Verifying Faust in Coq

Progress report

Emilio J. Gallego Arias, Pierre Jouvelot, Olivier
Hermant, Arnaud Spiwack

MINES ParisTech, PSL Research University, France

R

i 1 A i
0 1 2 3 4 5

CoqgPL 2015

Music and PL?

Music and PL?

Software verification?

Music and PL?

| Software verification?

8 Rave
U - ALIEWI
1 « SCORE
. il
. . . SCRI
v . i
.

Faust

v

Functional PL for digital signal processing.
Synchronous paradigm, geared towards audio.
Programs: circuits/block diagrams + feedbacks.
Semantics: streams of samples.

Efficiency is crucial.

Created in 2000 by Yann Orlarey et al. at GRAME.
Mature, compiles to more than 14 platforms.

v

v

v

v

v

v

Faust’'s Ecosystem
Users:

» Grame: Multiple projects, main developer.

» Stanford: Class/books on signal processing, STK
instrument toolkit, Faust2android, Mephisto. . .

» Ircam: Acoustic libraries, effects libraries,. . .
» Guitarix, moForte guitar, etc...

Faust’'s Ecosystem

Users:

» Grame: Multiple projects, main developer.

» Stanford: Class/books on signal processing, STK
instrument toolkit, Faust2android, Mephisto. . .

» Ircam: Acoustic libraries, effects libraries,. . .
» Guitarix, moForte guitar, etc...

It has its market! Much easier than dwelling into C.

Faust’'s Ecosystem

Users:

» Grame: Multiple projects, main developer.

» Stanford: Class/books on signal processing, STK
instrument toolkit, Faust2android, Mephisto. . .

» Ircam: Acoustic libraries, effects libraries,. . .
» Guitarix, moForte guitar, etc...

It has its market! Much easier than dwelling into C.
Recent Events:

» Faust day at Stanford happened yesterday.

» Ongoing Faust program competition (€2,000 in
prices).

» FEEVER project :)

Syntax and Well-Formedness

TERM —MM8 D—
Fl:1—=0 o1 =1

Hf o ih — o I_fn'in_>on

F(f,..., I Z'/_)ZO/

PAR

Hf:i—k Fg:k—o

comP F(f:g):i—o0

Hf:i—k Fg:kxn—o 0<kAO<n

PAN ,
Ff<:g:i—o0

Syntax and Typing

PL standard practice vs. what musicians want/imagine:

I

Figure 3: sequential composition of Band C whenk =1

Feedbacks

Ff:go+fi—9gi+fh Fg:9— 9

FEED
Ff~g:fi—ofy

Diagram for + ~ sin:

- process — - - ——-——-— - A

Synchronous semantics: execution in “ticks” + state.

Simple Low-pass Filter

smooth(c) = x(1—c) : + *(c);
process = smooth(0.9);

T 1 2 5 6 7 8
[: {1.00|1.05|1.10|1.15|1.20 | 1.25|1.20 | 1.25
O:10.10 | 0.19 0.45 | 0.53 | 0.61 | 0.68

A More Real Example

Feedback Delay Networks:

fdnrevO(delays, BBSO, fregs, durs, loopgainmax, nonl)

= (bus(2+N) :> bus(N) : delaylines(N))
(delayfilters(N,fregs,durs) : feedbackmatrix(N))

with {
delayval(i) = take(i+1,delays);
delaylines(N) = par(i,N,(delay(dlmax(i),(delayval(i)—1))));
delayfilters(N,fregs,durs) = par(i,N,filter(i,freqs,durs));
feedbackmatrix(N) = bhadamard(N);
vbutterfly(n) = bus(n) <: (bus(n):>bus(n/2)), ...)

A More Real Example

—fdnrev0(8192)...00))):")=-)

||
feedbackmatrix(4) il delayfilters(..., 10, 0.1))))
|

delaylines(4)

Why Coq?

Why Coq?

Does there exist any other
programming language?

Why Coq? Motivations and Goals

PHILOSOPHICAL

» Manual proofs starting to feel odd in PL.
» Motto: use Coq from the start.
» Goal: Try to develop in a reusable way.

Why Coq? Motivations and Goals

PHILOSOPHICAL — MATHEMATICAL

Current testing process of Faust programs: compare their
output with MatLab’s.

Why Coq? Motivations and Goals

PHILOSOPHICAL — MATHEMATICAL

Current testing process of Faust programs: compare their
output with MatLab’s.

» Program correctness.

Why Coq? Motivations and Goals

PHILOSOPHICAL — MATHEMATICAL

Current testing process of Faust programs: compare their
output with MatLab’s.

» Program correctness.

» Optimizations performed by the compiler are not well
understood. Semantics trickier than it looks to the eye

Why Coq? Motivations and Goals

PHILOSOPHICAL — MATHEMATICAL

Current testing process of Faust programs: compare their
output with MatLab’s.

» Program correctness.

» Optimizations performed by the compiler are not well
understood. Semantics trickier than it looks to the eye

» Explore the formalization of concepts from signal
processing: Finite Impulse Response (FIR) filters, LTI
theory, spectral analysis, Nyquist. . .

Why Coq? Motivations and Goals

PHILOSOPHICAL — MATHEMATICAL
PRACTICAL

Less effort than to build a custom analysis tool.

Applications:

Web Audio API
QUICKSTART

Why Coq? Motivations and Goals

PHILOSOPHICAL — MATHEMATICAL
PRACTICAL

Less effort than to build a custom analysis tool.

Applications:

Web Audio API
QUICKSTART

IMHO: Robust Definitions and Standards are crucial.
Don’t repeat the mistakes of the past

Some Properties of Interest

» Stability properties: bound input produces bounded
output. (We’ll see an example)

Some Properties of Interest

v

Stability properties: bound input produces bounded
output. (We’ll see an example)

Linearity/Time invariance. [relational!]

Stabilization: Zero input eventually produces zero
output.

Frequency response properties.

v

v

v

Some Properties of Interest

» Stability properties: bound input produces bounded
output. (We’ll see an example)

» Linearity/Time invariance. [relational!]

» Stabilization: Zero input eventually produces zero
output.

» Frequency response properties.

In order to write the properties, we need a large
support library

[bigops, intervals, trigopnometry, Z-transforms, DTFT, .. .]

Specifications of Filters

Difference equations:
y(n) = x(n) +x(n—1)
Impulse response:

B 1-z2
1 -2Rcos(0,)z' + R2z2

H(z)

Two Poles Filter

B 1— 2732
1 -2Rcos(0,)z~ ' + R2z2

H(z)

process = firpart : + feedback
with {
bw=100; fr =1000; g =1; / parameters — see caption
SR = fconstant(int fSamplingFreq, <math.h>);// Faust fn
pi = 4+atan(1.0); // circumference over diameter
R = exp(0—pixbw/SR); // pole radius [0 required]
A = 2+pixfr/SR; // pole angle (radians)
RR = R#R;
firpart(x) = (x — x”) * g * ((1—RR)/2);
feedback(v) = 0 + 2*R+cos(A)xv — RR#V’;

Finally! Let’s Talk About Coq!

What we have built so far:

» Mathcomp allowed us to do a prototype in two weeks.
New feedback reasoning rule & proof of soundness.
Motivated by real use cases.

Stateless logic & soundness (again, mc was key).
Certified arity-checker, etc. . .

v

v

v

v

Finally! Let’s Talk About Coq!

What we have built so far:

» Mathcomp allowed us to do a prototype in two weeks.
New feedback reasoning rule & proof of soundness.
Motivated by real use cases.

Stateless logic & soundness (again, mc was key).
Certified arity-checker, etc. . .

v

v

v

v

Currently:

» Investigating more complex, time-aware logics.
» New semantics based on guarded recursion.

The Pieces of the Puzzle

*

The First Piece: Stream-based Semantics

» We ported [Boulmé, Hamon and Pouzet], with some
problems with Colnductives.

» We switched to sequences, (similar to Auger’s Lustre
certified compiler).

» Didn’t look into PACO/more advanced co-reasoning
tools.

The First Piece: Stream-based Semantics

» We ported [Boulmé, Hamon and Pouzet], with some
problems with Colnductives.

» We switched to sequences, (similar to Auger’s Lustre
certified compiler).

» Didn’t look into PACO/more advanced co-reasoning
tools.

Current approach: realizability semantics in guarded
recursion style. Suggested simultaneously by A. Spiwak
and A. Guatto [SYNCHRON 2014]:

IFf:i— o]l []" — [o]"

The Second Piece: Real Analysis

v

Not in Mathcomp — rcf good enough for experiments.

Our typical case involves complex numbers,
trigonometry and sums over infinite series.

Think of proving Euler’s formula:

v

v

el® = sin® + jcos ©

v

Difficult to choose: Standard library? Coquelicot?
C-CorN?
Our feeling is that life is going to be very painful.

v

[We are ignoring floating point issues for now]

The Third Piece: Coq as a Tool

File Edit Options Buffers Tools EasyCrypt Proof-General Help
var r : int; Current goal (remaining: 2)
ro=srmu;
return r; Type variables: <none>
¥
}.
1 : VCGStep.vcg_full
(* Step by step proof. *) ight) : VCGStep.vcg full sl
equiv veg_stepl: VCGStep.vecg full ~ VCGStep.veg full sl 3
s: true = . pre = ={i} /\ i{l}
proof.
t =% rmu
rmu
sl =$ rmu
. s2 =$ rmu
¢(3{1} /N ={i,t)); auto. insBr =41 ? (t, r) : (r, 1)
(i{1} /\ ={i,t,r}); . surrs = fst (vcg insBr (s1, s2) wt
(i{1} /\ ={i,t,r,s1}); .
(i{1} 7\ ={i,t,r,s1,s2}); . post =
B ip; ess; rewrite H. (if i{1} then fst surrs{l} else snd surrs{1}
ap{1} 1 1. if i{2} then fst surrs{2} else snd surrs{2}
11 (0 g1} /\ ={i} /\ r{1} = t{2}); 3

{1y /N ={i} /\ r{1} = t{2} /\ t{1} = r¥
U{1} A\ ={d,s1} A H{1} = t{2) A t{1} =
1 if1) N ={i,51,52} /\ r{l} = t{2} /\ t{3|
e ;. ewrite H.
equiv vcg_step2: VCGStep.vcg full sl ~ VCGStep.vcg full g 1%%- *goals* (EasyCrypt goals
ss2 : true ==> ={res}.
proof.

proc; inline
p{l} 5 2.
o

The Third Piece: Coq as a Tool

v

Is building a verification tool on top of Coq feasible?

We got some inspiration from domain-specific tools
like EasyCrypt.

Would our tool mature, we would certainly need to
plug deeply into Coq’s parsing/display routines.
We still think this may be better than rewriting
everything from scratch.

Reduction woes make our life difficult.

Automation: we will worry last.

Stability of Smooth

Recall the smooth program:
smooth(c) = *(1—c) : + =(c);

We want to prove stability, that is, bounded inputs produce
bounded outputs, provided the coefficient c is in [0, 1].
We use the following logical rule (simplified):

= (o)
() no(ix)} F {v(o)} {v(i)} g {v(0)}

{o()} f~g {¢(0)}

Stability of Smooth

Three VC in the proof:

by rewrite ?ler_wpmul2r ?ler_subr_addr ?addor.

haveHa:a=a+* c+ax* (1 —c)

by rewrite —mulrDr addrC addrNK mulrl.
haveHb:b=b =+« c+b+ (1 —)

by rewrite —mulrDr addrC addrNK mulrl.
by rewrite Ha Hb !ler_add.

by rewrite ?ler_wpmul2r.

We pushed the VCs to Why3 with success.
Interval technique ready to go into the main compiler.

Conclusions

» Young project, highly positive experience so far.
» First alpha “release” very near.

» Tons of related work, difficult to get a good
perspective.

» Most challenging topic: real/complex analysis.

» Certified audio/dsp processing? (Do we need it?)
» All of the usual Coq caveats apply to us.

» What do *you* think?

Thanks!

Nyquist Theorem

Provided fs is twice the highest frequency in V then:

Z Vin]S|n[7rf(Ts)]

= fs(t — nT s)
where
fs =1/Ts sampling frequency
V(1) value of signal at Time t

V[n] = V(nTy) value of signal at Time t = nT;

	Appendix

