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Abstract. Numerical solution methods for electromagnetic scattering
problems lead to large systems of equations with millions or even billions
of unknown variables. The coefficient matrices are dense, leading to large
computational costs and storage requirements if direct methods are used.
A commonly used technique is to instead form a hierarchical representa-
tion for the parts of the matrix that corresponds to far-field interactions.
The overall computational cost and storage requirements can then be
reduced to O(N log N). This still corresponds to a large-scale simulation
that requires parallel implementation. The hierarchical algorithms are
rather complex, both regarding data dependencies and communication
patterns, making parallelization non-trivial. In this chapter, we describe
two classes of algorithms in some detail, we provide a survey of existing
solutions, we show results for a proof-of-concept implementation, and we
provide various perspectives on different aspects of the problem.

The list of authors is organized into three subgroups, Larsson and Zafari (coordination
and proof-of-concept implementation), Righero, Francavilla, Giordanengo, Vipiana,
and Vecchi (definition of and expertise relating to the application), Kessler, Ancourt,
and Grelck (perspectives and parallel expertise).
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1 Introduction

In this chapter, we consider how efficient solution algorithms for electromag-
netic scattering problems can be implemented for current multicore-based and
heterogeneous cluster architectures. Simulation of electromagnetic fields [42] is
an important industrial problem with several application areas. One of the most
well known is antenna design for aircraft, but electromagnetic behavior is impor-
tant, e.g., also for other types of vehicles, for satellites, and for medical equip-
ment. A common way to reduce the cost of the numerical simulation is to assume
time-harmonic solutions, and to reformulate the Maxwell equations describing
the electromagnetic waves in terms of surface currents [49]. That is, the resulting
numerical problem is time-independent and is solved on the surface of the body
being studied, see Fig. 1 for an example of a realistic aircraft surface model.

Fig. 1. Surface currents on an aircraft model from a boundary element simulation with
around 2 million unknowns.

The size N of the discretized problem, which for a boundary element dis-
cretization takes the form of a system of equations with a dense coefficient
matrix, can still be very large, on the order of millions of unknowns going up to
billions, and this size increases with the wave frequency. If an iterative solution
method is applied to the full (dense) matrix, the cost for each matrix-vector
multiplication is O(N?), and direct storage of the matrix also requires mem-
ory resources of O(N?). Different (approximate) factorizations of the matrices,
that can reduce the costs to O(Nlog N) or even O(N), have been proposed
in the literature such as the MultiLevel Fast Multipole Algorithm (MLFMA),
see, e.g., [43,51]; FFT-based factorization, see, e.g., [50,57]; factorizations based
on the Adaptive Cross Approximation (ACA), see, e.g., [67]; or based on H2
matrices as the Nested Equivalent Source Approximation (NESA) [37-39].

All these approximations can be seen as decomposing the original dense
matrix into a sparse matrix accounting for near field interactions, and a hier-
archical matrix structure with low storage requirements accounting for far field
interactions.
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A large investment in terms of research and development has been made in
constructing and implementing these rather complex algorithms efficiently. A
large part of this effort was made before the advent of multicore architectures.
Then, the focus was much more on minimizing the amount of computations,
optimizing for a powerful server, potentially with a few processors (cores). Now,
clusters are built from regular computers with large numbers of cores, and some-
times the additional complexity of accelerators. Memory bandwidth is often the
limiting factor in this case. The question for companies as well as researchers
with advanced application codes is how to make these codes run on their own
or their customers’ clusters, with the least effort in terms of changes to the
code, and with the maximum output in terms of utilization of the cluster and
computational efficiency.

Some of the properties of the hierarchical matrix algorithms that make par-
allel implementation challenging are first the general form of the algorithm, with
interleaved stages of interactions in the vertical direction between parents and
children in a tree structure, and horizontally between the different branches at
each level of the tree. The stages typically have different levels of parallelism and
work loads, and there is a bottleneck when the algorithm reaches the coarsest
level of the tree structure, and the amount of parallelism is the smallest. That
is, the algorithm itself is generally heterogeneous. Furthermore, the tree can be
unbalanced in different ways due to the geometry of the underlying structure,
and the groups at the finest level can contain different number of unknowns
depending on how the scattering surface cuts through space. An overview of the
challenges inherent in the implementation of the fast multipole method (FMM),
which is one of the algorithms in this class, on modern computer architectures
can be found in [13].

In the following sections, we first provide a high-level description of two
types of hierarchical algorithms for electromagnetic scattering. Then in Sect. 3
we provide a survey of literature and software in this area. Section 4 discusses two
task-parallel implementations of a simplified algorithm for shared memory. Then
in Sect. 5, different perspectives regarding the question of how to eventually port
the software to clusters and heterogeneous architecture are given.

2 Two Classes of Algorithms and Their Properties

In this section, we will go deeper into the MLFMA and NESA algorithm classes,
and describe their properties from the parallelization perspective. For the math-
ematical details of the algorithms, see [43] for MLFMA and [37-39] for NESA.

2.1 Interaction Matrices

Solving a system of equations for the unknown surface currents given measured
field values can be seen as an inverse problem. When using an iterative method,
we transform the inverse problem to repeated solutions of the forward problem,
which is easier to address.



Parallelization of Hierarchical Matrix Algorithms 39

The forward problem consists of computing an electromagnetic field given
a distribution of sources/charges. We will use two examples to make it more
concrete. A well known model problem is to compute the electrostatic potential,

N

$(x) =Y K(z,x))q;, (1)

j=1

generated by the point charges g; located at the points ;. The kernel K(-,-),
which is logarithmic in two dimensions and proportional to the inverse distance
in three dimensions, represents the interaction between the field points and the
charges.

The corresponding scattering problem that is of real interest in industry and
for research has a similar structure and consists of computing the electric and/or
magnetic fields generated by surface currents on for example a metallic object
such as an aircraft. We write this in simplified form as

E(r)= /89 <G(r,r’)j(r') + %V (G(r, ")V .j(r’))> dr’, (2)

where 7 is a point in space, 92 is the surface of the object, and G(-,-) is a
Green’s function.

To render the problems tractable for computer simulation, they are dis-
cretized. In the first case, we already have discrete charges. In the second case,
a boundary integral formulation of the problem is used, where we represent the
fields and surface currents by a set of basis functions v; and corresponding coef-
ficients, which we denote by F; and g;, j = 1,..., N. Henceforth, we will refer
to g; as sources, and to individual basis functions as locations. The fields are
evaluated in the same discrete locations as where the sources are located. This
allows us to express the forward problem as a matrix—vector multiplication

E=Zq, (3)

where F is the vector of the field variables, Z is an N x N interaction matrix
where element z;; describes the contribution from a unit source at location j to
the field at location 4, and ¢ is the vector of source values.

2.2 The Hierarchical Algorithm

The basis for the fast algorithms is that interactions between locations near to
each other are stronger then distant interactions. In the algorithms, near-field
interactions are computed directly, while far-field interactions are approximated
in such a way that the required storage and the amount of computations is
decreased while still respecting a given error tolerance.

The computational domain is hierarchically divided into groups (boxes),
which can be represented as an oct-tree (quad-tree in two dimensions) with
levels £ = Ly, ..., lnmax. Since the charges are located only on the surface of the
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body, many of the groups, especially on the finer levels, are empty of charges,
and are pruned from the tree. When we construct the hierarchical algorithm,
we consider interactions between groups. We let E; denote the field variables in
group i at level £y, and we let EJ be the contribution from group j at level

lmax to E;, such that
E; =) EI. (4)
J

Using the direct matrix—vector multiplication, we have that
E] = Z; ;Q;, (5)

where Z; ; is a matrix block, and @); is the vector of charges in group j at level
lrmax- In the hierarchical fast matrix—vector multiplication algorithm, only the
near-field interactions are computed directly. These are here defined as interac-
tions between groups that are neighbours at the finest level. The far-field inter-
actions are instead approximated. At each level of the tree structure, starting
from level Lg, the far-field groups are identified as those that are not neighbours
to the target group. As much of the far-field interaction as possible is treated at
each level, to minimize the total number of groups to interact with. In Fig. 2, we
show the layout of the near and far-field for computing the field at one location
(the black box) in a two-dimensional geometry.

i 2
< P
—_|
g
N P
e Y

Fig. 2. Illustration of a two-dimensional domain that is hierarchically divided into
three levels of boxes. Charges are located on the wavy curve. For the black target box,
the near-field consists of the six dark gray neighbouring boxes. The far-field at each
level consists of the four large, five medium, and five small light gray boxes that are
not neighbours of the target box.

The far-field approximation for one interaction has the following general form

Jj (). ~ . Cimax /41 v g Crnax—1 Y
Bl =2iQ; = R Py Pp Loy Py Pl SiQs, (6)
descending ascending

and can be described in terms of the five steps described in Algorithm 1.
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Radiation:

The sources @); are converted into an intermediate representation

Xjmex = 85Q;.

Source transfer:

The intermediate representation is propagated up through the parent groups
Xf_l =P, ' X} until level I, where the far-field interaction takes place.
Translation:

The far-field interaction between groups i and j is computed at level £. The
result is an intermediate field representation Y’ = ’Tfj X f

Field transfer:

The intermediate field representation is propagated down through the child
groups Yf“ = PfHYf until the finest level is reached.

Reception:

The intermediate field representation is evaluated at the actual field
locations, Ef = Rin‘““".

Algorithm 1. The algorithm for computing one interaction term.

If we change the view, and instead see the algorithm from the perspective of
one particular group at level ¢ that takes part in several interactions, the work
related to that group can be expressed as Algorithm 2.

Upward Phase:
if ¢/ = (. then
‘ Compute Xf"‘a" = 5;Q); for local sources.
else
| Receive source contributions from all child groups.
end

if £ > Ly then
| Send accumulated source contribution to parent.

end
Translation Phase:
‘ Compute Y = Ti‘ij f according to interaction list.

Downward Phase:

if ¢ > Ly then

| Receive field contribution from parent.
end

if / < . then
| Send field contribution to all child groups.

else
‘ Compute E; = Rij"‘a" for local target points.

end

Algorithm 2. The algorithm seen from the view of one particular group.
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For the parallel implementation, there are several relevant aspects to keep in
mind. For the upward and downward phases, communication is performed ver-
tically in the tree, between parent and child groups. The translation operations
on the other hand need horizontal communication. Due to the hierarchical struc-
ture, each group has an interaction list of limited size. The three phases of the
algorithm can be overlapped, since different groups complete the phases at dif-
ferent times. Even more important is that the near-field interactions for disjunct
groups are independent and can be interspersed with the far-field computations.

The memory savings that the fast algorithms provide stem from the fact that
the far-field part of the interaction matrix is replaced with the operators in (6).
These are the same for groups that have the same position relative to each other.
That is, only a limited number of operators are needed at each level.

2.3 Specific Properties of the NESA Algorithm

In the NESA algorithm, all of the far-field operations consist in expressing
sources and field in terms of equivalent charges. The actual sources in a group
at level £i,.x can through a low rank approximation be represented by a set of
equivalent sources that generate a matching field at some control points located
at an exterior test surface. In the same way, the equivalent sources in a child
group can be represented by another set of equivalent sources at the parent
group. This is schematically shown for a two-dimensional problem in Fig. 3. The
number of equivalent charges @ is the same in each group, which is why we can
save significantly in the far-field computation. The translation and field trans-
fers are managed similarly. We will not go into all details here, instead we refer
to [37].
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Fig. 3. A parent group and one of its children are illustrated. The points on the solid
circles are where the equivalent sources are located, and the points on the dashed circle
are where the fields are matched.

To understand the computational properties of the NESA algorithm, we char-
acterize each operation in terms of how much memory it needs to load counted in
double precision numbers, and how many floating point operations (flop) are per-
formed. We also provide the computational intensity, in flop/double. The results
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Table 1. Characterization of the matrix—vector products in the NESA algorithm. The
number of sources in group j is denoted by n;.

Operator ‘ Data size ‘ Compute size ‘ Intensity

Near field

Zi.j ‘ g X N ‘ 2n;mn; ‘ 2
Far field

Sj Qxn; |2n;Q

Pt QxQ 2Q°
T QxQ 2Q°
P QxQ |2¢°
R; n; X Q 2n;Q

NN NN N

are listed in Table 1. All of the operations in the NESA algorithm are dense
matrix—vector products, with the same computational intensity of 2 flop/dou-
ble. For modern multicore architectures, a computational intensity of 30—40 is
needed in order to balance bandwidth capacity and floating point performance,
see for example the trade-offs for the Tintin and Rackham systems at UPPMAX|
Uppsala University, calculated in [64]. This means that we need to exploit data
locality (work on data that is cached locally) in order to overcome bandwidth
limitations and scale to the full number of available cores.

2.4 Specific Properties of the MLFMA Algorithm

In the MLFMA algorithm, the intermediate representation of sources and fields
is given in terms of plane wave directions & = (6, ¢), where 6 is the polar angle,
and ¢ is the azimuthal angle in a spherical coordinate system. When computing
far-field interactions, the Green’s function can be represented using an integral
over the directions, which numerically is done through a quadrature method.
The accuracy of the approximation depends on the number of directions that
are used. A difference compared with the NESA method is that the number of
directions that are needed scale with the box size.

Table 2. An example of the number of directions N, needed at each level in the
MLFMA algorithm, starting from the finest level £ = fmax.

max — 410 |1 2 |3 |4 5 6 7 8 9
L, 5 |7 |10 |15 |23 |38 |66 120 224 428
Ny 72128 242|512 | 1152 | 3042 | 8978 | 29282 | 101250 | 368082

To compute the number of directions needed for a box at level ¢, we first
compute the parameter Ly from the wave number of the electromagnetic wave,
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Fig. 4. A unit sphere discretized for L, = 23 with 24 points in 6 (latitudes) and 48
points in ¢ (longitudes).

the diagonal d; of the box, and the desired error tolerance 7 [43, Sect. 5.3]. Then
the box is discretized with Ly, + 1 points in the #-direction and 2L, + 2 points in
the ¢-direction giving a total number of N, = 2L2 + 4L, + 2. Using a realistic
tolerance 7 = le — 4 and an appropriate box size for the finest level leads to
the sequence of sizes given in Table 2. Figure4 shows the discretized sphere for
Ly = 23. The wide range of sizes for the representations at different levels does
pose a challenge for parallel implementations.

The interpolation step between parent and child or vice versa can be real-
ized in different ways. Here, we consider the Lagrange interpolation method
described in [43]. Then the value at one point at the new level is computed using
the m nearest neighbours in each coordinate direction. The operations of one
interpolation step are shown schematically in Fig. 5.

Fig. 5. To interpolate the data (middle) from a child L = 10 to a parent L = 15, a
sparse interpolation matrix (left, right) is applied to each of the data dimensions. The
matrix sizes are here 32 x 22, 22 x 17, and 17 x 16. The data matrix is extended with
m/2 columns to each side to manage the periodicity at the poles.

Similarly as for the NESA algorithm in the previous subsection, we charac-
terize the work performed during the algorithm and evaluate its computational
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Table 3. Characterization of the steps in the MLFMA algorithm. The number of
sources in group j is denoted by n;.

Operator ‘ Data size ‘ Compute size ‘ Intensity
Near field
Z—L',j ‘ ni; X n; ‘ 271-;11]' ‘ 2
Far field
Sj Ng X N 27’LjNg 2

2
P (2Lex L) | 2m (2LeLe—y +2L2.,) | 2m (Lgl + (%) )
T 2(2L¢ x Le) | (2L7) 0.5

2
P [(2Le x Le) | 2m (2LeLess +2L3,,) | 2m (%1 + (A )
Ri n; X Nz 2n¢Ng 2

intensity. The results are given in Table 3. The radiation and reception steps are
matrix—vector products also in this case. The interpolation steps have a higher
computational intensity. For m = 6 and the child to parent operation, we get
40-66 flop/data, while for the parent to child operations, we get 10-15 flop/data.
The translation step is often a bottleneck in parallel implementation. It is an
elementwise multiplication with an intensity less than one flop/data.

3 State of the Art

There is a rich literature on parallel implementation of hierarchical matrix algo-
rithms. Many of the implementations are aimed at volume formulations (parti-
cles/charges are located in a volume), as opposed to surface formulations as for
the scattering problem. The volume formulation is more likely to have a large
number of particles in a group, and a more well-balanced tree structure.

The most common parallelization approach, targeting distributed memory
systems, is to partition the tree data structure over the computational nodes,
and use an MPI-based parallelization [34]. The resulting performance is typically
a bit better for volume formulations then for boundary formulations, since the
computational density is higher in the former case. A particular issue for the
MLFMA formulation of electromagnetic scattering problems is that the work per
element (group) in the tree data structure increases with the level, and additional
partitioning strategies are needed for the coarser part of the structure [6,30,56].

The ongoing trend in cluster hardware is an increasing number of cores per
computational node. When scaling to large numbers of cores, it is hard to fully
exploit the computational resources using a pure MPI implementation, due to the
rapid increase in the number of inter-node messages with the number of MPI
processes for communication heavy algorithms [64]. As is pointed out in [35],
a hybrid parallelization with MPI at the distributed level and threads within
the computational nodes is more likely to perform well. That is, a need for
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efficient shared memory parallelizations of hierarchical algorithms to be used in
combination with the distributed MPT level arises.

The emerging method of choice for implementing complex algorithms on mul-
ticore architectures is dependency-aware task-based parallel programming, which
is available, e.g, through the StarPU [5], OmpSs [46], and SuperGlue [54] frame-
works, but also in OpenMP, since version 4.0. Starting with [7], where StarPU
is used for a task parallel implementation of an FMM algorithm, several authors
have taken an interest in the problem. In [31], SuperGlue is used for a multicore
CPU+GPU implementation of an adaptive FMM. The Quark [61] run-time sys-
tem is used for developing an FMM solver in [40]. Since tasks were introduced in
OpenMP, a recurring question is if the OpenMP implementations can reach the
same performance as the specific run-times discussed above. An early OpenMP
task FMM implementation is found in [2]. This was before the depend clause
was introduced, allowing dependencies between sibling tasks. OpenMP, Cilk and
other models are compared for FMM in [66], OpenMP and Klang/StarPU are
compared in [1], and different OpenMP implementations and task parallel run-
times are compared with a special focus on locking and synchronization in [4]. A
common conclusion from these comparisons is that the commutative clause pro-
vided by most task parallel run-time systems is quite important for performance,
and that this would be a useful upgrade of OpenMP tasks for the future.

An alternative track is to develop special purpose software components for
the class of FMM-like algorithms, see, e.g., PetFMM [12] and Tapas [21].

An open source implementation of MLFMA is available through the Puma-
EM software [47], parallelized with MPI. An example of a commercial MLFMA
software is Efield [16] provided by ESI Group, parallelized for shared memory.

4 Proposed Solution and Proof of Concept

During the last decade task-parallel programming has emerged as the main pro-
gramming paradigm to run scientific applications on modern multicore- and
heterogeneous computer architectures. A recent and fairly complete overview of
the current state of the art can be found in [52].

The key idea is that the programmer provides the sequential work-flow of
an algorithm in terms of tasks. These are then submitted to a run-time system,
which analyses the data dependencies of the tasks and schedules them onto
available hardware resources to be executed in parallel. It can in some cases be
possible to obtain higher performance by hand-tuning a code, but the cost in
programming effort and the renewed cost if the system configuration changes
are usually considered too high.

There are several arguments for using task parallel programming for the
hierarchical matrix—vector products considered here.

— The work flow is already described in terms of tasks operating on data asso-
ciated with the individual groups. Therefore, the overhead of converting the
algorithm into a suitable form can be largely avoided.
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— The data size varies between groups, the number of child groups and interac-
tions across the tree structure. The amount of work varies with the level and
the phase of the algorithm. All of this indicates that the asynchronous task
execution provided by a run-time system is more likely to be efficient than a
statically determined schedule.

— The dependencies between tasks are complex, problem dependent, and hard
to analyze manually. With the run-time scheduling, dependencies are auto-
matically managed, and tasks can run as soon as their dependencies have been
met. Furthermore, the run-time guarantees correctness in the sense that if the
sequential task flow of the application code is described correctly, the parallel
execution guarantees to respect the order up to admissible interleavings.

As a proof of concept, we have implemented the NESA algorithm for the
electrostatic potential problem using the SuperGlue [54] framework. A detailed
description of the implementation details and the results can be found in [63]. A
benefit of using the NESA algorithm is that the tasks are more similar both in
size and type than for the MLFMA algorithm. The main arguments for choos-
ing the SuperGlue framework are (i) that it has very low scheduling overhead,
and can therefore handle small task sizes well, and (ii) that commutative data
accesses are naturally included in the dependency management based on data-
versioning. Commutative accesses relate to tasks that touch the same data, and
that can therefore not run concurrently, but that can otherwise run in any order.

We have also implemented the NESA algorithm using OpenMP tasks, and
provide some results and comments on how the two implementations compare.

In the following subsections, we provide a brief survey of task parallel pro-
gramming frameworks, we discuss the SuperGlue and OpenMP implementations,
and we provide some illustrative performance results.

4.1 A Task-Parallel Programming Overview

One of the key features of task parallel programming is that it makes it relatively
easy for the programmer to produce a parallel application code that performs
well. However, it is still important for the programmer to understand how to
write a task parallel program and how various aspects of the algorithm are likely
to impact performance.

The granularity of the tasks determines the number of tasks, which has a
direct effect on the potential parallelism. As an application programmer, it is
beneficial to be aware of how tasks interact with each other and with the data.
That is, to understand the character of the data dependencies. There may be
different ways of splitting the work that lead to different degrees of parallelism. In
the NESA and MLFMA cases, a basic task size is given by the algorithm through
the division of the domain into groups. The discussion to have is whether some
groups need splitting (the coarse levels in MLFMA) or merging (the leaf groups).

The granularity of tasks also has an effect on how the tasks interact with the
memory hierarchy. If the tasks are small enough, data may fit into the cache.
If the run-time system is locality-aware such that tasks are scheduled at the
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cores where the data they need is cached, significant performance gains may
be secured. As was discussed in Sects. 2.3 and 2.4, the computational intensity
provided by the tasks of the NESA and MLFMA algorithms is not enough to
scale well if all of the data is read from the main memory.

In [55] resource-aware task-scheduling is investigated. It is shown that the
effect of, e.g, bandwidth contention between tasks can be reduced by co-
scheduling a mix of diverse tasks. However, in the NESA case, all of the tasks
have a similar computational intensity, so that approach is not applicable.

From the user perspective, it would be ideal if there were only one frame-
work for task parallelism, or at least one common standard for task parallel
programming implemented by different frameworks. Steps are being taken in
this direction, see also the implementation in [62], but it will take some time
until it is in place. Meanwhile, we provide an overview of some of the more
relevant initiatives.

The StarPU framework [5,52] was initially developed to manage scheduling
between the CPU and GPU resources in one computational node. It has over
time been developed in different ways and has become one of the most widely
adopted general purpose run-time systems. In StarPU, an important component
is the management of data transfers and data prefetching. Advanced performance
prediction based on performance measurements is used in the different scheduling
algorithms. StarPU has very good performance for large scale problems with
relatively large task sizes. When task sizes become too small, the overhead of
the advanced scheduling is too large, and performance goes down.

Another important run-time system is OmpSs [15], which is the current rep-
resentative of the StarSs family [46]. In OmpSs, the tasks are defined through
compiler directives in the same way as in OpenMP. In fact, the development of
the OpenMP standard in terms of tasks and task dependencies is driven by the
development of OmpSs. In this way, the constructs and implementations are well
tested before being adopted by the standard. The use of directives can be seen
as less intrusive when transforming legacy code into task parallel code compared
with the use of specific APIs for task submission.

LAPACK [3], which implements a large selection of linear algebra opera-
tions, is one of the most widely used libraries in scientific computing. With the
advent of multicore architectures, a number of projects were started to provide
multicore and GPU support. These have now converged into using the PaRSEC
run-time system [8], which has excellent performance both for large and small
task sizes. PaRSEC can be used for all types of algorithms, but it requires the
task dependencies to be expressed in a specific data flow language. This allows
to build a parametrized task graph that can be used efficiently by the run-time
system, but it can be an obstacle for the application programmer.

The SuperGlue framework [54] was developed mainly for research purposes
with a focus on performance. It is a general-purpose task parallel framework for
multicore architectures. It is very lightweight, it uses an efficient representation
of dependencies through data versions, and has very low overhead, such that
comparatively small tasks can be used without loosing performance.
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Tasks with dependencies were introduced in OpenMP 4.0. The dependencies
are only between sibling tasks submitted in the same parallel region, and there
is not yet support for commutative tasks, which are relevant for the NESA and
MLFMA types of algorithms. The main reason for using OpenMP is that it is
a standard and is likely to remain, making it a relatively secure investment in
coding.

4.2 The SuperGlue Task Parallel Implementation

SuperGlue is implemented in C++ as a headers only library. In order to write
a task-based version of the NESA algorithm for SuperGlue, we need to define
a SuperGlue task class for the matrix—vector product that is the computational
kernel used in all the tasks. In Program 1.1 we show a slightly simplified code
that emphasizes the most relevant parts. The task class contains the data that
is touched by the task, a constructor, and a run method. In the constructor, the
types of data accesses are registered. In this case, it is a commutative (add) access
to the output vector. The read accesses to the input data are not registered as
that data is not modified during execution. The access information is used for
tracking dependencies, and extra dependencies increase the overhead cost.

The constructor is called at task submission, while the run method is called
at task execution time.

1class SGTaskGemv : public Task<Options,3>{
2private:
3 SGMatrix *A,*x,*y;

apublic:

5 SGTaskGemv (SGMatrix &A_, SGMatrix &x_, SGMatrix &
y_)

e 1

7 A = &A_;

8 X = &x_;

) y = &y_;

10 Handle<Options> &hy = y->get_handle();

1 register_access (ReadWriteAdd::add, hy);

12 }

13

1 void run(){

15 double *Mat= A->get_matrix()->get_data_memory();

16 double *X = x->get_matrix()->get_data_memory();

17 double *Y = y->get_matrix()->get_data_memory();

18 cblas_dgemv (Mat, X, Y);

v}

20}

Program 1.1. The MVP task class
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In the application code all former calls to the matrix—vector product sub-
routine should be replaced by the corresponding task submission. If we hide the
task submission statement in a subroutine, the syntax of the application code
does not need to change at all. The new subroutine that replaces the original
matrix—vector product by the task submission is provided as Program 1.2.

1void gemv(SGMatrix &A, SGMatrix &x, SGMatrix &y){

2 SGTaskGemv *t= new SGTaskGemv (A, x, y);
3 sgEngine ->submit (t) ;
4}

Program 1.2. The subroutine that submits an MVP task.

There are also other small changes such as starting up the SuperGlue run-
time, and the SGMatrix data type, which equips the ‘ordinary’ matrix type with
the data handle that is used when registering accesses. A longer description of
the implementation can be found in [63], and the full implementation is available
at GitHub!.

4.3 The OpenMP Task-Parallel Implementation

An implementation with a similar functionality as the task-parallel implementa-
tion described above can—with some care—be created with OpenMP as well. A
simple task construct was introduced in OpenMP 3.0, and a depend clause was
added in OpenMP 4.0, to allow dependencies between sibling tasks, i.e, tasks
created within the same parallel region. This means that if we create several par-
allel regions for different parts of the algorithm, there will effectively be barriers
in between, and the tasks from different regions cannot mix.

1#pragma omp parallel

2 {

3 #pragma omp single

a A{

5 // Submit tasks for near-field multiplication
6 FMM::mv_near_£field (0T, C, Q);

7 // Submit tasks for far-field multiplication
s FMM::mv_far_field (0T, C, Q);

o}

10}

n#pragma omp taskwait
12 #pragma omp barrier

Program 1.3. The structure of the OpenMP implementation. There is one global
parallel region (lines 1-10), and within this region only one thread can submit tasks
(lines 3-9).

! https://github.com/afshin-zafari/FMM)/.
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The proper way to do it is to create one parallel region that covers the whole
computation, and then make sure that only one thread generates tasks such that
the sequential order is not compromised. An excerpt from the OpenMP main pro-
gram that illustrates this is shown in Program 1.3. The tasks are implicitly sub-
mitted from the near-field and far-field subroutines, whenever the cblas_dgemv
subroutine is invoked.

The tasks are defined using the task pragma with the depend clause, see
Program 1.4. Only the (necessary) inout dependence for the output data vector
is included. Adding the (nonessential) read dependencies on the matrix and input
data vector was shown in the experiments to degrade performance.

1#pragma omp task depend(inout:Y[0:N])
2cblas_dgemv (Mat, X, Y);

Program 1.4. The OpenMP task pragma that defines a gemv task.

As can be seen, the implementation is not so difficult, but there are several
ways to make mistakes that lead to suboptimal performance. The programmer
needs to understand how the task generation, the task scheduling, and the par-
allel regions interact.

4.4 Performance Results

In this section we summarize the experimental results from [63] and relate these
to the arguments we gave for using a task-based parallel implementation. The
ease of implementation was discussed in the previous two subsections. The next
two arguments concerned the benefits of asynchronous task execution, dynamic
and automatic scheduling, and mixing of computational phases.

Execution traces for the SuperGlue implementation, when running on one
shared memory node of the Tintin cluster at the Uppsala Multidisciplinary Cen-
ter for Advanced Computational Science (UPPMAX), are shown in Fig. 6. The
simulation parameters P and @ are the average number of sources in one group
at the finest level (the average of n;), and the number of auxiliary sources in
each group, respectively. The near-field trace (top) nicely illustrates how tasks of
different sizes are scheduled asynchronously onto 16 worker threads with no vis-
ible idle time between the tasks. The far-field trace furthermore illustrates that
the different computational phases can be interleaved to a large extent using a
schedule that it would be difficult to construct statically. Finally the last trace
shows that the far-field tasks can be embedded in the near-field computation.
As will be discussed below, this is beneficial since the far-field tasks have a lower
computational intensity, and in this case are also smaller. The idle time that can
be seen in the beginning for thread 0 in the middle and bottom panels is the
time for task submission.

Another question that was investigated using the proof of concept implemen-
tation was how the task size impacts scalability, and how small tasks can be used
without loosing performance. The same problem with N = 100 000 source points
is solved in all experiments, but the method parameters P (the average number
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Fig. 6. Execution traces for the near field computation (top), the far field computation
(middle), and the combined execution (bottom) for @ = 100 and P = 400. Each
task is shown as a triangle, and the color indicates which phase of the algorithm
it belongs to. Near-field (dark gray), radiation (medium gray), source transfer (light
gray), translation (black), field transfer (light gray), and reception (medium gray).

of source points at the finest level) and @ (the number of auxiliary points used
for each group) are varied between the experiments.

We compute the speedup S, using p cores as S, = T1/T,. Each node of
the Tintin cluster consists of two AMD Opteron 6220 (Bulldozer) processors. A
peculiarity of the Bulldozer architecture is that each floating point unit (FPU) is
shared between two cores. This means that the theoretical speedup when using
2p threads (cores) is only p, and the highest theoretical speedup on one node
with 16 threads is 8.

Figure 7 shows the results for different task sizes. The near-field computation
scales relatively well for all of the task sizes, but the performance improves with
size P. For the far-field, there is no scalability when both P and @ are small.
The situation improves when the sizes increase, but the scalability is significantly
worse than for the near-field. For the combined computation, the results are
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better than the far-field results with the same sizes, and for the larger tasks
even better than the near-field results. That is, the mixing of the two phases
allows the limited scalability of the far-field computation to be hidden behind
the better performance of the near-field computations. We can however conclude
that @ = 10 and P = 50, which are reasonable numbers for the two-dimensional
case results in tasks that are too small for scalability. Using Q = 100, which is
suitable for the three-dimensional problem, is however enough for shared memory
scalability. This is an indication that the proof of concept approach can be used
for the real three-dimensional problem.

N= 100000 N=100000 N=100000
a—a P=50 ¥ Q=100
v—v P=100| s Q=50 3 1
ol| == P=200 A== =20 | /
e~ P=300| 4 Q=10
e—a P=400 — Ideal /
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| /% | / - i
/ ) SRR
—
Sequental 6 Seqvental 1 6 Sequential 5

Threads Threads Threads

Fig. 7. Speedup for the near-field computation (left), the far-field computation (mid-
dle) for P = 400 (solid lines) and for P = 50 (dashed lines), and the combined compu-
tation (right).

In Table 4, we compare the execution times, the speedup, and the utilization
for execution with small tasks and with larger tasks. The utilization is defined
as the fraction of the total execution time that is spent in executing tasks. That

Table 4. The parallel execution time 7}, the speedup Sp, the speedup in relation to
the theoretical speedup S;, and the utilization U, computed as the fraction of time
spent executing tasks, for two problem settings.

p ‘Tp [mSHSp ‘SP/S;‘UP
Q =10, P =50
1| 244 1.0/ 1.00 |0.90
4| 111 2.2/1.10 |0.55
8| 137 1.810.44 0.29
16 | 156 1.6/0.20 |0.21
@ =100, P = 300
11192 1 1.00 |0.99
401 3.0/1.49 |0.98
228 5.2/1.31 ]0.98
16 | 163 731092 0.96
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is, the lack of utilization reveals overhead, idle time and load imbalance. For the
problem with larger tasks, both utilization and speed are close to optimal. For
the problem with small tasks, the utilization goes down to 21% for 16 threads.
Then one might expect that the execution time Tyg = T17/16/0.21, leading to a
speedup S16 = 3.4, but this is not at all the case. Figure 8 shows the slowdown
of individual task execution as a function of the number of threads. A factor
of 2 is expected for 16 threads due to the Bulldozer architecture. This is also
the case for the larger tasks. For the smaller tasks, the far-field computations
exhibit a slowdown of 4, which limits the potential scalability to maximum 4
at 16 threads. The computational intensity does not change with the task size,
but a potential explanation can be found when looking at the scheduling in the
run-time system. For large enough tasks, the run-time system has time to use
the knowledge of which data is needed by a task to place it in the work queue of
the thread where that data is cached, thereby ensuring data locality. However,
for too small task sizes, task execution becomes faster than task submission, and
the opportunity to find the next task ‘in time’ is lost. Then the threads try to
steal work from each other. This results in contention on the work queues as well
as a loss of data locality.
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Fig. 8. Increase in individual task execution times for the complete execution for P =
50, @ = 10 (left) and for P = 300, @ = 100 (right).

The final question we ask in this section is whether OpenMP is efficient
enough to use for this problem. We already mentioned the fact that OpenMP
currently does not support commutative tasks. The performance of the OpenMP
run-time implementations has increased over time, and will most likely continue
to do so.

The experiments were carried out both on a node of the Tintin cluster,
described in the previous section, and on a local shared memory system with
4 sockets of Intel Xeon E5-4650 Sandy Bridge processors, yielding a total of 64
cores. On Tintin, the codes were compiled with gecc version 4.9.1 and OpenMP
4.0, while on Sandy Bridge the compiler was gcc 6.3.0 combined with OpenMP
4.5.
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We compare the execution times using SuperGlue (SG) and using OpenMP
(OMP) for the full execution and for two different task sizes. The results, given in
Tables 5 and 6, show that OpenMP is slower for small task sizes, and especially
when small sizes are combined with large numbers of threads. However, for
the larger problem sizes, the differences are small 5-10%, and the results vary
between the two hardware systems. We do not see the effect of the missing
commutative clause. As long as tasks are large enough. These results indicate
that OpenMP can be used for this type of problem.

Table 5. Execution times in ms for the SuperGlue (SG) and OpenMP (OMP) imple-

mentations executed on a Tintin node.

p |P=50,Q=10 P =300, Q@ =100
SG |OMP | OMP/SG |SG | OMP | OMP/SG
1244|285 |1.17 11921186 | 1.00
41111134 |1.21 363 345 |0.95
8137110 0.80 210| 186 |0.89
16 | 156 | 254 |1.63 145 139 0.96

Table 6. Execution times in ms for the SuperGlue (SG) and OpenMP (OMP) imple-
mentations executed on the Sandy Bridge system.

p |P=50,Q=10 P =300, Q@ =100
SG |OMP | OMP/SG |SG | OMP | OMP/SG
1438|476 |1.09 23182556 |1.10
41166 | 260 |1.57 811 | 913 |1.13
8100|197 |1.97 422 469 |1.11
16 1107 | 170 | 1.59 244 | 253 | 1.04
321135|237 |1.76 154 | 157 |1.02
64 141|535 |3.79 127 133 | 1.05

5 Perspectives and Future Directions

Our proof-of-concept implementation demonstrates that a task parallel imple-
mentation provides the expected benefits. As long as the task granularity is not
too small relative to the overhead of the run-time system the proposed solution
performs well. Thus, we can recommend this general direction of parallelization,
but there are many further aspects to consider; we discuss some of them in the
following subsections.
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5.1 Recommendations for a Task Parallel 3-D Implementation

When performing large scale three-dimensional simulations, it becomes neces-
sary to use distributed computer systems, and hence distributed parallel pro-
gramming (or a partitioned global address space (PGAS) model). In [64] it was
shown that a hierarchical task-parallel programming model was beneficial for the
distributed implementation. Larger tasks are communicated between computa-
tional nodes, and then split into subtasks that are executed in parallel within
each node.

For the upward and downward phases it seems natural to let a larger task rep-
resent operations within a subtree. For the communication-intensive translation
phase, it is less clear what the best type of task is. Perhaps translations between
subtrees can be performed as one larger task, but this reduces the opportunities
to interleave the translation stage with the other stages.

The partitioning of the global tree structure into subtrees would be per-
formed at a level where the number of groups is at least equal to the number
of computational nodes. Then the question is how to share the work and the
data for the levels above the splitting point. For the NESA algorithm, this is not
such a big problem as the amount of work at these lower levels is small. How-
ever, for the MLFMA algorithm, the work increases significantly for the lower
levels, as can be seen in Table 2. In this case, the work for these levels needs to
be divided between the computational nodes, while the data could potentially
be shared by all. A drawback of such an approach could be that this kind of
splitting becomes more intrusive from the programming perspective, than just
making each subroutine call into one task.

As we saw in the proof-of-concept implementation, small task sizes can also
become a problem, but from the programming perspective we do not want to
explicitly merge work into larger tasks. In a preliminary implementation, which
is not yet finished, we performed experiments with batching of small tasks. When
tasks are submitted to the run-time system, they are saved in a buffer until there
is enough work to actually start a batched task, which then executes all of them
at once.

The question of which run-time system or programming model to use is
a difficult one. Especially for a company, it is important to know what kind
of long-term support of a programming model can be expected, and whether
permissions and licenses for using it remain stable. This would be an argument
for using OpenMP for the shared memory part. For distributed task-parallel
programming, however, there is no similarly established standard as of yet. The
choice is then to either develop a custom run-time which is unlikely to be as
good as the already existing ones, or to trust an existing one, which may at
some point no longer be supported.

5.2 Automatically Mapping Workloads to Accelerators

Applications that perform regular computations on a large number of data are
often good candidates for efficient execution on accelerators such as GPUs. How-
ever, mapping some parts of the applications onto a GPU is not easy, especially
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when the application is written in C++. Indeed, in C++ references to array
elements or certain values such as loop bounds can be hidden in function calls.
Automatic tools that detect data dependencies statically and generate paral-
lel code and GPU kernels need this information explicitly. Otherwise, dynamic
analysis and code instrumentation are required.

Initially, the mapping consists in detecting loops that meet the criteria of the
accelerator. These criteria express the adequacy between the loop nest patterns
and the target accelerator hierarchy: external parallel loops will be mapped
directly to streaming cores and sequential internal loops in threads. The loop
nest sizes must be large enough to compensate for communication time and less
than the number of possible accelerator threads. Finally, an estimation of the
kernel memory footprint is required to fit the overall memory of the GPU.

If we take into account only the pieces of application that naturally respect
these constraints, we miss many pieces of code that can benefit from optimiza-
tion. Gouin presents a methodology to increase the number of application pieces
that can benefit from accelerator optimization and describes all necessary map-
ping stages [24,25].

The actual programming of GPU kernels, preferably specified within the
same source file as the calling CPU code, and of the necessary device memory
management and data transfers to/from GPU device memory can be made eas-
ier for the programmer by adopting a high-level parallel programming model
supporting GPU execution. For example, OpenACC allows to write kernels by
annotating sequential loop-based code in a style similar to OpenMP parallel loop
annotations. The OpenMP task model supports code generation for GPU execu-
tion of tasks since OpenMP 4.0/4.5 with the introduction of the target directive
for offloading computations to accelerator devices. SYCL (https://www.khronos.
org/sycl) is a high-level programming layer atop OpenCL that provides a single-
source abstraction for OpenCL based accelerator programming. For improved
programmability, task-based runtime systems for heterogeneous programming
such as StarPU can also be coupled with higher-level programming abstraction
layers such as SkePU [14], which, from high-level constructs such as skeleton
function calls, automatically generate the API calls for the management of tasks,
data buffers and their dependencies by the runtime system.

5.3 Optimizing the Task Sizes

In the application the basic task size is given by the algorithm through the
division of the domain into groups. As the tiling transformation makes it possible
to optimize task granularity at the loop level, adjusting task and group sizes can:

— improve data locality
— improve cache reuse and
— reduce communication overhead.

The new decomposition must be performed in order to balance computa-
tions and communications. Considering the OpenMP implementation and a large
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number of small tasks, merging could also reduce the global thread creation over-
heads and thread scheduling run-time.

Task and group sizes are multi-dimensional spaces and the optimal decom-
position parameters depend on the target architecture constraints (memory size,
number of cores). Finding these optimal parameters is complex since they are
dynamic variables. Autotuner techniques combining profiling information might
be used to develop heuristics and to limit the maximum task sizes at each level
of the application.

5.4 Limiting Recursive Task Creation on CPU

Task-based computations over recursively defined sparse hierarchical domains
such as quadtrees/octrees could, if applicable for the underlying computational
problem, choose to stop the recursive subdivision at a certain depth limit and,
for example, switch to computations over dense representations below this limit
or sequentialize the independent subcomputations instead of creating a smaller
task for each of them. For example, OpenMP 4.x provides the if clause to the
task construct for conditional task creation. Such cut-off depth/condition, as
well as the degree of task unrolling in general, can be used as a tuning param-
eter to balance the trade-off between computational work to perform, degree of
data parallelism in tasks, and tasking and synchronization overhead. For exam-
ple, Thoman et al. [53] describe a combined compiler and runtime approach for
adaptive granularity control in recursive CPU task-parallel programs.

5.5 Techniques for Task and Data Granularity Adaptation on GPU

The task granularity in dynamically scheduled task-based computations on a
heterogeneous system can have a major impact on overall performance. Each
task executing on an accelerator typically contains just one kernel call, or possi-
bly several kernel calls that execute in sequence on the same accelerator unit. For
the application considered in this chapter, tasks/kernels of size 50 x 50 turn out
to be too fine-grained for GPU execution in practice, as most of the GPU’s com-
putation capacity remains unused and the task management overhead (which is
for StarPU in the order of several dozen microseconds) becomes large in relation
to the task’s work.

A number of task-based programming environments allow to control task
granularity already at task creation, in particular for CPU-based tasks by intro-
ducing conditions for recursive task creation, as described in Sect. 5.4.

Moreover, a number of static and dynamic techniques exist for adapting task
granularity in a GPU execution context. In the remainder of this section we
review a number of such granularity adaptation techniques specifically for GPU
task execution, which could be leveraged in future extensions of this work.

— Overpartitioning of a data-parallel computation into more than one task/ker-
nel call leads to finer granularity, which can enable automated hybrid CPU-
GPU computing but also incurs increased runtime overhead for the manage-
ment of the additional tasks.
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— Kernel fusion is an optimization for accelerator computations that tries to
merge fine-grained tasks/kernel calls into fewer, coarser-grained ones.

— Persistent kernels on GPU are applicable to scenarios with many subsequent
kernel calls of one or few statically known types, and can significantly reduce
the accumulated kernel latencies for small GPU tasks.

— Operand transfer fusion is a granularity coarsening optimization for the com-
munication of kernel operand data between main memory and accelerator
memory.

Owverpartitioning. Task-based computations can be generated from higher-level
parallel programming models. As an example, we could consider the skeleton
programming framework SkePU (www.ida.liu.se/labs/pelab/skepu) for GPU-
based systems [17,18]. SkePU provides for each supported skeleton (map, reduce,
stencil etc.) multiple back-ends (target-specific implementations), e.g. for single-
threaded CPU execution, multithreaded CPU execution using OpenMP, and
GPU execution in CUDA or OpenCL. Moreover, SkePU also provides a back-end
that generates tasks for the StarPU runtime system [14]. From a single skeleton
call, a user-defined number of asynchronously executed tasks can be generated,
by partitioning the work and thus converting some of the skeleton call’s data
parallelism into task parallelism. Such “overpartitioning” automatically exploits
hybrid CPU-GPU computing via StarPU’s dynamic heterogeneous task sched-
uler [32] at the expense of increased runtime overhead for the management of
the additional tasks.

Kernel Fusion. Kernel fusion is an agglomeration optimization for accelerator
computations that merges multiple kernels resp. kernel calls into a single one.
The purpose of this coarsening of the granularity of accelerator usage is to either
improve data locality, or to reduce kernel startup overhead, or to improve the
overall throughput by combining memory-bound with arithmetics-bound ker-
nels. Kernel fusion is a special case of the classical loop fusion transformation,
namely, for the case of parallel loops executing on an accelerator with many
parallel hardware threads, such as a GPU.

Kernel fusion can be done in two different ways: parallel fusion (by co-
scheduling of independent kernels) or serial fusion (by serialization of possibly
dependent kernels), see also Fig. 9 for illustration.

Serial fusion is particularly effective if it can internalize inter-kernel flow of
bulk operand data (i.e., intermediate (sub-)vectors or -matrices) between pro-
ducer and consumer kernels, and moves the time points of production and con-
sumption of each such data element much closer to each other. Hence, these
data elements can now be stored and reused in registers or fast on-chip memory,
which reduces the amount of slow off-chip memory accesses and thus increases
the arithmetic intensity of the code.

In contrast, parallel fusion does not change the arithmetic intensity of the
code, but eliminates kernel startup time overhead, improves thread occupancy
and thus utilization of the accelerator especially for kernels with relatively small
operands. Moreover, it can lead to overall improved throughput by co-scheduling
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\AA
// start N1+N2 threads
{
// start N1=N2 threads if (thread_idx < N1)
{
code_kernell else
code_kernel2
} }

Fig. 9. Left: Serial kernel fusion by sequencing code from (calls to) different kernels
in the same parallel loop, preserving per-element data flow dependencies between ker-
nels in the fused code.—Right: Parallel kernel fusion by co-scheduling two previously
independent kernel executions within the same “superkernel”. Adapted from [59].

memory-bound with arithmetics-bound kernels [60]. For GPUs, parallel fusion
can be done at the granularity of individual threads or of thread blocks, the
latter of which should give better performance [60].

A number of static kernel fusion techniques especially for compilers targeting
GPUs have been presented in the literature, e.g. by Wang et al. [59], Wahib and
Maruyama [58] and Filipovic et al. [20]. Filipovic and Benkner [19] evaluate the
effectiveness of parallel kernel fusion on GPU, Xeon Phi and CPU. Wen et al. [60]
apply parallel kernel fusion in a just-in-time compiler that tries to pair memory-
bound with arithmetics-bound kernels. Qiao et al. [48] study serial kernel fusion
for image processing DSLs.

Persistent Kernel. For scenarios with many small tasks that all execute the same
(or just a few different) statically known code, using a persistent kernel [29] is
another technique to reduce the GPU kernel start-up overhead time (which is,
for current CUDA GPUs, in the order of several microseconds, thus significant
for small tasks). In contrast to starting a new kernel execution for each GPU
task that is supplied with all its input data at its start and that delivers all
output data on exit, a persistent kernel is started just once in the beginning and
continuously runs on the GPU until it is eventually terminated by the CPU.
When idle, the persistent kernel performs busy waiting on its input data buffers
until it finds new data to work on, i.e. after it was written (transferred) there
by the CPU. It then performs the corresponding operation and writes the data
to the corresponding output buffer. The CPU can finally terminate the kernel
by writing a special “poison pill” value into an input field that the GPU kernel
polls regularly during busy waiting. For example, Maghazeh et al. [41] describe
how the persistent-kernel technique was used in a packet processing application
in telecommunications.
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Operand Transfer Fusion. Heterogeneous systems that expose a (physically)
distributed memory architecture to the low-level programmer require the explicit
memory allocation and transfer of not yet uploaded kernel operand data from
main memory to accelerator memory before kernel execution and the transfer
of the kernel’s output operands back to main memory (or possibly to other
accelerator memories) if needed there for subsequent computations. Accelerator
APIs provide functions for memory allocation and transfer of operands, such as
cudaMalloc and cudaMemcpy, respectively.

The data transfer time for a bulk operand (e.g., a (sub-)vector or -matrix) of
N elements can generally be modeled by a linear cost function tcomm = a+ BN,
which is characterized by the transfer startup time « and the word transfer time
B. On PCle 3.0-attached GPUs the startup time « can be in an order of about
10us, with o/ ~ 10* floats [36]. For tasks with small operands, the transfer
startup time is thus a none-negligible overhead. Likewise, there is a significant
overhead for device memory allocation where required.

A key observation is that multiple operands that can be stored adjacently
in both main memory and accelerator memory can be transferred in a single,
larger message, thus saving transfer startups compared to separate transfers for
each operand. Likewise, device memory can be allocated for such operands by a
single call to cudaMalloc.

Li and Kessler [36] present a dynamic optimization based on lazy allocation.
They replace the standard API functions for lazy execution operand memory
allocation and operand transfer by lazy-execution variants that defer their effect
until kernel call execution time. At the kernel call, the operands and their (non-)
availability in accelerator memory (hence the need for allocation and transfer)
are definitely known, even in cases where static analysis could not resolve this
information, e.g. due to variable aliasing or statically unknown task mapping.
Then, operands to be transferred together will be allocated consecutively in
memory if possible. This greedy optimization applies to one kernel call at a
time.

5.6 High-Level Macro-dataflow Coordination

A common characteristic of the task-parallel programming frameworks discussed
so far is that they, despite all abstractions from concrete hardware, do require
a considerable expertise in parallel programming to get things right and even
more such expertise to get things efficient. One reason is that they intertwine
two different aspects of program execution: algorithmic behaviour, i.e., what is
to be computed, and organization of task-parallel execution, i.e., how a compu-
tation is performed on multiple execution units, including the necessary problem
decomposition, communication and synchronization requirements.

The aim of coordination programming is precisely to separate application-
centric code from organization-centric code. The term goes back to the sem-
inal work of Gelernter and Carriero [22], but has seen many variations since.
For example, S-NET [27] is a declarative coordination language whose design
thoroughly avoids the intertwining of computational and organizational aspects.



62 E. Larsson et al.

S-NET achieves a near complete separation of the concern of writing sequential
application building blocks (i.e., application engineering) from the concern of
composing these building blocks to form a parallel application (i.e., concurrency
engineering).

S-NET defines the coordination behaviour of networks of asynchronous, state-
less components and their orderly interconnection via typed streams. We delib-
erately restrict S-NET to coordination aspects and leave the specification of the
concrete operational behaviour of basic components, named bozes, to conven-
tional programming languages.

An S-NET box is connected to the outside world by two typed streams, a
single input stream and a single output stream. The operational behaviour of a
box is characterized by a stream transformer function that maps a single data
item from the input stream to a (possibly empty) stream of data items on the
output stream. S-NET effectively promotes functions implemented in a standard
programming language into asynchronously executed stream-processing compo-
nents.

In order to facilitate dynamic reconfiguration of networks, a box has no inter-
nal state, and any access to external state (e.g. file system, environment vari-
ables, etc.) is confined to using the streaming network. This allows us to cheaply
migrate boxes between computing resources and even having individual boxes
process multiple data items concurrently. Boxes execute fully asynchronously: as
soon as data is available on the input stream, a box may start computing and
producing data on the output stream. Boxes usually represent non-trivial units
of computation instead of basic operations as in the original data-flow approach.
Hence, S-NET effectively implements a macro data flow model.

It is a distinguishing feature of S-NET that it neither introduces streams as
explicit objects nor that it defines network connectivity through explicit wiring.
Instead, it uses algebraic formulae to describe streaming networks. The restric-
tion of boxes to a single input and a single output stream (SISO) is essential for
this. S-NET provides five network combinators: serial and parallel composition,
serial and parallel replication as well as feedback. Any combinator preserves the
SISO property: any network, regardless of its complexity, again is a SISO entity.

To summarize, S-NET is an abstract notation to express concurrency in appli-
cation programs in an abstract and intuitive way. It avoids the typical annoy-
ances of machine-level concurrent programming. Instead, S-NET borrows the
idea of streaming networks of asynchronous, stateless components, which segre-
gates applications into their natural building blocks and exposes the data flow
between them. We have developed a highly tuned run-time system customized
to the specific needs of S-NET [23]. In addition we have developed Distributed
S-NET for cluster architectures [26].

S-NET is not at all confined to classical streaming applications as we have
demonstrated through a number of numerical application case studies [28,44,45].
We have not yet implemented any of the methods for electromagnetic scattering
problems described earlier in this paper, and, unfortunately, for the time being
we lack the resources to do so. However, the closest matching algorithm we do
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have implemented with S-NET is Tiled Cholesky Factorization, another hierar-
chical matrix algorithm [10]. Here, S-NET compared very favourably against yet
another established task-parallel approach: Intel’s Concurrent Collections (CnC)
[9,11,33]. In fact, S-NET outperformed CnC both with respect to code size and
ease of programming as well as performance and scalability [65].

An interesting question for future work is whether or not—or better to what
extent—we may be able to re-produce these positive results for the not dissimilar
algorithms discussed in this paper.

6 Summary and Conclusions

In this chapter, we have discussed the properties of hierarchical matrix algo-
rithms arising in electromagnetic scattering problems, and how to parallelize
these problems on multicore, heterogeneous, and distributed hardware architec-
tures.

Two different classes of algorithms were discussed in more detail, MLFMA
and NESA algorithms. The main difference between these from a parallelization
perspective is that in the former, the work performed for groups at different
levels varies significantly, while in the latter, the work size per group is uni-
form. Because of this, a fine-grained parallelization of MLFMA needs to be more
intrusive, since the work in coarse level groups needs to be split over threads/
processes.

Both the data structures and the interaction patterns in the hierarchical
matrix algorithms are irregular, which is why we suggest to use a parallel pro-
gramming model that supports asynchronous execution. A pilot implementa-
tion using a task parallel programming model for shared memory architec-
tures showed promising results regarding the potential to mix the computational
phases during the execution and regarding the resulting utilization of the hard-
ware. A challenging aspect was the relatively small work sizes for individual
groups. We discuss different approaches to managing task granularity that could
be implemented in future projects.

When working with industrial, or academic, legacy codes, several potentially
conflicting interests influence the choices. To change which algorithm is used
is typically a major investment, since it is unlikely that this part is well sepa-
rated from the rest of the code. If the software was started from scratch today,
perhaps other algorithmic choices would be made in light of the current prevail-
ing hardware architectures. To achieve the best possible performance probably
requires some refactoring of the code, while minimizing the changes to the exist-
ing code is relevant both from a cost perspective and a maintainability perspec-
tive. Finally, when using high-level programming models which build on some
particular implementation of a run-time system, external dependencies are intro-
duced that complicate the administration of the software, and introduce a risk
of future incompatibility or discontinuation.

In this chapter we have tried to shed light on some of these choices, to support
further work in the area.



64

E. Larsson et al.

References

10.

11.

12.

13.

. Agullo, E.; Aumage, O., Bramas, B., Coulaud, O., Pitoiset, S.: Bridging the gap

between OpenMP and task-based runtime systems for the fast multipole method.
IEEE Trans. Parallel Distrib. Syst. 28(10), 2794-2807 (2017). https://doi.org/10.
1109/TPDS.2017.2697857

. Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., Takahashi, T.: Task-

based FMM for multicore architectures. SIAM J. Sci. Comput. 36(1), C66-C93
(2014). https://doi.org/10.1137/130915662
Anderson, E., et al.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and
Applied Mathematics, Philadelphia (1999)

. Atkinson, P., McIntosh-Smith, S.: On the performance of parallel tasking runtimes

for an irregular fast multipole method application. In: de Supinski, B.R., Olivier,
S.L., Terboven, C., Chapman, B.M., Miiller, M.S. (eds.) IWOMP 2017. LNCS,
vol. 10468, pp. 92-106. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
65578-9_7

. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.: StarPU: a unified platform

for task scheduling on heterogeneous multicore architectures. Concurr. Comput.:
Pract. Exper. 23(2), 187-198 (2011). https://doi.org/10.1002/cpe.1631

Benson, A.R., Poulson, J., Tran, K., Engquist, B., Ying, L.: A parallel directional
fast multipole method. STAM J. Sci. Comput. 36(4), C335-C352 (2014). https://
doi.org/10.1137/130945569

Bordage, C.: Parallelization on heterogeneous multicore and multi-GPU systems
of the fast multipole method for the Helmholtz equation using a runtime system.
In: Omatu, S., Nguyen, T. (eds.) Proceedings of the Sixth International Confer-
ence on Advanced Engineering Computing and Applications in Sciences, pp. 90—
95. International Academy, Research, and Industry Association (IARIA), Curran
Associates Inc., Red Hook (2012)

Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Hérault, T., Dongarra, J.J.:
PaRSEC: exploiting heterogeneity to enhance scalability. Comput. Sci. Eng. 15(6),
36-45 (2013)

Budimlié, Z., Chandramowlishwaran, A., Knobe, K., Lowney, G., Sarkar, V., Treg-
giari, L.: Multicore implementations of the Concurrent Collections programming
model. In: 14th Workshop on Compilers for Parallel Computing, Ziirich, Switzer-
land (2009)

Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled lin-
ear algebra algorithms for multicore architectures. Parallel Comput. 35(1), 38-53
(2009)

Chandramowlishwaran, A., Knobe, K., Vuduc, R.: Performance evaluation of Con-
current Collections on high-performance multicore computing systems. In: 24th
IEEE International Parallel and Distributed Processing Symposium (IPDPS 2010),
Atlanta, USA, pp. 1-12. IEEE, April 2010

Cruz, F.A., Knepley, M.G., Barba, L.A.: PetFMM-a dynamically load-balancing
parallel fast multipole library. Int. J. Numer. Methods Eng. 85(4), 403-428 (2011).
https://doi.org/10.1002/nme.2972

Darve, E., Cecka, C., Takahashi, T.: The fast multipole method on parallel clusters,
multicore processors, and graphics processing units. Comptes Rendus Mécanique
339(2), 185-193 (2011). https://doi.org/10.1016/j.crme.2010.12.005



14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Parallelization of Hierarchical Matrix Algorithms 65

Dastgeer, U., Kessler, C., Thibault, S.: Flexible runtime support for efficient skele-
ton programming on hybrid systems. In: Proceedings of the ParCo-2011 Inter-
national Conference on Parallel Computing, Ghent, Belgium, September 2011.
Advances in Parallel Computing, vol. 22, pp. 159-166. I0S press (2012). https://
doi.org/10.3233/978-1-61499-041-3-159

Duran, A.; et al.: OmpSs: a proposal for programming heterogeneous multi-core
architectures. Parallel Proces. Lett. 21(02), 173-193 (2011)

Efield®. http://www.efieldsolutions.com/

Enmyren, J., Kessler, C.: SkePU: a multi-backend skeleton programming library
for multi-GPU systems. In: Proceedings of the 4th Internatioanl Workshop on
High-Level Parallel Programming and Applications (HLPP-2010). ACM, Septem-
ber 2010. https://doi.org/10.1145/1863482.1863487

Ernstsson, A., Li, L., Kessler, C.: SkePU 2: flexible and type-safe skeleton program-
ming for heterogeneous parallel systems. Int. J. Parallel Program. 46(1) (2018).
https://doi.org/10.1007/s10766-017-0490-5

Filipovic, J., Benkner, S.: OpenCL kernel fusion for GPU, Xeon Phi and CPU.
In: Proceedings of the 27th International Symposium on Computer Architecture
and High-Performance Computing (SBAC-PAD 2015), pp. 98-105. IEEE (2015).
https://doi.org/10.1109/SAC-PAD.2015.29

Filipovic, J., Madzin, M., Fousek, J., Matyska, L.: Optimizing CUDA code by ker-
nel fusion: application on BLAS. J. Supercomput. 71, 3934-3957 (2015). https://
doi.org/10.1007/s11227-015-1483-2

Fukuda, K., Matsuda, M., Maruyama, N., Yokota, R., Taura, K., Matsuoka,
S.: Tapas: an implicitly parallel programming framework for hierarchical n-body
algorithms. In: 2016 IEEE 22nd International Conference on Parallel and Dis-
tributed Systems (ICPADS), pp. 1100-1109, December 2016. https://doi.org/10.
1109/ICPADS.2016.0145

Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35(2), 97-107 (1992)

Gijsbers, B., Grelck, C.: An efficient scalable runtime system for macro data flow
processing using S-Net. Int. J. Parallel Program. 42(6), 988-1011 (2014). https://
doi.org/10.1007/s10766-013-0271-8

Gouin, F.: Methodology for image processing algorithms mapping on massively
parallel architectures. Technical report, MINES ParisTech (2018)

Gouin, F.; Ancourt, C., Guettier, C.: An up to date mapping methodology for
GPUs. In: 20th Workshop on Compilers for Parallel Computing (CPC 2018),
Dublin, Ireland, April 2018. https://hal-mines-paristech.archives-ouvertes.fr/hal-
01759238

Grelck, C., Julku, J., Penczek, F.: Distributed S-Net: cluster and grid comput-
ing without the hassle. In: 12th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing (CCGrid 2012), Ottawa, Canada. IEEE Computer
Society (2012). https://doi.org/10.1109/CCGrid.2012.140

Grelck, C., Scholz, S., Shafarenko, A.: Asynchronous stream processing with S-Net.
Int. J. Parallel Program. 38(1), 38—-67 (2010). https://doi.org/10.1007/s10766-009-
0121-x

Grelck, C., Scholz, S.B., Shafarenko, A.: Coordinating data parallel SAC programs
with S-Net. In: Proceedings of the 21st IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2007), Long Beach, California, USA. IEEE Com-
puter Society Press, Los Alamitos (2007). https://doi.org/10.1109/IPDPS.2007.
370408



66

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

E. Larsson et al.

Gupta, K., Stuart, J.A., Owens, J.D.: A study of persistent threads style GPU
programming for GPGPU workloads. In: Innovative Parallel Computing - Foun-
dations and Applications of GPU, Manycore, and Heterogeneous Systems (INPAR
2012), pp. 1-14. IEEE, May 2012. https://doi.org/10.1109/InPar.2012.6339596
Girel, L., Ergiil, O.: Hierarchical parallelization of the multilevel fast multipole
algorithm (MLFMA). Proc. IEEE 101(2), 332-341 (2013). https://doi.org/10.
1109/JPROC.2012.2222331

Holm, M., Engblom, S., Goude, A., Holmgren, S.: Dynamic autotuning of adaptive
fast multipole methods on hybrid multicore CPU and GPU systems. SIAM J. Sci.
Comput. 36(4) (2014). https://doi.org/10.1137/130943595

Kessler, C., et al.: Programmability and performance portability aspects of hetero-
geneous multi-/manycore systems. In: Proceedings of the DATE-2012 Conference
on Design, Automation and Test in Europe, pp. 1403-1408. IEEE, March 2012.
https://doi.org/10.1109/DATE.2012.6176582

Knobe, K.: Ease of use with Concurrent Collections (CnC). In: USENIX Workshop
on Hot Topics in Parallelism (HotPar 2009), Berkeley USA (2009)

Kurzak, J., Pettitt, B.M.: Massively parallel implementation of a fast multipole
method for distributed memory machines. J. Parallel Distrib. Comput. 65(7), 870—
881 (2005). https://doi.org/10.1016/j.jpdc.2005.02.001

Lashuk, I., et al.: A massively parallel adaptive fast multipole method on hetero-
geneous architectures. Commun. ACM 55(5), 101-109 (2012). https://doi.org/10.
1145/2160718.2160740

Li, L., Kessler, C.: Lazy allocation and transfer fusion optimization for GPU-based
heterogeneous systems. In: Proceedings of the Euromicro PDP-2018 International
Conference on Parallel, Distributed, and Network-Based Processing, pp. 311-315.
IEEE, March 2018. https://doi.org/10.1109/PDP2018.2018.00054

Li, M., Francavilla, M., Vipiana, F., Vecchi, G., Chen, R.: Nested equivalent source
approximation for the modeling of multiscale structures. IEEE Trans. Antennas
Propag. 62(7), 3664-3678 (2014)

Li, M., Francavilla, M., Vipiana, F., Vecchi, G., Fan, Z., Chen, R.: A doubly hierar-
chical MoM for high-fidelity modeling of multiscale structures. IEEE Trans. Elec-
tromagn. Compat. 56(5), 1103-1111 (2014)

Li, M., Francavilla, M.A., Chen, R., Vecchi, G.: Wideband fast kernel-independent
modeling of large multiscale structures via nested equivalent source approximation.
IEEE Trans. Antennas Propag. 63(5), 2122-2134 (2015). https://doi.org/10.1109/
TAP.2015.2402297

Ltaief, H., Yokota, R.: Data-driven execution of fast multipole methods. Concurr.
Comput.: Pract. Exp. 26(11), 1935-1946 (2014). https://doi.org/10.1002/cpe.3132
Maghazeh, A., Bordoloi, U.D., Dastgeer, U., Andrei, A., Eles, P., Peng, Z.: Latency-
aware packet processing on CPU-GPU heterogeneous systems. In: Proceedings of
the Design Automation Conference (DAC), pp. 41:1-41:6. ACM (2017). https://
doi.org/10.1145/3061639.3062269

Mautz, J.R., Harrington, R.F.: Electromagnetic scattering from homogeneous
material body of revolution. Arch. Electron. Ijbertragungstech 33, 71-80 (1979)
Nilsson, M.: Fast numerical techniques for electromagnetic problems in frequency
domain. Ph.D. thesis, Division of Scientific Computing, Department of Information
Technology, Uppsala University (2003)

Penczek, F., Cheng, W., Grelck, C., Kirner, R., Scheuermann, B., Shafarenko, A.: A
data-flow based coordination approach to concurrent software engineering. In: 2nd
Workshop on Data-Flow Execution Models for Extreme Scale Computing (DFM
2012), Minneapolis, USA. IEEE (2012). https://doi.org/10.1109/DFM.2012.14



45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Parallelization of Hierarchical Matrix Algorithms 67

Penczek, F., et al.: Parallel signal processing with S-Net. Procedia Comput. Sci.
1(1), 20792088 (2010). https://doi.org/10.1016/j.procs.2010.04.233. http://www.
sciencedirect.com/science/article/B9865-506 HM1Y-88 /2 /87fcf1cee7899f0eeaadc90
bd0d56¢d3, iCCS 2010

Pérez, J.M., Badia, R.M., Labarta, J.: A dependency-aware task-based program-
ming environment for multi-core architectures. In: Proceedings of the 2008 IEEE
International Conference on Cluster Computing, Tsukuba, Japan, 29 September—
1 October 2008, pp. 142-151 (2008). https://doi.org/10.1109/CLUSTR.2008.
4663765

Puma-EM. https://sourceforge.net/projects/puma-em/

Qiao, B., Reiche, O., Hannig, F., Teich, J.: Automatic kernel fusion for image
processing DSLs. In: Proceedings of the 21th International Workshop on Software
and Compilers for Embedded Systems (SCOPES 2018). ACM, May 2018. https://
doi.org/10.1145/3207719.3207723

Rao, S., Wilton, D., Glisson, A.: Electromagnetic scattering by surfaces of arbitrary
shape. IEEE Trans. Antennas Propag. 30(3), 409-418 (1982)

Seo, S.M., Lee, J.F.: A fast IE-FFT algorithm for solving PEC scattering problems.
IEEE Trans. Magn. 41(5), 1476-1479 (2005)

Song, J., Lu, C.C., Chew, W.C.: Multilevel fast multipole algorithm for electromag-
netic scattering by large complex objects. IEEE Trans. Antennas Propag. 45(10),
1488-1493 (1997)

Thibault, S.: On Runtime Systems for Task-based Programming on Heterogeneous
Platforms. Habilitation & diriger des recherches, L’Université Bordeaux (2018)
Thoman, P., Jordan, H., Fahringer, T.: Adaptive granularity control in task parallel
programs using multiversioning. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par
2013. LNCS, vol. 8097, pp. 164-177. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40047-6-19

Tillenius, M.: SuperGlue: a shared memory framework using data versioning for
dependency-aware task-based parallelization. SIAM J. Sci. Comput. 37(6) (2015).
https://doi.org/10.1137/140989716

Tillenius, M., Larsson, E., Badia, R.M., Martorell, X.: Resource-aware task schedul-
ing. ACM Trans. Embedded Comput. Syst. 14(1), 5:1-5:25 (2015). https://doi.org/
10.1145/2638554

Velamparambil, S., Chew, W.C.: Analysis and performance of a distributed mem-
ory multilevel fast multipole algorithm. IEEE Trans. Antennas Propag. 53(8),
2719-2727 (2005). https://doi.org/10.1109/ TAP.2005.851859

Vipiana, F., Francavilla, M., Vecchi, G.: EFIE modeling of high-definition multi-
scale structures. IEEE Trans. Antennas Propag. 58(7), 2362-2374 (2010)

Wahib, M., Maruyama, N.: Scalable kernel fusion for memory-bound GPU applica-
tions. In: Proceedings of the International Conference for High-Performance Com-
puting, Networking, Storage and Analysis (SC 2014), pp. 191-202. IEEE (2014).
https://doi.org/10.1109/SC.2014.21

Wang, G., Lin, Y., Yi, W.: Kernel fusion: an effective method for better power
efficiency on multithreaded GPU. In: Proceedings of the IEEE/ACM International
Conference on Green Computing and Communications and International Confer-
ence on Cyber, Physical and Social Computing, pp. 344-350 (2010). https://doi.
org/10.1109/GreenCom-CPSCom.2010.102

Wen, Y., O’Boyle, M.F., Fensch, C.: MaxPair: enhance OpenCL concurrent kernel
execution by weighted maximum matching. In: Proceedings of the GPGPU-11.
ACM (2018). https://doi.org/10.1145/3180270.3180272



68

61.

62.

63.

64.

65.

66.

67.

E. Larsson et al.

YarKhan, A., Kurzak, J., Dongarra, J.: Quark users’ guide: queueing and runtime
for kernels. Technical report. ICL-UT-11-02 (2011)

Zafari, A.: TaskUniVerse: a task-based unified interface for versatile parallel exe-
cution. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.)
PPAM 2017. LNCS, vol. 10777, pp. 169-184. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78024-5_16

Zafari, A., et al.: Task parallel implementation of a solver for electromagnetic scat-
tering problems. CoRR abs/1801.03589 (2018). http://arxiv.org/abs/1801.03589
Zafari, A., Larsson, E., Tillenius, M.: DuctTeip: an efficient programming model
for distributed task-based parallel computing (2019, submitted)

Zaichenkov, P., Gijsbers, B., Grelck, C., Tveretina, O., Shafarenko, A.: The cost
and benefits of coordination programming: two case studies in Concurrent Collec-
tions (CnC) and S-Net. Parallel Process. Lett. 26(3) (2016). https://doi.org/10.
1142/50129626416500110

Zhang, B.: Asynchronous task scheduling of the fast multipole method using var-
ious runtime systems. In: 2014 Fourth Workshop on Data-Flow Execution Mod-
els for Extreme Scale Computing, pp. 9-16 (2014). https://doi.org/10.1109/DFM.
2014.14

Zhao, K., Vouvakis, M.N., Lee, J.F.: The adaptive cross approximation algorithm
for accelerated method of moments computations of EMC problems. IEEE Trans.
Electromagn. Compat. 47(4), 763-773 (2005)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.



