility: if product types are
convertible then their components are pairwise convertible.
We also show that subject reduction implies uniqueness of
type and that both properties are undecidable. Finally we
give a new decidable criterion ensuring subject reduction.

1. INTRODUCTION
In type theory, the subject reduction (or type preservation)
property states that the type of a λ-term is preserved under
reduction. Otherwise said, program execution (term reduc-
tion) is sound with respect to the static specification (type).
This article studies this property in the context of the λΠ-
calculus modulo [5], a variant of the λ-calculus with depen-
dent types (λΠ-calculus) where β-reduction is extended with
user-defined rewrite rules. Unlike in the λΠ-calculus, sub-
ject reduction does not hold in general in this setting, since
the reduction might not be confluent. Moreover rewrite rules
being explicitly added in the typing context, the rewriting
system, hence subject reduction, now depends on the typing
context.

An important motivation for this work comes from the de-
velopment of Dedukti [4], a type checker for the λΠ-calculus
modulo. Subject reduction is indeed used to prove the sound-
ness of the classical inference algorithm for λΠ-calculus [10].
Thus a careful analysis of this property is needed to un-
derstand when this algorithm can be extended to the λΠ-
calculus modulo. Moreover subject reduction is a crucial
lemma in proving other properties of the reduction on typed
terms such as confluence or termination.

After introducing the λΠ-calculus modulo in Section 2, we
study, in Section 3, the property of uniqueness of type: two
types of a single term are necessarily convertible. Then, in
Section 4, we show that subject reduction is equivalent to Π-
injectivity (also called product compatibility): a property on
convertibility proofs between product types. In Section 5, we
prove that both uniqueness of type and subject reduction are
undecidable properties. This brings us, in Section 6, to look
for decidable sufficient criteria to ensure these properties.
The last two sections are devoted to proving the soundness
of our main criterion.

2. THE λΠ-CALCULUS MODULO
In this section we describe the λΠ-calculus modulo, a variant
of the λ-calculus with dependent types (λΠ-calculus) where
β-reduction is extended with user-defined rewrite rules.

The syntax of the λΠ-calculus modulo for terms, rewrite
rules and contexts is given in Figure 1. A term is either
a variable, a constant, an application, a λ-abstraction, a
product type or a sort (either Type or Kind). A pattern
is a term made only of variables and constant applications
(but it cannot be a variable). A rule context is a list of
declarations, i.e., pairs of a variable name and a term (its
type). A rewrite rule is a triple made of a rule context, a
pattern and a term. Finally a context is a list of declarations
and rewrite rules.

x ∈ V (an infinite set) (Variable)
f ∈ F (an infinite set) (Constant)
s ::= Type | Kind (Sort)
t, u, A,B ::= x | f | t u | λxA.t | ΠxA.B | s (Term)
p ::= f ~p0 (Pattern)
p0 ::= x | p
∆ ::= ∅ | ∆(x : t) (Rule Context)
r ::= [∆] p ↪→ u (Rewrite Rule)
Γ ::= ∅ | Γ(x : t) | Γr (Context)

Figure 1: Syntax of the λΠ-calculus modulo.

As contexts may contain rewrite rules, they define a rewrit-
ing system. Given a context Γ we write →Γ the small-
est relation, compatible with the structure of terms, such
that for any rule [∆] l ↪→ r in Γ and substitution σ with
dom(σ) = dom(∆), σl→Γ σr. We note→β for β-reduction,
→βh for head β-reduction,→βΓ for→β ∪ →Γ,→Γh for head
Γ-reduction and ↓βΓ for the joinability with respect to→βΓ.

The inference rules for the λΠ-calculus modulo, defining

Γ =



(T : Type)
(Bool : Type)
(Nat : Type)
(f : T)
(Z : Nat)
([∅]T ↪→ ΠxNat.Nat)
([∅]T ↪→ ΠxNat.Bool)

Γ ` f Z : Nat
Γ ` f Z : Bool
But
Nat��WΓ Bool

Figure 3: Uniqueness of Type: A Counterexample

well-formed contexts and well-typed terms, are given in Fig-
ure 2. One can notice that these rules differ from the rules
of λΠ-calculus only in two points. First, the relation in the
Conv rule is extended from ↓β to ↓βΓ, allowing for more
terms to be typed. Secondly, there is a new rule Rw which
makes possible the addition of rewrite rules in the context,
thus extending explicitly the considered rewriting system.
This latter rule is a novelty with respect to previous formal-
izations (See [8] for a discussion on this rule). Addition of
rewrite rules becomes an iterative process: rules previously
added can be used to type new rules.

We write T1 CΓ T2 when T1 ↓βΓ T2 and both T1 and T2

are typable in Γ. We note WΓ the reflexive and transitive
closure of CΓ .

3. UNIQUENESS OF TYPE
We first look at the property of uniqueness of type: a term
has one type up to convertibility. This property does not
hold in general in the λΠ-calculus modulo as exemplified in
Figure 3.

The purpose of this section is twofold: first to give an al-
ternative formulation of uniqueness of type so that it be-
comes clear, in the next section, that subject reduction en-
tails uniqueness of type, secondly to prove important lemmas
used in the rest of this paper.

Theorem 3.1. The following properties are equivalent:

• (Uniqueness of Type) if Γ ` t : T1 and Γ ` t : T2 then
T1 = T2 = Kind or T1 WΓ T2.

• (Right-Π-Injectivity) if ΠxA.B1 WΓ ΠxA.B2 then
B1 WΓ(x:A) B2.

Before proving this theorem we need to prove a technical
lemma, the so-called inversion lemma.

Lemma 3.2 (Inversion). Assume that Γ ` t : T .

• If t = Type then T = Kind.

• If t = x then Γ(x) WΓ T .

• If t = fu then there exist A and B such that Γ ` f :
ΠxA.B, Γ ` u : A and B[x/u] WΓ T .

• If t = λxA.t then there exists B such that Γ ` A :
Type, Γ(x : A) ` t : B, B 6= Kind and ΠxA.B WΓ T .

• If t = ΠxA.B then Γ ` A : Type and Γ(x : A) ` B : T
and T = Kind or T = Type.

Proof. By induction on the typing derivation.

Proof of theorem 3.1. First we prove uniqueness of
type under the hypothesis of right-Π-injectivity. We proceed
by induction on the first typing derivation. We only detail
the (App) case since it is only case which differs from the
standard proof (for λΠ-calculus).

• (App) We have t = uv, T1 = B1[x/v], Γ ` u :
ΠxA1 .B1 and Γ ` v : A1. By inversion of t, there
exist A2, B2 such that Γ ` u : ΠxA2 .B2, Γ ` v :
A2 and T2 = B2[x/v]. By induction hypothesis we
have ΠxA1 .B1 WΓ ΠxA2 .B2 and A1 WΓ A2. Thus
ΠxA2 .B1 WΓ ΠxA1 .B1 WΓ ΠxA2 .B2 and by right-
Π-injectivity B1 WΓ(x:A2) B2. It follows that T1 =
B1[x/v] WΓ B2[x/v] = T2.

Now we prove right-Π-injectivity using uniqueness of type.
Assume that ΠxA.B1 WΓ ΠxA.B2, then we can derive Γ(f :
ΠxA.B1)(x : A) ` fx : B1 and Γ(f : ΠxA.B1)(x : A) ` fx :
B2. By uniqueness of type we have B1 WΓ(x:A) B2.

4. SUBJECT REDUCTION
As for uniqueness of type, the subject reduction does not
hold in general (Figure 4). Subject reduction is usually
proved using a property called Π-injectivity (or product-
compatibility). We show hereafter that the two properties
are actually equivalent. Since Π-injectivity obviously im-
plies right-Π-injectivity, we get as a corollary that subject
reduction entails uniqueness of type.

Theorem 4.1. The following properties are equivalent:

• (Subject Reduction) if Γ ` t : T and t →βΓ t′ then
Γ ` t′ : T .

• (Π-Injectivity) if ΠxA1 .B1 WΓ ΠxA2 .B2 then A1 WΓ A2

and B1 WΓ(x:A2) B2.

Γ =



(T : Type)
(Bool : Type)
(false : Bool)
(Nat : Type)
(Z : Nat)
([∅]T ↪→ ΠxNat.Nat)
([∅]T ↪→ ΠxBool.Bool)

We have
ΠxBool.Bool WΓ ΠxNat.Nat
thus
Γ ` λxNat.Z : ΠxBool.Bool
and
Γ ` (λxNat.Z)false : Bool
But
Γ 0 Z : Bool

Figure 4: Subject Reduction: A Counterexample.

Corollary 4.2. Subject reduction implies uniqueness of
type.

The proof of the theorem uses the following lemma.

Lemma 4.3 (Head subject reduction). If Γ ` t : T ,
t→h

Γ t
′ and Π-injectivity holds for Γ then Γ ` t′ : T .

Proof. We will use the following lemma: for every pat-
tern p if we have Γ0∆ ` p : T0 and Γ0Γ1 ` σp : T then for
all x ∈ ∆ ∩ FV (p) we have Γ0Γ1 ` σx : σ(∆(x)). This can
be proved by induction on p. It requires Π-injectivity.

(Empty)
∅ wf

Γ wf Γ ` A : s f /∈ Γ
(Dec)

Γ(f : A) wf

Γ wf Γ∆ ` l : T Γ∆ ` r : T FV (r) ∩∆ ⊂ FV (l) l is a pattern
(Rw)

Γ([∆]l ↪→ r) wf

Γ wf
(Type)

Γ ` Type : Kind

Γ wf (x : A) ∈ Γ x ∈ V ∪ F
(Var/Cst)

Γ ` x : A

Γ ` t : ΠxA.B Γ ` u : A(App)
Γ ` tu : B[x\u]

Γ ` t : A Γ ` B : s A ↓βΓ B
(Conv)

Γ ` t : B

Γ ` A : Type Γ(x : A) ` t : B B 6= Kind
(Abs)

Γ ` λxA.t : ΠxA.B

Γ ` A : Type Γ(x : A) ` B : s
(Prod)

Γ ` ΠxA.B : s

Figure 2: Typing rules for λΠ-calculus modulo.

Now assume Γ ` t : T and t→h
Γ t
′ then Γ = Γ0([∆]l ↪→ r)Γ1,

t = σl, t′ = σr, Γ0∆ ` l : T0 and Γ0∆ ` r : T0. From the
lemma above, it follows that Γ ` σl : σT0 and Γ ` σr : σT0.
By uniqueness of type we have T WΓ σT0. It follows that
Γ ` σr : T .

We now prove the first half of the theorem.

Proof of theorem 4.1 (⇐). We proceed by induction
on t. The interesting case is when t is a redex. When
t is a Γ-redex then we can apply lemma 4.3. Now as-
sume that t is a β-redex. We have t = (λxA1 .u0)v and
t′ = u0[x/v]. Then, by inversion, there exist A2, B1, B2

such that Γ(x : A1) ` u0 : B1, Γ ` v : A2, B2[x/v] WΓ T
and ΠxA1 .B1 WΓ ΠxA2 .B2. By Π-injectivity, A1 WΓ A2

and B1 WΓ(x:A2) B2. Therefore we have Γ ` v : A1 and Γ `
u0[x/v] : B1[x/v]. Finally we haveB1[x/v] WΓ B2[x/v] WΓ T
and Γ ` u0[x/v] : T .

Some more lemmas are needed to complete the proof of the
other implication.

A rewrite rule is said to be left-linear if each variable in its
left-hand side appears exactly once. A rewriting system is
said to be left-linear if all its rewrite rules are left-linear.

Lemma 4.4. If →Γ is left-linear and confluent then the
subject reduction property holds.

Proof. Since →Γ is left-linear and confluent, →βΓ is
confluent [11]. Then if ΠxA1 .B1 WΓ ΠxA2 .B2, we have
ΠxA1 .B1 ↓ ΠxA2 .B2. Thus we also have A1 ↓ A2 and
B1 ↓ B2. It follows that A1 WΓ A2 and B1 WΓ(x:A2) B2.

Lemma 4.5 (Non-dependent Π-injectivity).
If ΠxA1 .B1 WΓ ΠxA2 .B2, Γ ` a : A2, B1 does not depend
on x and subject reduction holds for Γ then B1 WΓ B2[x/a].

Proof. From ΠxA1 .B1 WΓ ΠxA2 .B2 and Γ ` a : A2 we
can derive Γ(b1 : B1) ` (λxA1 .b1)a : B2[x/a]. By subject
reduction Γ(b1 : B1) ` b1 : B2[x/a]. Finally, by inversion
B1 WΓ B2[x/a].

Lemma 4.6 (Identity Trick). If Γ ` (λxA.x)a : T
and subject reduction holds for Γ then A WΓ T .

Proof. This follows from inversion and non-dependent
Π-injectivity.

Now we can prove that subject reduction implies Π-injectivity.

Proof of theorem 4.1 (⇒). Assume ΠxA1 .B1 WΓ ΠxA2 .B2.

• From Γ(a2 : A2)(f : ΠxA1 .B1) ` (λxA1 .(f((λyA1 .y)x)))a2 :
B2[x/a2], we can deduce by subject reduction Γ(a2 :
A2)(f : ΠxA1 .B1) ` f((λyA1 .y)a2) : B2[x/a2]. The set
of typed terms being closed by taking a subterm, we
have for some T , Γ(a2 : A2)(f : ΠxA1 .B1) ` (λyA1 .y)a2 :
T . Then by the identity trick we have A1 WΓ T . Re-
ducing further we have Γ(a2 : A2)(f : ΠxA1 .B1) `
a2 : T . Thus by inversion T WΓ A2. It follows that
A1 WΓ A2.

• From Γ(x : A2)(f : ΠxA1 .B1) ` (λyA1 .((λzB1[x/y].z)(fy)))x :
B2, we can deduce by subject reduction Γ(x : A2)(f :
ΠxA1 .B1) ` (λzB1 .z)(fx) : B2. By the identity trick
we have B1 WΓ(x:A2) B2.

5. UNDECIDABILITY
In this section, we prove that both uniqueness of type and
subject reduction are undecidable properties. We follow a
strategy similar to the one used to prove undecidability of
confluence in [9].

Lemma 5.1. Right-Π-injectivity and Π-injectivity are un-
decidable properties.

Corollary 5.2. Uniqueness of type and subject reduc-
tion are undecidable properties.

Proof. Follows from theorem 3.1, 4.1 and 5.1.

x(yz) = (xy)z
abaabb = bbaaba
aababba = bbaaaba
abaaabb = abbabaa
bbbaabbaaba = bbbaabbaaaa
aaaabbaaba = bbaaaa

Figure 5: Equational theory with undecidable word
problem.

We will use the following lemma due to Matijasevich [6].

Lemma 5.3. The word problem for the set of equations E
of Table 5 is undecidable.

Proof of lemma 5.1. We reduce the word problem for
E to (right-)Π-injectivity. We will consider the following
typing context, where we introduce a type w for words, a
term ε̇ representing the empty word, and two symbols ȧ and
ḃ corresponding to the letters a and b:

Γ0 = (w : Type)(ε̇ : w)(ȧ : Πxw.w)(ḃ : Πxw.w)

and the following translation |.|(x) from words to terms of
type w (with the term x as parameter):

|a|(x) 7→ ȧx, |b|(x) 7→ ḃx, |m1.m2|(x) 7→ |m1|(|m2|(x)),

Let Γ be the context obtained by adding to Γ0, for each
equation w1 = w2 in E, the rewrite rules [(x : w)]|w1|(x) ↪→
|w2|(x) and [(x : w)]|w2|(x) ↪→ |w1|(x).

Note that →βΓ is confluent since →Γ is left-linear and con-
fluent. Thus we have m1 =E m2 if and only if |m1|(ε̇) ↓Γ
|m2|(ε̇) if and only if |m1|(ε̇) ↓βΓ |m2|(ε̇).

Now let m1 and m2 be arbitrary words and consider the
following context:

Γ2 = Γ(T : Type)(A : Type)(B : Πxw.Type)
([∅]T ↪→ ΠxA.B(|m1|(ε̇)))
([∅]T ↪→ ΠxA.B(|m2|(ε̇)))

We now prove that m1 =E m2 if and only if (right-)Π-
injectivity holds for Γ(m1,m2).

• Assume that m1 =E m2. Since →Γ2 is left-linear
and confluent, →βΓ2 is confluent. Hence (right-)Π-
injectivity holds.

• Assume (right-)Π-injectivity.
Then since ΠxA.B|m1| WΓ2 ΠxA.B|m2|
we have B|m1| WΓ2(x:A) B|m2|.
It follows that |m1| WΓ2(x:A) |m2| and m1 =E m2.

6. CRITERIA FOR SUBJECT REDUCTION
We have seen in the previous section that subject reduction
is an undecidable property. We now try to find decidable
criteria that ensure this property.

We are motivated by the fact that we want to extend the
standard type-checking algorithm for λΠ-calculus to the whole
λΠ-calculus modulo. Indeed the soundness of the algorithm
relies on the subject reduction property. Thus being able to
automatically determine if subject reduction holds permits
to automatically detect when the type checking algorithm
can be safely used.

We have already given a first criterion in lemma 4.4.

Criterion 1. →Γ is left-linear and confluent.

Of course the confluence of →Γ is not decidable, but there
exist numerous criteria for proving confluence of left-linear
term rewriting system that can be used here. Moreover tools
automating this task exist. See for instance the competitors
of the Confluence Competition [1].

We now give a purely syntactical criterion. It is a refinement
of a criterion due to Barbanera et al. [2] and later extended
by Blanqui [3].

Criterion 2. No product types appear in the right-hand
side of rewrite rules.

Theorem 6.1 (Main Theorem). If the rewrite rules
in Γ verify Criterion 2 then subject reduction holds for Γ.

Section 8 is devoted to the proof of this theorem.

As a corollary we get that subject reduction holds in the
λΠ-calculus modulo restricted to object-level rewrite rules.

Criterion 1 is actually a criterion for the confluence of →βΓ.
Another convenient way to prove the confluence of a rewrit-
ing system is to use Newman’s lemma [7]: a locally conflu-
ent terminating rewriting system is confluent. So one could
think that Newman’s lemma could serve as a basis for an-
other criterion for subject reduction. However this seems
not to be a good solution in practice. Indeed proving the
termination of →βΓ without confluence nor subject reduc-
tion is a rather difficult task and it seems that, as soon as
we consider type-level rewrite rules, proofs of termination in
λΠ-calculus modulo need confluence [3].

7. WEAK TYPING
Before proving the soundness of the criterion in Section 8, we
need to introduce a technical tool: weak typing. The idea
is to type the terms of the λΠ-calculus modulo as in the
simply typed λ-calculus. All typed terms are also weakly-
typed and, in this setting, we can prove a weak version of
the subject reduction property. As a corollary we get that
the reducts of a typed term are weakly typed and this can
be used to prove that they respect certain properties.

The syntax of simple types and simple contexts is in given
in Figure 7.

F ∈ V ∪ F (Atomic Type)
A,B ::= F | A→ B | Type | Kind (Simple Type)
Γ ::= ∅ | Γ(x : A) | Γ(F ↪→ B) (Simple Context)

Figure 6: Syntax of Simple Types

We define Figure 7 a translation from terms in λΠ-calculus
modulo to simple types and from contexts to simple con-
texts.

‖Kind‖ = Kind ‖x‖ = x
‖Type‖ = Type ‖f‖ = f
‖tu‖ = ‖t‖ ‖λxA.t‖ = ‖t‖
‖ΠxA.B‖ = ‖A‖ → ‖B‖

‖Γ(x : A)‖ = ‖Γ‖(x : ‖A‖) ‖∅‖ = ∅
‖Γ([∆]l ↪→ r)‖ = ‖Γ‖(‖l‖ ↪→ ‖r‖)

Figure 7: Translation from λ-terms to Simple Types.

As for contexts, simple contexts give rise to a rewriting sys-
tem on simple types. We will also use the notations→Γ and
↓Γ for this system.

We give, in Figure 8, the typing rules for the weak λΠ-
calculus modulo.

Lemma 7.1. If A ↓βΓ B then ‖A‖ ↓‖Γ‖ ‖B‖.

Proof. It is easy to see that if t→βΓ t
′ then either ‖t‖ =

‖t′‖ or ‖t‖ →‖Γ‖ ‖t′‖.

Lemma 7.2 (Soundness of the translation).
If Γ ` t : T then ‖Γ‖ `w t : ‖T‖

Proof. Induction on the typing derivation. We detail
the (Conv) case:

• (Conv) We have Γ ` t : A, Γ ` B : s and A ↓βΓ B.
By induction hypothesis we have ‖Γ‖ `w t : ‖A‖ and
‖Γ‖ ` B : ‖s‖. Moreover by lemma 7.1, we have
‖A‖ ↓‖Γ‖ ‖B‖. Thus we can use the (Convw) to de-
duce ‖Γ‖ `w t : ‖B‖.

Now let us assume that no rewrite rules have an arrow (→)
in its right-hand side. We have the following lemma:

Lemma 7.3 (Weak Π-injectivity).
If A1 → B1 Ww

Γ A2 → B2 then A1 Ww
Γ A2 and B1 Ww

Γ B2.

We can now prove a version of subject reduction for this
system.

Lemma 7.4 (Weak Subject Reduction).
If Γ `w t : T and t→βΓ t

′ then Γ `w t′ : T

Proof. The proof is the same as for lemma 4.1 but we use
weak Π-injectivity (lemma 7.3) instead of Π-injectivity.

Lemma 7.5. If Γ `w tu : T then u cannot contain a prod-
uct type.

Proof. This is a corollary of the following properties:

• A term containing a product-type can only have a sort
as its type.

• No term has type Type→ B.

Each of these statements can be proved by induction on the
typing derivation.

8. PROOF OF THE MAIN THEOREM
Now the proof is essentially the one that can be found in [2]
and [3]. The main difference lies in the postponement lemma
(Lemma 8.2) where we make use of weak typing.

Lemma 8.1 (Commutation). If t →∗βh u and t →∗Γ v

then there exists t′ such that u→∗Γ t′ and v →∗βh t
′.

Proof. Induction on the number of h-steps. u0 is a
β-redex so w is also a β-redex and assuming that u0 =

(λxA.f)a we have u = f [x/a] and w = (λxA
′
.f ′)a′ with

A→∗Γ A′, f →∗Γ f ′ and a→∗Γ a′. We take t′ = f ′[x/a′].

t
hn
- u0

h1
- u

(IH)

v

Γ∗

?
...........

h∗
.......... w

Γ∗

?

..................
..........

h1
.........- t′

Γ∗

?

.................

Lemma 8.2 (Postponement). Assume that right-hand
sides of rewrite rules do not contain product types. If Γ `
t : Type and t→∗Γ t′ →∗βh ΠxA1 .B1 then there exist A2, B2

such that t→∗βh ΠxA2 .B2, A2 →∗Γ A1 and B2 →∗Γ B1.

Proof. First we remark that t′ = (λ~x
~A.ΠxA

′
1 .B′1)~u with

A1 = A′1[~x/~u] and B1 = B′1[~x/~u]. Indeed the only other pos-

sible form for t′ is (λ~x
~A.xi~v)~u but this assumes that there is

a product type in ~u or ~v, which is impossible by Lemma 7.5.
For similar reasons, Lemma 7.5 also prevents Γ-reduction

from introducing product types. Thus t = (λ~y
~A′
.ΠxA

′
2 .B′2)~u′

with A′2 →∗Γ A′1, B′2 →∗Γ B′1 and ~u′ →∗Γ ~u. We choose
A2 = A′2[~y/~u′] and B2 = B′2[~y/~u′].

Lemma 8.3 (Π-injectivity for Kinds).
If ΠxA1 .B1 WΓ ΠxA2 .B2 with Γ ` ΠxA1 .B1 : Kind then
A1 WΓ A2 and B1 WΓ(x:A2) B2.

(Emptyw) ∅ wfw
Γ wfw Γ `w A : s f /∈ Γ

(Decw)
Γ(f : A) wfw

Γ wfw Γ∆ `w l : T Γ `w r : T
(Rww)

Γ(l ↪→ r) wfw

Γ wfw
(Typew)

Γ `w Type : Kind

Γ wfw (x : A) ∈ Γ x ∈ V ∪ F
(Var/Cstw)

Γ `w x : A

Γ `w t : A→ B Γ `w u : A
(Appw)

Γ `w tu : B

Γ `w t : A Γ `w B : s A ↓βΓ ‖B‖
(Convw)

Γ `w t : ‖B‖

Γ `w A : Type Γ(x : ‖A‖) `w t : B B 6= Kind
(Absw)

Γ `w λxA.t : ‖A‖ → B

Γ `w A : Type Γ(x : ‖A‖) `w B : s
(Prodw)

Γ `w ΠxA.B : s

Figure 8: Typing rules for weak λΠ-calculus modulo.

Proof. ΠxA2 .B2 and all the intermediate types are of
type Kind so they are product types.

Lemma 8.4 (Subject Reduction for βh on Types).
If Γ ` t : Type and t→βh t′ then Γ ` t′ : Type.

Proof. Induction on the typing derivation:

• (App) Same as in the proof of the 4.1 but using lemma 8.3
instead of full Π-injectivity.

• (Conv) B = Type and A = Type so, by (IH), Γ `
t′ : Type.

• No other inference rule can apply.

Lemma 8.5. Let λΠ be the rewrite rules of λΠ-calculus
modulo (Figure 2). Now let λΠ′ be the same rules but re-
placing, in the (Conv) rule, the joinability relation ↓βΓ by
↓β ∪ ↓Γ. If subject reduction holds for a context Γ in λΠ′

then subject reduction holds for Γ in λΠ.

Proof. Let `′ be the typing relation for λΠ′. We show
that ` = `′. We obviously have ` ⊃ `′. We show the
converse inclusion by induction on `. The only non-trivial
case is of course the (Conv) rule.

• (Conv) We have Γ ` t : A, Γ ` B : s and A ↓βΓ B.
By induction hypothesis we also have Γ `′ t : A and
Γ `′ B : s. We can decompose the conversion in

A→β A1 →Γ A2 →β . . .←β B2 ←Γ B1 ←β B

but A and B are typable for `′ so, by subject reduc-
tion, all the Ai and Bi are typable. Thus we can re-
place the conversion in λΠ by a sequence of conversions
in λΠ′.

Proof of the main theorem. Following lemma 8.5 we
will replace the joinability relation ↓βΓ by ↓β ∪ ↓Γ.

Now we proceed by induction on the number of valleys to
prove the following property: if ΠxA1 .B1 WΓ T then T →βh

ΠxA2 .B2 withA1 WΓ A2 andB1 WΓ(x:A2) B2. This amounts
to proving for ↓=↓β and ↓=↓Γ that if T1 ↓ T2, T1 →∗βh

ΠxA1 .B1 and Γ ` Ti : Type then there exist A2, B2 such
that T2 →βh ΠxA2 .B2, A1 WΓ A2 and B1 WΓ(x:A2) B2.

• If ↓=↓β then it follows from confluence of→β and stan-
dardization.

T1 T2

ΠxA1 .B1

h∗

?
U
�

β
∗β ∗

-

ΠxA2 .B2

h∗

?

................

ΠxA0 .B0

β∗

?

................ �..
....

....
....

....
....

....
..

β
∗

.............................

β ∗
-

• If ↓=↓Γ then it follows from commutation 8.1 and post-
ponement 8.2.

T1 T2

ΠxA1 .B1

h∗

?
U
�

Γ
∗Γ ∗

-

ΠxA2 .B2

h∗

?

................

ΠxA0 .B0

h∗

?

................ �..
....

....
....

....
....

....
..

Γ
∗

.............................

Γ ∗
-

All the Ai and Bi are well-typed by subject reduction for
→βh .

9. CONCLUSION
We have studied the subject reduction property in the con-
text of the λΠ-calculus modulo. We have shown that it is
equivalent to Π-injectivity, that it implies uniqueness of type
and also that it is undecidable. Finally we have given two
(partially) decidable criteria ensuring that subject reduction
holds.

We believe that it is possible to give more general criteria.
Several approaches could be considered for further research
by, either refining our criterion by finding appropriate re-
strictions on rewrite rules producing product type, or design-
ing new criteria for proving the confluence of the combina-
tion of a (non-left-linear) rewriting system with β-reduction.
Another possibility would be to investigate the termination
of the combination of a rewriting system with β-reduction
without any assumption of confluence in order to prove con-
fluence (hence subject reduction) using Newman’s lemma.

10. REFERENCES
[1] T. Aoto, Y. Chiba, N. Hirokawa, and H. Zankl.

Confluence competition (coco):
http://coco.nue.riec.tohoku.ac.jp/index.php.

[2] F. Barbanera, M. Fernández, and H. Geuvers.
Modularity of strong normalization in the
algebraic-lambda-cube. J. Funct. Program.,
7(6):613–660, 1997.

[3] F. Blanqui. Definitions by rewriting in the Calculus of
Constructions. MSCS, 2005.

[4] M. Boespflug, Q. Carbonneaux, O. Hermant, and
R. Saillard. Dedukti:
https://www.rocq.inria.fr/deducteam/dedukti.

[5] G. D. D. Cousineau. Embedding Pure Type Systems
in λΠ-Calculus Modulo. In TLCA, 2007.

[6] Y. Matijasevich. Simple examples of undecidable
associative calculi. Doklady Mathematics, 1967.

[7] M. H. A. Newman. On theories with a combinatorial
definition of ”equivalence”. Annals of Mathematics,
43(2):pp. 223–243, 1942.

[8] R. Saillard. Towards explicit rewrite rules in the
λΠ-calculus modulo. In IWIL - 10th International
Workshop on the Implementation of Logics, 2013.

[9] Terese. Term Rewriting Systems, volume 55 of
Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2003.

[10] L. S. van Benthem Jutting, J. McKinna, and
R. Pollack. Checking algorithms for Pure Type
Systems. In Types for Proofs and Programs. Springer
Berlin Heidelberg, 1994.

[11] V. van Oostrom. Confluence for Abstract and
Higher-Order Rewriting. PhD thesis, Vrije
Universiteit, Amsterdam, 1994.

