
Verifying Faust in Coq
Progress report

Emilio J. Gallego Arias, Pierre Jouvelot, Olivier
Hermant, Arnaud Spiwack

MINES ParisTech, PSL Research University, France

CoqPL 2015

Music and PL?

Software verification?

Coq?

Music and PL?

Software verification?

Coq?

Music and PL?

Software verification?

Coq?

Faust

I Functional PL for digital signal processing.
I Synchronous paradigm, geared towards audio.
I Programs: circuits/block diagrams + feedbacks.
I Semantics: streams of samples.
I Efficiency is crucial.
I Created in 2000 by Yann Orlarey et al. at GRAME.
I Mature, compiles to more than 14 platforms.

Faust’s Ecosystem
Users:

I Grame: Multiple projects, main developer.
I Stanford: Class/books on signal processing, STK

instrument toolkit, Faust2android, Mephisto. . .
I Ircam: Acoustic libraries, effects libraries,. . .
I Guitarix, moForte guitar, etc...

It has its market! Much easier than dwelling into C.

Recent Events:
I Faust day at Stanford happened yesterday.
I Ongoing Faust program competition (e2,000 in

prices).
I FEEVER project :)

Faust’s Ecosystem
Users:

I Grame: Multiple projects, main developer.
I Stanford: Class/books on signal processing, STK

instrument toolkit, Faust2android, Mephisto. . .
I Ircam: Acoustic libraries, effects libraries,. . .
I Guitarix, moForte guitar, etc...

It has its market! Much easier than dwelling into C.

Recent Events:
I Faust day at Stanford happened yesterday.
I Ongoing Faust program competition (e2,000 in

prices).
I FEEVER project :)

Faust’s Ecosystem
Users:

I Grame: Multiple projects, main developer.
I Stanford: Class/books on signal processing, STK

instrument toolkit, Faust2android, Mephisto. . .
I Ircam: Acoustic libraries, effects libraries,. . .
I Guitarix, moForte guitar, etc...

It has its market! Much easier than dwelling into C.

Recent Events:
I Faust day at Stanford happened yesterday.
I Ongoing Faust program competition (e2,000 in

prices).
I FEEVER project :)

Syntax and Well-Formedness

TERM
`! : 1→ 0

ID
` _ : 1→ 1

PAR
` f1 : i1 → o1 · · · ` fn : in → on

` (f1, . . . , fn) :
n∑
j

ij →
n∑
j

oj

COMP
` f : i → k ` g : k → o

` (f : g) : i → o

PAN
` f : i → k ` g : k ∗ n→ o 0 < k ∧ 0 < n

` f <: g : i → o

Syntax and Typing
PL standard practice vs. what musicians want/imagine:

Feedbacks

FEED
` f : go + fi → gi + fo ` g : gi → go

` f ∼ g : fi → fo

Diagram for + ∼ sin:

Synchronous semantics: execution in “ticks” + state.

Simple Low-pass Filter

smooth(c) = *(1−c) : + *(c);
process = smooth(0.9);

T: 1 2 3 4 5 6 7 8
I: 1.00 1.05 1.10 1.15 1.20 1.25 1.20 1.25
O: 0.10 0.19 0.28 0.37 0.45 0.53 0.61 0.68

A More Real Example

Feedback Delay Networks:

fdnrev0(delays, BBSO, freqs, durs, loopgainmax, nonl)
= (bus(2*N) :> bus(N) : delaylines(N))

(delayfilters(N,freqs,durs) : feedbackmatrix(N))
with {
delayval(i) = take(i+1,delays);
delaylines(N) = par(i,N,(delay(dlmax(i),(delayval(i)−1))));
delayfilters(N,freqs,durs) = par(i,N,filter(i,freqs,durs));
feedbackmatrix(N) = bhadamard(N);
vbutterfly(n) = bus(n) <: (bus(n):>bus(n/2)) , ...)
...

};

A More Real Example

Why Coq?

Does there exist any other
programming language?

Why Coq?

Does there exist any other
programming language?

Why Coq? Motivations and Goals

PHILOSOPHICAL — MATHEMATICAL

I Manual proofs starting to feel odd in PL.
I Motto: use Coq from the start.
I Goal: Try to develop in a reusable way.

Why Coq? Motivations and Goals

PHILOSOPHICAL — MATHEMATICAL

Current testing process of Faust programs: compare their
output with MatLab’s.

I Program correctness.

I Optimizations performed by the compiler are not well
understood. Semantics trickier than it looks to the eye

I Explore the formalization of concepts from signal
processing: Finite Impulse Response (FIR) filters, LTI
theory, spectral analysis, Nyquist. . .

Why Coq? Motivations and Goals

PHILOSOPHICAL — MATHEMATICAL

Current testing process of Faust programs: compare their
output with MatLab’s.

I Program correctness.

I Optimizations performed by the compiler are not well
understood. Semantics trickier than it looks to the eye

I Explore the formalization of concepts from signal
processing: Finite Impulse Response (FIR) filters, LTI
theory, spectral analysis, Nyquist. . .

Why Coq? Motivations and Goals

PHILOSOPHICAL — MATHEMATICAL

Current testing process of Faust programs: compare their
output with MatLab’s.

I Program correctness.
I Optimizations performed by the compiler are not well

understood. Semantics trickier than it looks to the eye

I Explore the formalization of concepts from signal
processing: Finite Impulse Response (FIR) filters, LTI
theory, spectral analysis, Nyquist. . .

Why Coq? Motivations and Goals

PHILOSOPHICAL — MATHEMATICAL

Current testing process of Faust programs: compare their
output with MatLab’s.

I Program correctness.
I Optimizations performed by the compiler are not well

understood. Semantics trickier than it looks to the eye
I Explore the formalization of concepts from signal

processing: Finite Impulse Response (FIR) filters, LTI
theory, spectral analysis, Nyquist. . .

Why Coq? Motivations and Goals

PHILOSOPHICAL — MATHEMATICAL
PRACTICAL

Less effort than to build a custom analysis tool.

Applications:

IMHO: Robust Definitions and Standards are crucial.
Don’t repeat the mistakes of the past

Why Coq? Motivations and Goals

PHILOSOPHICAL — MATHEMATICAL
PRACTICAL

Less effort than to build a custom analysis tool.

Applications:

IMHO: Robust Definitions and Standards are crucial.
Don’t repeat the mistakes of the past

Some Properties of Interest

I Stability properties: bound input produces bounded
output. (We’ll see an example)

I Linearity/Time invariance. [relational!]
I Stabilization: Zero input eventually produces zero

output.
I Frequency response properties.

In order to write the properties, we need a large
support library

[bigops, intervals, trigonometry, Z-transforms, DTFT, . . .]

Some Properties of Interest

I Stability properties: bound input produces bounded
output. (We’ll see an example)

I Linearity/Time invariance. [relational!]
I Stabilization: Zero input eventually produces zero

output.
I Frequency response properties.

In order to write the properties, we need a large
support library

[bigops, intervals, trigonometry, Z-transforms, DTFT, . . .]

Some Properties of Interest

I Stability properties: bound input produces bounded
output. (We’ll see an example)

I Linearity/Time invariance. [relational!]
I Stabilization: Zero input eventually produces zero

output.
I Frequency response properties.

In order to write the properties, we need a large
support library

[bigops, intervals, trigonometry, Z-transforms, DTFT, . . .]

Specifications of Filters

Difference equations:

y(n) = x(n) + x(n − 1)

Impulse response:

H(z) =
1− z−2

1− 2R cos(Θc)z−1 + R2z−2

Two Poles Filter

H(z) =
1− z−2

1− 2R cos(Θc)z−1 + R2z−2

process = firpart : + feedback
with {
bw = 100; fr = 1000; g = 1; // parameters − see caption
SR = fconstant(int fSamplingFreq, <math.h>); // Faust fn
pi = 4*atan(1.0); // circumference over diameter
R = exp(0−pi*bw/SR); // pole radius [0 required]
A = 2*pi*fr/SR; // pole angle (radians)
RR = R*R;
firpart(x) = (x − x’’) * g * ((1−RR)/2);
feedback(v) = 0 + 2*R*cos(A)*v − RR*v’;

};

Finally! Let’s Talk About Coq!

What we have built so far:
I Mathcomp allowed us to do a prototype in two weeks.
I New feedback reasoning rule & proof of soundness.
I Motivated by real use cases.
I Stateless logic & soundness (again, mc was key).
I Certified arity-checker, etc. . .

Currently:
I Investigating more complex, time-aware logics.
I New semantics based on guarded recursion.

Finally! Let’s Talk About Coq!

What we have built so far:
I Mathcomp allowed us to do a prototype in two weeks.
I New feedback reasoning rule & proof of soundness.
I Motivated by real use cases.
I Stateless logic & soundness (again, mc was key).
I Certified arity-checker, etc. . .

Currently:
I Investigating more complex, time-aware logics.
I New semantics based on guarded recursion.

The Pieces of the Puzzle

The First Piece: Stream-based Semantics

I We ported [Boulmé, Hamon and Pouzet], with some
problems with CoInductives.

I We switched to sequences, (similar to Auger’s Lustre
certified compiler).

I Didn’t look into PACO/more advanced co-reasoning
tools.

Current approach: realizability semantics in guarded
recursion style. Suggested simultaneously by A. Spiwak
and A. Guatto [SYNCHRON 2014]:

J` f : i → oKn
W : JiKn → JoKn

The First Piece: Stream-based Semantics

I We ported [Boulmé, Hamon and Pouzet], with some
problems with CoInductives.

I We switched to sequences, (similar to Auger’s Lustre
certified compiler).

I Didn’t look into PACO/more advanced co-reasoning
tools.

Current approach: realizability semantics in guarded
recursion style. Suggested simultaneously by A. Spiwak
and A. Guatto [SYNCHRON 2014]:

J` f : i → oKn
W : JiKn → JoKn

The Second Piece: Real Analysis

I Not in Mathcomp – rcf good enough for experiments.
I Our typical case involves complex numbers,

trigonometry and sums over infinite series.
I Think of proving Euler’s formula:

e(jΘ) = sin Θ + j cos Θ

I Difficult to choose: Standard library? Coquelicot?
C-CorN?

I Our feeling is that life is going to be very painful.

[We are ignoring floating point issues for now]

The Third Piece: Coq as a Tool

The Third Piece: Coq as a Tool

I Is building a verification tool on top of Coq feasible?
I We got some inspiration from domain-specific tools

like EasyCrypt.
I Would our tool mature, we would certainly need to

plug deeply into Coq’s parsing/display routines.
I We still think this may be better than rewriting

everything from scratch.
I Reduction woes make our life difficult.
I Automation: we will worry last.

Stability of Smooth

Recall the smooth program:

smooth(c) = *(1−c) : + *(c);

We want to prove stability, that is, bounded inputs produce
bounded outputs, provided the coefficient c is in [0,1].
We use the following logical rule (simplified):

|= ψ(x0)
{γ(i1) ∧ φ(i2)} f {ψ(o)} {ψ(i)} g {γ(o)}

{φ(i)} f ∼ g {ψ(o)}

Stability of Smooth

Three VC in the proof:

by rewrite ?ler_wpmul2r ?ler_subr_addr ?add0r.

have Ha: a = a * c + a * (1 − c)
by rewrite −mulrDr addrC addrNK mulr1.

have Hb: b = b * c + b * (1 − c)
by rewrite −mulrDr addrC addrNK mulr1.

by rewrite Ha Hb !ler_add.

by rewrite ?ler_wpmul2r.

We pushed the VCs to Why3 with success.
Interval technique ready to go into the main compiler.

Conclusions

I Young project, highly positive experience so far.
I First alpha “release” very near.
I Tons of related work, difficult to get a good

perspective.
I Most challenging topic: real/complex analysis.
I Certified audio/dsp processing? (Do we need it?)
I All of the usual Coq caveats apply to us.
I What do *you* think?

Thanks!

Nyquist Theorem

Provided fs is twice the highest frequency in V then:

V (t) =
∞∑

n=−∞

V [n]
sin[πfs(t − nTs)]

πfs(t − nTs)

where

fs = 1/Ts sampling frequency
V (t) value of signal at Time t
V [n] = V (nTs) value of signal at Time t = nTs

	Appendix

