
The tree machine?

Arnaud Spiwack

MINES ParisTech
arnaud@spiwack.net

Abstract. A variant of Turing machines is introduced where the tape
is replaced by a single tree which can be manipulated in a style akin to
purely functional programming. This yields two benefits: first, the extra
structure on the tape can be leveraged to write explicit constructions of
machines much more easily than with Turing machines. Second, this new
kind of machines models finely the asymptotic complexity of functional
programming languages, and may allow to answer questions such as “is
this problem inherently slower in functional languages”.

1 Intro

This article came to be as I seem to find myself all to often in two kinds of
discussions: one of them is the functional programmer’s complaint that Turing
machine make an unpleasant computation model as it is so unstructured that
writing any explicit Turing machine is a chore usually left to the gods of hand-
waving. The second one is a common interrogation about some computational
problem: “is it actually slower by a logarithmic factor to solve with a purely
functional program, rather than an imperative one”.

My inner functional programmer’s reflex would be to turn to λ-calculus to
answer such questions. However, there is no denying that it is easier to quantify
over automata-like machines, such as Turing-machines, for the purpose of proving
complexity results. With that in mind, I will introduce, in this article, a variant of
Turing machines, the tree machine, with better structured data which correspond
faithfully to the cost-model of purely functional programming languages.

I will not attempt to answer, either positively or negatively, whether concrete
problems are slower or not in purely functional style; I will however, give an explicit
description of a machine implementing λ-calculus in section 5, to demonstrate
that it is effectively possible to write non-trivial machines explicitly in this model.

Acknowledgment I want to thank Alexandre Miquel and Guyslain Naves who,
most independently, planted the seed of this article in my mind through very
entertaining and enlightening discussions.

? This research has received funding from the European Research Council under the
FP7 grant agreement 278673, Project MemCAD

2 Eilenberg’s machines

We will work with a generic notion of machines introduced by Eilenberg [4,
Chapter 10], which can be instantiated to yield finite automata as well as Turing
machines. The tree machine introduced in Section 3 is yet another instantiation
of Eilenberg’s machine (in fact we will give several equivalent definitions).

A type of machine is given by a set X of data and a set Φ ⊆ P(X ×X)
of instructions. Most of the times the instructions will be partial relations. A
machine of type (X,Φ) is given by a finite set Q of states, and subsets I and F
of initial and finite states, as usual for automata. Transitions are labelled with
relations of Φ. A path q0,. . . ,qn computes the composition of the relations on the
successive edges. The machine itself compute the union of the relation computed
by path from an initial state to a final state.

It does not change the expressiveness to close Φ by composition (i1 · i2), union
(i1 + i2), identity (1)1 and empty relation (0). We shall use this fact implicitly.

In fact, relations computed by a machine of type (X,Φ) are exactly the
relations in the sub-Kleene algebra of P(X ×X) generated by Φ: the result for
finite automata lifts naturally to Eilenberg’s machines. So Eilenberg machines
are equivalent to regular expressions with alphabet Φ. However, if closing Φ by
all the regular expression operations does not change what relation the machines
compute, it does change the complexity. Since we are concerned with complexity
properties, we may therefore refer to regular expressions as machines, while we
will reserve the term instructions to star-free expressions.

This definition of Eilenberg’s machines is naturally non-deterministic. It would
be more accurate to work with deterministic machines in the setting of this article,
but it does not really change anything of substance, and would unnecessarily
clutter the presentation. So the machines throughout this article will be non-
deterministic, but all of them could be made deterministic, and actually should,
for practical applications.

3 Tree machines

Let us define the set T of (rooted, unlabeled, binary) trees as the set generated
by the following grammar:

u,v ::= () | (u, v)

Such trees will be the data of our tree machines. Take notice of the fact that
trees do not replace the alphabet of Turing machines but the whole tape: there
will not be a tape of trees, just one tree.

1 In Eilenberg’s formulation, a more general kind of relation is considered, in order to
be able, typically, to count the multiplicity of successful path. In that case, closure
by 1 (i.e. adding ε-transitions) is not permitted.

Let us define the following partial functions on T :

δ(x) = (x, x)
π1(x) = y (if ∃z∈T . x = (y, z))
π2(x) = z (if ∃y∈T . x = (y, z))
(i, j) (x) = (i(y), j(z)) (if x = (y, z), for i and j partial functions)
ε(x) = ()
() (x) = () (if x = ())

The set of instruction Φ is chosen to be the smallest set containing the partial
functions {δ;π1;π2; ε; () ;1} and closed by (·, ·). This set of instructions has been
chosen to correspond to the presentation of cartesian products and terminal
elements in categories as adjunctions.

We call tree machine a machine of type (T, Φ). Notice that, contrary to Turing
machines, tree machines are not parametrised by an alphabet: the tree structure
offers enough power on its own.

Tree machines, by virtue of the (·, ·) instruction scheme, has an infinite
number of instructions which make it possible to observe the tree and modify
it at arbitrary depths. However each individual instruction affects trees at a
bounded depth, which is considered a constant time operation in functional
language, which is the important property we want to ensure. As we shall see
in Section 4.2, this choice of an infinite set of instruction is pure convenience: a
finite set suffices.

3.1 A language of guards and actions

One way to read the instruction in Φ, is to think of them as combinators giving
means to match tree prefixes and rearrange the corresponding subtrees. That
is, instructions of tree machines perform pattern-matching. We shall give an
alternative set of instructions for tree machines which is suggestive of the pattern-
matching notation functional programmers all know and love.

We write γ ⇒ α for a partial function whose domain is denoted by the guard,
or pattern, γ and whose functional action is denoted by the action α. Both γ
and α are trees with variables, with the following restrictions: variables occur at
most once γ, and all variables of α appear in γ (variables in γ bind variables in
α). We may use γ1 ⇒ α1 | γ2 ⇒ α2 instead of (γ1 ⇒ α1) + (γ2 ⇒ α2) when γ1
and γ2 denote disjoint domains (i.e. γ1 and γ2 are not unifiable). We can also
use the wildcard pattern “_” to represent a variable in γ which does not bind a
variable in α.

For instance, the instructions of Φ can be represented using this notations as
follows:

1 = x⇒ x
δ = x⇒ (x, x)
π1 = (x,_)⇒ x
π2 = (_, y)⇒ y
(i, j) = (γi, γj)⇒ (αi, αj) (for i = γi ⇒ γj and j = γj ⇒ αj)
ε = _⇒ ()
() = ()⇒ ()

Conversely, the language of guard and action is subsumed by Φ, which we shall
use as a definition rather than giving and independent definition and prove it as
a theorem (which would be, of course, theoretically possible but not practically
useful). The definition is lexicographically recursive on the subterm ordering of γ
then that of α.

(x⇒ x) = 1
(x⇒ ()) = ε
(()⇒ ()) = ()
((γ1, γ2)⇒ ()) = ((γ1 ⇒ ()) , (γ2 ⇒ ())) · ε
((γ1, γ2)⇒ x) = ((γ1 ⇒ x) , (γ2 ⇒ ())) · π1 (when x occurs in γ1)
((γ1, γ2)⇒ x) = ((γ1 ⇒ ()) , (γ2 ⇒ x)) · π2 (when x occurs in γ2)
(γ ⇒ (α1, α2)) = δ · ((γ ⇒ α1) , (γ ⇒ α2))

The language of pattern and action can be used to conveniently defined the
following examples:

σ = ((x, y)⇒ (y, x))
= δ · ((ε,1) · π2, (1, ε) · π1)

push = ((x, y) , z)⇒ (x, (y, z))
= δ · (((1, ε) · π1, ε) · π1, δ · (((ε,1) · π2, ε) · π1, ((ε, ε) · ε,1) · π2))

This procedure does not give the smallest possible definition in terms of Φ of σ
and push (or of pretty much anything for that matter). Here are better candidates
for this particular award:

σ = δ · (π2, π1)
push = δ · (π1 · π1, δ · (π2 · π1, π2))

In either case, however, it is fair to claim that the language of guard and patterns
gives a clearer account of the intent and semantics of instructions than the
more elementary Φ. In consequence we will peruse the guard and actions in the
remainder of the article.

3.2 Constants

It will be useful to embed natural numbers in trees. Any embedding will do. We
choose a binary encoding for the sake of fun and compactness:

0 = ()
2× n+ 1 = (() , n)
2× n+ 2 = ((() , ()) , n)

A direct consequence of this encoding is that any finite set of symbols can
be easily represented as particular trees, by mapping them to arbitrary distinct
natural numbers. We will do so quite liberally.

3.3 Zipper

In [5] Huet presents a purely functional data structure, the zipper to implement
“pointers” in trees, i.e. a way to walk through a tree from parent to child or back
in constant time and to replace the pointed subtree also in constant time.

The zipper can be adapted to the tree machines as a set of instructions. The
zipper instruction provide us with an ability we have not had so far: modifying a
subtree at an a priori unbounded depth in a tree.

The idea is that a zipper is represented as a pair (c, t) of the pointed subtree
t together with a “reversed tree” c which represents the context and gives enough
information to rebuild the tree when walking up towards the parent (with the
instruction up below). Here are the relevant instructions:

open = x⇒ (() , x)
left = (x, (y, z))⇒ ((0, (x, z)) , y)
right = (x, (y, z))⇒ ((1, (x, y)) , z)
up = ((0, (x, z)) , y)⇒ (x, (y, z)) | ((1, (x, y)) , z)⇒ (x, (y, z))
exit = (() , x)⇒ x

Where open and exit transform a tree into a pointer to its root and back, left
walks down to the left child (and marks, in the reversed tree, with 0 that it did
walk down left), right to the right child, and up walks up to the parent, and
reconstruct the tree according to the mark left by either left or right. For further
detail, the reader unfamiliar with these concepts is deeply encouraged to read
Huet’s paper [5]

4 Comparisons

With the basic material now set in place, we can now turn to the use of the tree
machine as a computational complexity model. It is important to be precise on
what is meant here: clearly, complexity classes are very robust, and it does not
matter what computation model is taken to define them; the tree machine is no
exception. However, for more fine grained accounts of asymptotic complexity,

the model will matter a lot: in Turing machines already, multiple-tape Turing
machines can provide a quadratic speedup over single-tape ones.

It is this sort of complexity that is our concern, and the claim of this arti-
cle is that the tree machine is a good complexity model for purely functional
computations.

4.1 Turing machines as tree machines

It is straightforward to implement Turing machines as tree-machines: fixing a
coding for the alphabet, we arrange the tree to be a pair (L,R) of lists of symbols.
The list R = (a0, (a1, (. . . , () . . .))) represents the part of the tape just under and
to the right of the head (a0 is the symbol under the head). The reversed list
L = (((. . . () , . . .) , b2) , b1) represents the part of the tape which sits to the left
of the head. With this representation there is no need for a special symbol to
stand at empty slots on the tape: instead the symbol under the head is empty
when R is the empty list ().

The instruction of Turing machines are implemented as instruction of the
tree machines (in guard-and-action style):

– Write symbol a under the head: (L, (_, R))⇒ (L, (a, R)) | (x, ())⇒ (x, (a, ()))
(the second case extends the tape if we reached the end)

– Move right: (L, (x,R))⇒ ((L, x) , R)
– Move left: ((L, x) , R)⇒ (L, (x,R))
– Check that symbol a is under the head: (L, (a, R))⇒ (L, (a, R))

Therefore, a Turing machines is translated to a tree machine with the same state
and transitions, except the instructions labelling transitions are replaced with
their respective implementation as tree machine instructions.

This translation highlights a point which is occasionally overlooked: Turing
machines are not a very good model of imperative programs. Turing machines
can be simulated in constant time in a purely functional language, and so can
multiple-tape Turing machines. To get a better model of imperative programs,
we shall turn to random-access machines in Section 4.4.

4.2 A finite type for tree machines

In order to build the converse translation of tree machines into Turing machines,
it will be convenient for the set instruction to be presented by a finite set Ψ . To
obtain this finite presentation we will use the zipper instructions from Section 3.3.
To be more specific, we will implement the instruction (i, j) ∈ Φ as a (finite)
sequence of zipper operations which will walk through the tree to apply the
appropriate actions to the appropriate subtrees.

Remember that a zipper is a pair (c, t) of a focused subtree t together with a
reversed tree c representing the necessary context to rebuild the tree. Our goal is
to lift the instructions of Φ so that they apply to the focused subtree instead of
the root of the complete tree. In other words, we are looking for a JiK = (1, i) for
each i ∈ Φ.

This property that JiK = (1, i) acts as a perfectly fine definition for each of
the generators of Φ:

J1K = (1,1)
J()K = (1, ())
JεK = (1, ε)
Jπ1K = (1, π1)
Jπ2K = (1, π2)
JδK = (1, δ)

For the case (i, j) however, in order to avoid introducing infinitely many in-
structions in Ψ , we need to find an alternative definition in terms of the zipper
operations. We define J(i, j)K recursively as follows:

J(i, j)K = left · JiK · up · right · JjK · up

It is a straightforward exercise of symbol pushing to verify that indeed, by
induction, J(i, j)K = (1, (i, j)).

Every instruction i ∈ Φ can be implemented as open · JiK · exit. Therefore we
can take the set Φ as being

Ψ = {open; left; right; up; exit; (1,1) ; (1, ()) ; (1, ε) ; (1, π1) ; (1, π2) ; (1, δ)}

4.3 Tree machines as Turing machines

Translating tree machines into Turing machines is not as direct as the converse.
One way to translate trees into word so that it fits a Turing machine tape is to
use the Polish notations: we take the alphabet to include {p; u} (for pair and
unit respectively). The tree (() , (() , ())) is then translated to pupuu.

As always, giving a concrete definition of a Turing machine – or even of a
translation to Turing machine – is not very easy nor particularly enlightening,
and, in fact, would lead us way over the page limit. On the other hand, equipped
with the finite presentation of Section 4.2, it is quite clear that it can in principle
be done.

Let us sketch how such a construction could be achieved. In a first step we
can ignore the open and exit instruction, and assume we are always working on a
zipper. The rational is that exit · open acts as the identity on a zipper which is
focused at the root, so we may simply represent non-zipper trees as zipper focused
at the root and both instructions become the identity. One may be tempted to
replace calls to exit to test that the context is a u, but this is not even necessary
as it is an invariant of the translation.

To represent the zipper (c, t), the most convenient way is to have two tapes,
one holding c and the other holding t. A third tape will be used to store a counter
to navigate through Polish-notation trees, and a fourth to store intermediate
trees which are to be moved or copied.

The instructions of tree machines are not translated as constant time instruc-
tions. However, they are all in a polynomial P (which depends on the details of

the translation, but is at least of degree 1) of the current size of the tape. Hence,
if the complexity of a tree machine is O(f(n)), then the corresponding Turing
machine has complexity O(P (f(n))× f(n)), which is in the same complexity
class.

Therefore, tree machines and Turing machines have the same complexity
classes. However, the translation from tree machines to Turing machines is non-
trivial both in term of slowdowns of the translated machine and complexity of
the translation itself. It would be quite hard to get an explicit description of
the translation. On the other hand the translation of Turing machines into tree
machines is quite direct. Tree machines fare pretty well on that front.

4.4 Tree machines and random-access machines

Random-access machines – which happen to be yet another instance of Eilenberg
machine – support more natural translations of tree machines: the encoding of
algebraic data types of functional programming languages. In such a translation,
a tree is encoded as an address, at this address there is 0 if the tree is empty,
and 1 if the tree is a pair. In the latter case, the two following addresses contain
the addresses of the two subtrees.

Unfortunately, this translation would not fit these pages either, as it has
to solve the problem of memory allocation and garbage collection in order to
preserve the space complexity of tree machines. Garbage collection can be done
achieved via reference counting [8] since the tree cannot have cycles, but it still
would not make a program under a page long (or anything near it).

Nevertheless, this translation is quite concrete and serves as a good test for
the tree machine. Tree machines, indeed, can implemented in the traditional
complexity model of practical computer and, assuming garbage collection away,
this implementation preserves the complexity of machines. Assuming that garbage
collection is constant time may seem unreasonable, but it is in fact the way
functional programmers think about their programs: as having negligible overhead
due to garbage collection.

This translation also serves to remark a limitation of the tree machine for
space efficiency. Indeed trees can have various representations in a random-
access machine with more or less sharing between subtrees. In the worst case, a
maximally shared subtree is exponentially smaller than its sharing-free equivalent.
Therefore, in an accurate cost model for tree-machine space consumption, the
space occupied by a tree cannot be read on the tree itself: it depends on the
history of how the tree was built. There is no particular problem in defining
such a dynamic space-cost semantics though, see [3] for a much more ambitious
case. It also means that the translation to Turing machines in Section 4.3 is not
accurate as far as space complexity is concerned.

Conversely, it is not difficult to implement a random-access machine as a tree
machine. Random-access machines are composed of arithmetic operations and
an addressed memory. Arithmetic is straightforward, and addressed memory can
be stored in a tree (most likely a trie such as in [7, Chapter 10]).

Random-access machines typically assume constant time arithmetic operations
and memory access. The translation of random-access machines into tree machines
preserves neither. For the case of constant-time arithmetic, the assumption is
not realistic for big numbers, it is actually meant to model the fact that no big
numbers will appear and that bounded arithmetic is sufficient for the modelled
algorithms. To make such an hypothesis in tree machines, they would need to be
outfitted with a primitive notion of integers like random-access machines.

Constant-time memory access is more subtle: it is a reasonable assumption
for a vast majority of programs, yet, a more accurate model may use logarithmic-
time memory access [2]. Logarithmic-time memory access is precisely what is
provided by the tree machine, so it might look as though the superiority of the
random-access machine were illusory. It is not, however, as when a model with
logarithmic-time memory access apply, it will not be a priori reasonable to see
the instructions of the tree machines as running in constant time.

5 Encoding λ-calculus

To conclude, I want to present, with few words, an encoding of λ-calculus in tree
machines to demonstrate that it is really practical to make explicit definitions of
non-trivial machines.

We shall use the simple explicit substitution calculus called λυ-calculus [6].
It uses de Bruijn indices and has three kinds of substitutions: [v] for a term v,
[↑] (read shift) and [⇑ s] (read lift s) for a substitution s.

(λu)v ; u[v]
(λu)[s] ; λ(u[⇑ s])
(uv)[s] ; (u[s])(v[s])
0[v] ; v
(n+ 1)[v] ; n+ 1
0[⇑ s] ; 0
(n+ 1)[⇑ s] ; n[s][↑]
n[↑] ; n+ 1

Let us suppose fixed an encoding for the symbols that we will use in the
encoding of terms: {λ; app; succ; nought; subst; term; lift; shift; ok}. The terms λu
and uv are represented, respectively (λ, u) and (app, (u, v)). The de Bruijn index
2 is represented as (succ, (succ, nought)).

We will use the non-determinism of tree machines to represent the non-
determinism of β-reduction, which is achieved navigating non-deterministically
in λ-terms with zipper-like instructions.

open = u⇒ (() , u)
downλ = (c, (λ, u))⇒ ((c, λ) , u)
downσ = (c, (subst, (u, s)))⇒ ((c, (subst, s)) , u)
left = (c, (app, (u, v)))⇒ ((c, (app, (0, v))) , u)
right = (c, (app, (u, v)))⇒ ((c, (app, (1, u))) , v)

upλ = ((c, λ) , u)⇒ (c, (λ, u))
upσ = ((c, (subst, s)) , u)⇒ (c, (subst, (u, s)))
upapp0 = ((c, (app, (0, v))) , u)⇒ (c, (app, (u, v)))

upapp1 = ((c, (app, (1, u))) , v)⇒ (c, (app, (u, v)))

up = upλ | upσ | upapp0 | upapp1
exit = (() , u)⇒ u
move = downλ + downσ + left+ right+ up
zip = up∗ · exit

The reduction rules are given in a context independent manner:

β = (app, ((λ, u) , v))⇒ (subst, (u, (term, v)))
λσ = (subst, ((λ, u) , s))⇒ (λ, (subst, (u, (lift, s))))
appσ = (subst, ((app, (u, v)) , s))⇒ (app, ((subst, (u, s)) , (subst, (v, s))))
noughtterm = (subst, (nought, (term, v)))⇒ v
succterm = (subst, ((succ, n) , (term,_)))⇒ succ(n)
noughtlift = (subst, (nought, (lift,_)))⇒ nought
succlift = (subst, ((succ, n) , (lift, s)))⇒ (subst, ((subst, (x, s)) , shift))
noughtshift = (subst, (nought, shift))⇒ (succ, nought)
succshift = (subst, ((succ, n) , shift))⇒ (succ, (succ, n))
varshift = nouhgtshift | succshift
σ = λσ | appσ | noughtterm | succterm | noughtlift | succlift | varshift

A step of β-reduction is represented as one β rule followed by eagerly applying σ
rules. To ensure that explicit substitutions have been eliminated, substitution-free
terms are marked with ok.

noughtok = nought⇒ (ok, nought)
succok = (succ, n)⇒ (ok, (succ, n))
λok = (λ, (ok, u))⇒ (ok, (λ, u))
appok = (app, ((ok, u) , (ok, v)))⇒ (ok, (app, (u, v)))
ruleok = noughtok + succok + λok + appok
checkok = (ok, u)⇒ u

A step of β-reduction is encoded as the following machine2:

allσ = (move∗ · (1, σ))∗
zipok = (move∗ · (1, ruleok))∗ · exit · checkok
step = open ·move∗ · (1, β · open · allσ · zipok) · zip

6 Conclusion

The tree machine is designed to stand as a standard model of complexity for purely
functional algorithms, much like the random-access machine is for imperative
algorithms. At the cost of not being quite as minimalist as Turing machines,

2 Notations are abused a little in this example, as (·, ·) is used with relations which are
not instructions from the type Φ. It can be made formal using Section 4.2.

tree machines are quite expressive and make it reasonably easy to write explicit
machines to implement desired behaviours.

In fact, if in this article I have given direct descriptions of machines, a
technique, favoured by Danvy, allows to compile programs written in a very
small purely functional idealised Scheme language, with full recursion and higher
order, into a tree machine. This is achieved by apply sequentially to the program
the following transformations: defunctionalisation, continuation-passing style
transformation, and defunctionalisation again [1]. This sequence of transformation
yields a mutually recursive first-order program where all calls (in particular
recursive calls) are tail, while preserving the structure of the program. At this
point we are one tiny step shy of having a tree machine: function environments
must be reified as data and variables as accessors in this data. Then, using the
guard-and-action presentation of tree machines, we can build a machine with
just one state per function in the transformed program (the functions of the
original program plus one or two administrative functions). Yielding another,
more indirect, way to produce explicit tree machines.

References

1. Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional
correspondence between evaluators and abstract machines. In Proceedings of the 5th
ACM SIGPLAN international conference on Principles and practice of declaritive
programming - PPDP ’03, number March, pages 8–19, New York, New York, USA,
2003. ACM Press.

2. Alok Aggarwal, Bowen Alpern, Ashok K Chandra, and Marc Snir. A model for
hierarchical memory. Proceedings of the nineteenth annual ACM symposium on
Theory of computing, pages 305—-314, 1987.

3. Guy Blelloch and Robert Harber. Cache and I/O efficent functional algorithms. In
Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages - POPL ’13, page 39, New York, New York, USA, 2013.
ACM Press.

4. Samuel Eilenberg. Automata, languages, and machines. 1974.
5. Gérard Huet. Functional Pearl: The Zipper. Journal of Functional Programming,

7:7–5, 1997.
6. Pierre Lescanne. From λσ to λυ: a journey through calculi of explicit substitutions.

In Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages - POPL ’94, pages 60–69, New York, New York, USA, 1994.
ACM Press.

7. Chris Okasaki. Purely functional data structures. Cambridge University Press, 1999.
8. Paul R Wilson. Uniprocessor garbage collection techniques. Memory Management,

1992.

	The tree machine

