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Abstract—Variance computation is commonly used in many
fields like in image processing to improve local contrasts. This
article is not only about developing and placing an algorithm of
variance computation for graphical processors, it will also intro-
duce its optimisation in terms of precision and computing time
in relation to architectural constraints of graphical processors.
Our algorithm enables to improve complexity in O(N logN) and
brings a speedup of 112 compared to the classical formulation
and of 4 regarding the optimized Pairwise algorithm.

Index Terms—variance computation, kernel computation,
GPU, image processing, local contrasts enhancement

I. SIGNIFICANCE OF VARIANCE COMPUTATION

Variance computation is commonly used in many fields.

Simon and Litt [1] use it in the aerospace domain. Vari-

ance computation is therefore utilized to track aircraft engine

parameters in real time to improve anomalies detection and

subsequently the engine maintenance. For Restrepo and al. [2],

variance computation is employed to identify objects through

a 3D volume analysis. On the other hand we also have

Stünckler and Behnke [3] who applied variance computation

to a simultaneous localization and mapping algorithm. All

these examples are a just a few samples but globally variance

computation is seen in the ANOVA1 domain where it plays an

important role in data analysis and mining. More specifically

in image processing, Singh and al. [4], [5], Chang and Wu [6]

or Cvetkovic and al. [7]–[10] use the variance to improve local

contrasts. This technic brings well contrasting images, where

over-exposed and under-exposed areas are destorted. However,

a certain attention must be drawn to problematics like adding

noises in images or creating rings artefacts observable in the

figure 1 from wrong variance utilization. This article shows

the development of a variance computation algorithm, its setup

on GPU2 and its practical application to image processing to

improve local contrasts. We draw a specific attention to how

variance is computed to handle the noise and the ring artifacts

detailed earlier. In the end, our solution considers:

• the precision of floating point operations which is a

potential source of visual artifacts

• the amount of arithmetics operations and memory com-

munications impacting the execution time on graphical

processors

1analysis of variance.
2Graphical Processing Unit

Although Benett and al. [11] showed some interest in

parallel variance computation, their research was based on

Intel Xeon computing clusters. As a result their architecture

differs from the one for GPU.

The solution that we present here reduces the usual com-

plexity from such algorithm in O(N2) to a complexity in

O(N log(N)) for both memory communications and arith-

metics operations.

Figure 1. Example of ring artifacts

II. CONTEXT – LOCAL CONTRAST IMPROVEMENT IN

IMAGE PROCESSING

Figure 2. Two pixels kernel ray

In this article, the variance computation applies to an image

processing algorithm to improve local contrasts. Our aim is to

render all the computations in real time for HD video sequence

at 25 images per second. That means we have to compose with

1920× 1080 pixels in 40ms. We take into account Singh and

al. [4], [5], Chang and Wu [6] and Cvetkovic and al. [7]–

[10] solutions to limits noises et rings artefacts. By doing
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so, we need to compute several local variance kernels sizes

simultaneously which will increase the quantity of needed

computations and communications.

The local variance computation implies for each element

of a given image, to compute the variance of a kernel with

a specific size. The figure 2 shows a two-pixel ray kernel

composed with orange circled pixels and a red one. The latter

represents the kernel center as well as the element concerned

by the kernel computation. So this computation is applied to

each pixel of the image and as a consequence we have as

much inner data as outter data for the representative algorithm.

Eventually for red circled pixels near the border of the image,

the orange circled pixels which are out of the image will be

mirrored. This operation is left to GPU specialized hardware

units.

III. VARIANCE COMPUTATION ALGORITHMS

Pébay [12] and Cha and al. [13] showed some interest

in to different variance computation algorithms as well as

there numerical stability. Variance computation formulas listed

below are used for each element of an image to compute their

local variance.

Algorithm 1 : usual variance formula

σ2
ϕ =

∑n
i=1(ϕi − μϕ)

2

n
(1)

μϕ =

∑n
i=1 ϕi

n
(2)

For a given variance kernel, N represents the number of

elements in this kernel, ϕi is the element number i, μϕ the

mean of the domain and σ2
ϕ is the squared deviation also called

the variance.

With this algorithm, the local mean computation (2) is invari-

ant in calculating the variance (1). With this in mind, it is

advised to extract the carried loop calculating the equation (2)

from the outter loop calculating the variance given by the

equation (1). The dependence brought by this optimisation im-

proves the global number of operations and communications.

However it requires to execute these two loops sequentially.

The kernel elements are read twice and as a consequence this

doubles the quantity of memory accesses. Eventually, the dis-

tributivity of these two loops is poor due to the typical carried

dependence of loop reductions. Communication and operation

number cost functions extracted from our implementation are

given by formulas (3) and (4).

CostComm = Imgsize × (2N + 1) (3)

CostOp = Imgsize × (4N + 2) (4)

Algorithm 2 : Kœnig formula

To the opposite of the first algorithm, the Kœnig formula (5)

presents two independent loops (2) and (6). These have the

same number n of iterations and read the same data in the

same order ϕi. So, we have all the requirements to apply a loop

fusion, which improves the data locality and reduces memory

communications. The result is clearly visible by comparing

the cost functions (3) and (7).

σ2
ϕ = μϕ2 − μ2

ϕ (5)

μϕ2 =

∑n
i=1 ϕ

2
i

n
(6)

However Chan and al. [13] have demonstrated that the

numerical precision of this algorithm is less stable than the

first one. Indeed, the more the kernel size increases, the bigger

and the closer the value of μϕ2 and μ2
ϕ. In consequence, the

substraction of these two values creates a small value that is

prone to high truncations. Kirk and al. [14] and Collange and

al. [15] explain this phenomenon applied to the floating point

computation units of the GPU. Finally, the solution proposed

by Whithead and al. [16], which is to sort data by numerical

order in the way to improve floating point computation preci-

sions, can’t be used here. If we were to use their solution, the

consequence would be to increase the number of arithmetic

operations and memory communications. The arithmetic cost

function given by our implementation of the Kœnig formula

is represented by the equation eqrefcoutOp2.

CostComm = Imgsize × (N + 1) (7)

CostOp = Imgsize × (3N + 4) (8)

Algorithm 3 : the online algorithm

M2,n = M2,n−1 + (ϕn − μn−1)× (ϕn − μn) (9)

σ2
ϕ =

M2,n

n
(10)

The online algorithm introduces a new formula (9) in the

variance computation with M2,n. This formula has the benefit

of being more stable than Kœnig’s and it always goes through

the kernel data once. On the other hand, the dependence

between M2,n and M2,n−1 reduces the distributivity of this

algorithm with the sequential scan of data. The recursive

aspect of this approach has very few value for the SIMD

architecture of the graphical processors. The equation (10)

brings the final variance result. Finally, equations (11) and (12)

explain the arithmetic operations and memory communications

cost functions.

CostComm = Imgsize × (N + 1) (11)

CostOp = Imgsize × (6N + 2) (12)
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Algorithm 4 : the Pairwise algorithm

M2,ϕ1,2n = M2,ϕ1,n+M2,ϕn+1,2n+
1

2n

(
n∑

i=1

ϕi −
2n∑

i=n+1

ϕi

)2

(13)

The Pairwise algorithm proposed by Chan and al. [13]

spreads the online algorithm. The formula (13) applied to our

image processing application, make it possible to compute the

global variance of two equal size subsets based on their own

means and variance. This algorithm has a numerical stability

equal to the online algorithm. However, it benefits from

an improved parallelism given that M2,ϕ1,n
and M2,ϕn+1,2n

present no data dependances. On the other hand, this method

as described by Chan and al., is more adapted to variance

computation of a global set. This data reduction type algorithm

generates one result from a set of multiple data. In this case

the data quantity is divided by two at each iteration to finally

generates a single variance data. But as mentioned before

our kernel based algorithm generates a variance result for

each element of the image. In other words we generate as

many output data as input data. As a consequence, the exact

use of the Pairwise algorithm with local variance compu-

tation involves to duplicate kernels elements in the way to

reduce them. To conclude, this approach slashes the memory

communication rate for an improved parallelism. Memory

and arithmetic operations cost functions are given by the

equations (14) and (15).

CostComm = Imgsize × log2 N × 6 (14)

CostOp = Imgsize × log2 N × 8 (15)

IV. AN OPTIMIZED ALGORITHM FOR GRAPHICAL

PROCESSORS

A. Kernel optimisation
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Figure 3. Common pixels rate for two adjacents kernels

The above figure 3 highlights the common pixels ratio for

two consecutive kernels implied in variance computation. The

algorithmic kind curve reveals that this quantity of redundants

memory communications grows quickly to be close to 100%

for a kernel size higher than 5 pixels. These redundants mem-

ory communications added to those of non consecutive kernel

affect runtime performances of variance kernel algorithms by

unnecesarily over using the memory bandwidth.

Moreover, as Hennessy and Patterson have noted in

their well-known Computer Architecture A Quantitative Ap-
proach [17], for the last decades, memory performances have

improved slowly compared to those of computing units. In

consequence, data memory bandwidth in algorithms is now

critical in modern high performance architectures like GPUs.

Also, it is essential to minimize redundants memory commu-

nications in our variance kernel algorithm. With this aim in

mind, we have used two optimisations. Both consider ring arte-

facts problems by applying highest weighting to central kernel

element. Weightings decrease progressively as the concerned

kernel element is far from the central element. So, the lowest

weighting is applied to kernel extremities.
1) Kernel separation: In order to reduce the redundants

memory communications, we firstly propose to apply the

property defined by equation (16). This property enables to

reduce the quantity of memory communication by separating

a kernel of r length ray to two 2r + 1 length vectors. In

this way, we have transformed (2r + 1)
2

communications

which corresponds to a O(N2) complexity to 2 × (2r + 1)
communications represented by a O(N) complexity. The first

one corresponds to the blue curve in the figure 4 and the

second to the red curve. The application of these two vectors

is necessarily successive but the equation (16) is commutative.

In other words, it doesn’t matter if we start with the vertical

vector or the horizontal one.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 ... n ... 2 1
2 4 ... 2n ... 4 2
... ... ... ... ... ... ...
n 2n ... n2 ... 2n n
... ... ... ... ... ... ...
2 4 ... 2n ... 4 2
1 2 ... n ... 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
...
n
...
2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊗ ( 1 2 ... n ... 2 1

)
(16)

2) Vector decomposition: In addition to the kernel separa-

tion, we have used the principle exposed by the formula (17)

in order to reduce again the memory communications. Our

aim is to decompose the two variance vectors obtained in

the previous optimisation into a serie of successive three

elements sparse vectors. These sparse vectors are generated
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with a common pattern. For each vector central element we

apply a weighting of two and for each vector extremity

we apply a weighting of one. The gain obtained with this

optimisation is represented by the brown curve in the figure 4.

The red curve from the first optimisation is for two 2r + 1
length vectors. So, the number of memory communications

associated is 2× (2r + 1) which gives us a O(N) complexity.

By adding this second optimisation, each of these two vectors

is decomposed to 2 × log2(r + 1) + 1 communications. The

new complexity obtained is now O(log(N)) for ech kernel.

Finally, the formula (17) is commutative like the formula (16).

This global commutativity is beneficial to multiple kernel sizes

computation in order to reduce ring artefacts. In this way, by

using the first and the smallest vertical sparse vector with the

horizontal one, we can obtain the first and the smallest variance

kernel. This kernel is the first scale. By using it with the

seconds vertical and horizontal sparse vectors, we can obtain

a second greater kernel scale and so on. As a consequence,

the cost in terms of memory communications and arithmetics

operations for this multi-scales computation is only the one

for the greatest variance kernel scale.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
...
n
...
2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝ 1

2
1

⎞
⎠⊗

⎛
⎜⎜⎜⎜⎝

1
0
2
0
1

⎞
⎟⎟⎟⎟⎠⊗ ...⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
...
0
2
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)
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Figure 4. Effect of kernel separation and vector decomposition on memory
communications. The blue curve is the initial form, the red one corresponds to
the first optimisation and the brown one to the cumulation of first and second
optimisations.

M2,ϕ1,3n = M2,ϕ1,n + 2M2,ϕn+1,2n +M2,ϕ2n+1,3n

+
1

2
(μ1,n − μn+1,2n)

2

+
1

4
(μ1,n − μ2n+1,3n)

2

+
1

2
(μn+1,2n − μ2n+1,3n)

2 (18)
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Figure 5. Arithmetic operations and memory communications complexities
depending to kernel size. The dashed vertical lines represent the kernel ray
size evolution.

B. Our Threewise algorithm

By modifying the Pairwise algorithm and taking into ac-

count the previous two optimisations, we have developed

the formula (18). Due to the parallel aspect of the Pairwise
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algorithm and its numerical stability, our threewise algorithm

is a good candidate to GPU architecture. Our formula is

better appropriate to 3 elements sparse vectors with one of

them having a weighting of two. Memory communications

for each kernel are deducted from the cost function (19)

and the arithmetic operations from the cost function (20).

The resulting algorithm is described in Algorithm 1. Cost

functions depending on kernel size is described in figure 5.

In order to prove the benefit of the threewise algorithm, we

have applied our sparse vectors double optimisations to the

pairwise algorithm. We can observe that these two algorithms

are most efficient than the others described previously in this

article for a kernel ray greater than 3 pixels. Lastly, we can

notice that the threewise algorithm is prone to lower arithmetic

operations and memory communications quantity compared to

the pairwise algorithm. This can be explained by the fact that

we process with three elements per iteration for our solution as

opposed to with only two elements for the pairwise solution.

CostComm = Imgsize × 2× (log2 (N + 1)− 1)× 4 (19)

CostOp = Imgsize × 2× (log2 (N + 1)− 1)× 20 (20)

Input/Output: mImg is a WIDTH ×HEIGHT
image initialized with original data

Input/Output: vImg is a WIDTH ×HEIGHT image

initialized to 0

1 delta← 1;
2 for s← 0 to STEPS do

/* Horizontal vector pass */
3 for y ← 0 to HEIGHT do
4 for x← 0 to WIDTH do
5 deltaA←

mImg[x][y] − mImg[x− delta][y];
6 deltaB ←

mImg[x][y] − mImg[x+ delta][y];
7 deltaC ←

mImg[x+ delta][y] − mImg[x− delta][y];

8 vImg2[x][y]← vImg[x][y] + vImg[x−
delta][y] + vImg[x+ delta][y];

9 vImg2[x][y]←
vImg2[x][y] + (2× detlaA× deltaA+ 2×
detlaB × deltaB + detlaC × deltaC)/4;

10 mImg2[x][y]← mImg[x][y] + mImg[x−
delta][y] + mImg[x+ delta][y];

/* Vertical vector pass */
11 Same x and y loops are run here but delta is applied

to y. Data are read from mImg2 and vImg2. Results

are written in mImg and vImg;

12 delta← delta× 2;

Algorithm 1: Threewise algorithm for variance kernel com-

putation on GPU.
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Figure 6. Theorical placement of the Threewise algorithm on the Patterson’s
roofline model for the NVIDIA Quadro K2000 architecture.
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Figure 7. Variance algorithms execution times comparison for a 80MPixels
image. The vertical dashed line represents a common 15 pixels kernel ray
size.

V. EXPERIMENTAL RESULTS

Our purpose is now to experimentally validate the benefits

of our kernel variance algorithm on a GPU architecture. The

algorithms listed in this article have been translated to CUDA

7.0 and we have used a NVIDIA Quadro K2000 GPU card

for our experiments. The latter is composed of two NVIDIA

Kepler SMX processors, each of them carrying 192 cores. The

analysis of the threewise algorithm assembly code generated

by the NVIDIA compiler brings us a ratio of 4.5 for the

number of arithmetic instructions per data bytes communicated
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from memory. This metric defined as Arithmetic Intensity by

Patterson [17], [18] can be used to define the limiting factor

of an algorithm for a given architecture. We can notice in

the figure 6 that our algorithm is limited by the memory

bandwidth but is really close to the transition point. After that

point, our algorithm would have been limited by computation

capacities. As a consequence, we theorically almost use the

full capacity of our GPU card and the execution time of

our algorithm would depend on the memory communications

optimisations. To compare our algorithm with the others, we

have used a 80MPixels image and varried the kernel ray size.

The corresponding execution times can be observed in the

figure 7. We can note that the pairwise and the threewise
algorithms have a O(N log(N)) curve line unlike the others

which have a O(N2) curve line as expected. The pairwise
algorithm is more efficient for a kernel ray size higher that

7 pixels. However, our algorithm is almost the most efficient

for every kernel ray size. This can be explained by a better

instruction pipeline feeding which is typical to loop unrolling.

For our application, we have then used a 1920 by 1080

pixels HD image with a 63 pixels kernel ray. The speedup

and execution time for each algorithm can be observed in

the figure 8. Our algorithm presents a speedup of 112 for a

27 ms runtime compared to the usual formula with a 3028 ms.

Finally, our algorithm presents a speedup of 4 when compared

to the optimized pairwise. To conclude, we remember that the

Threewise algorithm has an execution time lower than 40 ms

and as a consequence is a good candidate to real-time image

processing for HD 25 fps video format as needed.
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Figure 8. Variance algorithms execution times comparison for a HD image.

VI. CONCLUSION

The Threewise algorithm presented in this article is adapted

to kernel variance computation for image processing on mas-

sively parallel graphical processors. This algorithm is deducted

from the Pairwise algorithm and so takes over its numerical

stability. We have applied two optimisations to these algo-

rithms. The first one is the separation of the kernel in two

vectors. The second one splits these two latter vectors in a

serie of sparse vectors. These two optimisations used together

contribute to reducing the global memory communications and

the global arithmetic operations complexities from O(N2) to
O(N logN). Moreover, the highly parallel orientation of our

Threewise algorithm added to its intensive memory commu-

nications reduction, best fits to GPU architecture. Finally, the

experimentation based on a NVIDIA Quadro K2000 and pre-

sented in this article, has comfirmed our theorical expectations.

These optimisations effectively offer a 112 speedup compared

to the common variance algorithm with only 27 ms execution

time for a high definition image on this architecture.
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