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Faust

I Functional PL for digital signal processing.
I Synchronous paradigm, geared towards audio.
I Programs: circuits/block diagrams + feedbacks.
I Semantics: streams of samples.
I Efficiency is crucial.
I Created in 2000 by Yann Orlarey et al. at GRAME.
I Mature, compiles to more than 14 platforms.



Faust’s Ecosystem
Users:

I Grame: Multiple projects, main developer.
I Stanford: Class/books on signal processing, STK

instrument toolkit, Faust2android, Mephisto. . .
I Ircam: Acoustic libraries, effects libraries,. . .
I Guitarix, moForte guitar, etc...

It has its market! Much easier than dwelling into C.

Recent Events:
I Faust day at Stanford happened yesterday.
I Ongoing Faust program competition (e2,000 in

prices).
I FEEVER project :)
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Syntax and Well-Formedness

TERM
`! : 1→ 0

ID
` _ : 1→ 1

PAR
` f1 : i1 → o1 · · · ` fn : in → on

` (f1, . . . , fn) :
n∑
j

ij →
n∑
j

oj

COMP
` f : i → k ` g : k → o

` (f : g) : i → o

PAN
` f : i → k ` g : k ∗ n→ o 0 < k ∧ 0 < n

` f <: g : i → o



Syntax and Typing
PL standard practice vs. what musicians want/imagine:



Feedbacks

FEED
` f : go + fi → gi + fo ` g : gi → go

` f ∼ g : fi → fo

Diagram for + ∼ sin:

Synchronous semantics: execution in “ticks” + state.



Simple Low-pass Filter

smooth(c) = *(1−c) : + *( c);
process = smooth(0.9);

T: 1 2 3 4 5 6 7 8
I: 1.00 1.05 1.10 1.15 1.20 1.25 1.20 1.25
O: 0.10 0.19 0.28 0.37 0.45 0.53 0.61 0.68



A More Real Example

Feedback Delay Networks:

fdnrev0(delays, BBSO, freqs, durs, loopgainmax, nonl)
= (bus(2*N) :> bus(N) : delaylines(N))

(delayfilters(N,freqs,durs) : feedbackmatrix(N))
with {
delayval(i) = take(i+1,delays);
delaylines(N) = par(i,N,(delay(dlmax(i),(delayval(i)−1))));
delayfilters(N,freqs,durs) = par(i,N,filter(i,freqs,durs));
feedbackmatrix(N) = bhadamard(N);
vbutterfly(n) = bus(n) <: (bus(n):>bus(n/2)) , ...)
...

};
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Why Coq? Motivations and Goals

PHILOSOPHICAL — MATHEMATICAL

I Manual proofs starting to feel odd in PL.
I Motto: use Coq from the start.
I Goal: Try to develop in a reusable way.
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understood. Semantics trickier than it looks to the eye

I Explore the formalization of concepts from signal
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IMHO: Robust Definitions and Standards are crucial.
Don’t repeat the mistakes of the past
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Some Properties of Interest

I Stability properties: bound input produces bounded
output. (We’ll see an example)

I Linearity/Time invariance. [relational!]
I Stabilization: Zero input eventually produces zero

output.
I Frequency response properties.

In order to write the properties, we need a large
support library

[bigops, intervals, trigonometry, Z-transforms, DTFT, . . . ]
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Specifications of Filters

Difference equations:

y(n) = x(n) + x(n − 1)

Impulse response:

H(z) =
1− z−2

1− 2R cos(Θc)z−1 + R2z−2



Two Poles Filter

H(z) =
1− z−2

1− 2R cos(Θc)z−1 + R2z−2

process = firpart : + feedback
with {
bw = 100; fr = 1000; g = 1; // parameters − see caption
SR = fconstant(int fSamplingFreq, <math.h>); // Faust fn
pi = 4*atan(1.0); // circumference over diameter
R = exp(0−pi*bw/SR); // pole radius [0 required]
A = 2*pi*fr/SR; // pole angle (radians)
RR = R*R;
firpart(x) = (x − x’’) * g * ((1−RR)/2);
feedback(v) = 0 + 2*R*cos(A)*v − RR*v’;

};



Finally! Let’s Talk About Coq!

What we have built so far:
I Mathcomp allowed us to do a prototype in two weeks.
I New feedback reasoning rule & proof of soundness.
I Motivated by real use cases.
I Stateless logic & soundness (again, mc was key).
I Certified arity-checker, etc. . .

Currently:
I Investigating more complex, time-aware logics.
I New semantics based on guarded recursion.
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The Pieces of the Puzzle



The First Piece: Stream-based Semantics

I We ported [Boulmé, Hamon and Pouzet], with some
problems with CoInductives.

I We switched to sequences, (similar to Auger’s Lustre
certified compiler).

I Didn’t look into PACO/more advanced co-reasoning
tools.

Current approach: realizability semantics in guarded
recursion style. Suggested simultaneously by A. Spiwak
and A. Guatto [SYNCHRON 2014]:

J` f : i → oKn
W : JiKn → JoKn
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The Second Piece: Real Analysis

I Not in Mathcomp – rcf good enough for experiments.
I Our typical case involves complex numbers,

trigonometry and sums over infinite series.
I Think of proving Euler’s formula:

e(jΘ) = sin Θ + j cos Θ

I Difficult to choose: Standard library? Coquelicot?
C-CorN?

I Our feeling is that life is going to be very painful.

[We are ignoring floating point issues for now]



The Third Piece: Coq as a Tool



The Third Piece: Coq as a Tool

I Is building a verification tool on top of Coq feasible?
I We got some inspiration from domain-specific tools

like EasyCrypt.
I Would our tool mature, we would certainly need to

plug deeply into Coq’s parsing/display routines.
I We still think this may be better than rewriting

everything from scratch.
I Reduction woes make our life difficult.
I Automation: we will worry last.



Stability of Smooth

Recall the smooth program:

smooth(c) = *(1−c) : + *( c);

We want to prove stability, that is, bounded inputs produce
bounded outputs, provided the coefficient c is in [0,1].
We use the following logical rule (simplified):

|= ψ(x0)
{γ(i1) ∧ φ(i2)} f {ψ(o)} {ψ(i)} g {γ(o)}

{φ(i)} f ∼ g {ψ(o)}



Stability of Smooth

Three VC in the proof:

by rewrite ?ler_wpmul2r ?ler_subr_addr ?add0r.

have Ha: a = a * c + a * (1 − c)
by rewrite −mulrDr addrC addrNK mulr1.

have Hb: b = b * c + b * (1 − c)
by rewrite −mulrDr addrC addrNK mulr1.

by rewrite Ha Hb !ler_add.

by rewrite ?ler_wpmul2r.

We pushed the VCs to Why3 with success.
Interval technique ready to go into the main compiler.



Conclusions

I Young project, highly positive experience so far.
I First alpha “release” very near.
I Tons of related work, difficult to get a good

perspective.
I Most challenging topic: real/complex analysis.
I Certified audio/dsp processing? (Do we need it?)
I All of the usual Coq caveats apply to us.
I What do *you* think?

Thanks!



Nyquist Theorem

Provided fs is twice the highest frequency in V then:

V (t) =
∞∑

n=−∞

V [n]
sin[πfs(t − nTs)]

πfs(t − nTs)

where

fs = 1/Ts sampling frequency
V (t) value of signal at Time t
V [n] = V (nTs) value of signal at Time t = nTs


	Appendix

