
Performance Analysis and Optimization of the
Vector-Kronecker Product Multiplication

Alexandre Azevedo∗, Cristiana Bentes†, Maria Clicia Castro‡, Claude Tadonki§
∗Computational Sciences Program, State University of Rio de Janeiro, alexaazevedo@gmail.com

†Department of Systems Engineering, State University of Rio de Janeiro, cris@eng.uerj.br
‡Department of Informatics and Computer Science, State University of Rio de Janeiro, clicia@ime.uerj.br

§CRI (Centre de Recherche en Informatique), MINES ParisTech, claude.tadonki@mines-paristech.fr

Abstract—The Kronecker product, also called tensor
product, is a fundamental matrix algebra operation, used
to model complex systems using structured descriptions.
This operation needs to be computed efficiently, since it is
a critical kernel for iterative algorithms. In this work, we
focus on the vector-kronecker product operation, where we
present an in-depth performance analysis of a sequential
and a parallel algorithm previously proposed. Based on
this analysis, we proposed three optimizations: changing
the memory access pattern, reducing load imbalance and
manually vectorizing some portions of the code with Intel
SSE4.2 intrinsics. The obtained results show better cache
usage and load balance, thus improving the performance,
especially for larger matrices.

I. INTRODUCTION

In large-scale scientific applications, the matrix-vector

product is usually a key operation. For many appli-

cations, however, when the matrix is very large, it is

better to avoid forming it explicitly before performing

the multiplication. This not only saves memory space

but can also reduce redundant computations.

In this work, we focus on tensor algebra and the

particular component of this field that is solving a vector-

kronecker product multiplication. There are a number of

applications that rely on this operation, as the multidi-

mensional modeling of Stochastic Automata Networks

(SAN) [1], [2], [3], Fast Fourier Transform (FFT), Fast

Poisson Solver (FPS) [4], [5], Quantum Computation

(QC) [6], and Lattice Quantum Chromodynamics [7].

The kronecker product matrix is defined as a block

matrix formed with a special multiplication between

two matrices [8]. The problem is that given N square

matrices A(i) of order ni and a vector x ∈ R
1×L where

L =
∏N

n=1 ni, the complexity of building this matrix

is (
∏N

i=1 n
2
i). This complexity can make the matrix

construction and the space for storage prohibitive.

Therefore, in this work, we take a different approach

to computing the vector-kronecker product multiplica-

tion. Instead of building the full matrix, we exploit the

normal factor property in order to proceed with each

matrix individually, as proposed in [9]. We propose here

a thorough study of the sequential and parallel algorithm

to solve the vector-kronecker product multiplication pro-

posed in [9], focusing on the impact of the size and

quantity of matrices, the cache memory behavior, and the

load balance of the parallel algorithm. The performance

analysis has arisen some optimizations to the original

algorithm. We propose here an improvement in data

access, a reduction of load imbalance in the parallel

code, and vectorization of the most important loop.

The proposed optimizations intend to increase the

efficiency of the algorithms. The load imbalance and

vectorization optimizations provided the highest impact

with all experimental inputs. The data access optimiza-

tion provided an impact on inputs using large matrices.

The remainder of this paper is organized as fol-

lows. Section II presents the previous work on vector-

kronecker product multiplication. Section III presents the

definition of the kronecker product matrix, its properties,

and an overview of the original vector-kronecker product

multiplication algorithm. Section IV analysis the cache

memory behavior and load imbalance of the original

algorithm. In Section V, based on our analyses, we

propose some optimizations and show the consequent

performance improvements. Finally, Section VI shows

our conclusions and directions for future work.

II. RELATED WORK

The vector-kronecker product multiplication has been

widely used and studied in several different applications

within different areas. The work by Van Loan [10] offers

a variety of models and well-known applications related

to the kronecker product in different fields of research.

This work confirms the importance of kronecker product.

The work by Brenner et al. [11] focuses on the formalism

and presents a concise comparison between Generalized

Tensor Algebra (GTA) and classical Kronecker modeling

265

2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)

2643-3001/20/$31.00 ©2020 IEEE
DOI 10.1109/SBAC-PAD49847.2020.00044

TADONKI

TADONKI

of Stochastic Automata Networks. This comparison is

justified by a considerable gain in both memory effi-

ciency and lower CPU usage when using GTA formal-

ism. Dayar and Orhan work [8] is primarily based on

optimizing the execution of the shuffle algorithm in order

to improve data locality. The optimization also reduces

the number of FLOPS, this is accomplished by focusing

the computation on the nonzero values of the matrices

and thus trying to avoid FLOPS that use zero rows and

columns.

An important application of the tensor algebra is in

modeling Continuous Time Markov Chains (CTMC). In

CTMC, the kronecker product takes the role of the gener-

ator matrix of the Markov chain, holding all information

regarding the system. Buchholz et al. [12] work presents

a number of different algorithms for solving vector-

kronecker multiplication. The algorithms are focused on

reducing the number of operations performed and the

memory usage by exploiting the sparsity of the matrices

in the kronecker product. The work by Benoit et al.
[3] proposes a new algorithm that tries to reduce the

memory cost of operating a large kronecker product.

The algorithm focuses on refining the size of the main

vector by removing sections full of zeros. The latest

work by Buchholz et al. [13] introduces a new technique

for storing solution vectors by using a modern tensor

representation called Hierarchical Tucker Decomposition

(HTD), which paired with some truncation methods is

capable of reducing memory requirements of a vector-

Kronecker product and also increase its time efficiency.

For larger models, the processing time of the vector-

kronecker product can become considerably high. In this

situation, parallel processing can be useful to reduce the

computational time and exploit the large availability of

parallel machines. Dolev and Rosen [14] work presents

a fully working system for calculating the kronecker

product using an optical apparatus, where a set of lasers,

filters, and sensors replace the common silicon processor.

Tadonki and Philippe work [9] shows the fundamental

mathematical reasoning and groundwork on which the

majority of our work is based on. The main difficulty

when solving kronecker product problems is handling

the large dimensions of the result matrix. They presented

a recurrent algorithm that is capable of performing the

vector-kronecker product multiplication by only calcu-

lating local inner products of much smaller portions

rather than the massive result vector. The most important

aspect of this work is the parallel algorithms, with two

different approaches. The first one uses a redundant

computation approach and avoids communication, but

limits itself to a smaller amount of processors. The

second approach uses the message passing model and

includes communication among processors, this allows

the use of a larger amount of processors. The tradeoff in

this approach is that the communication overhead can

hinder the scalability of the method. Tadonki’s latest

work [15] proposes an algorithm to allow the vector-

kronecker product multiplication to be calculated with

large scale hybrid supercomputers, avoiding redundant

work to be performed. The focus of this work is the opti-

mization of communication among processors. The work

presents a heuristic algorithm to construct an optimal

topology for processor communication, which increases

the scalability of the computation of his previous work.

The implementation uses a hybrid parallelization with

the shared memory model on the computing nodes,

allowing further improvement in the scalability.

Our work is based on [9], [15] and extends them.

Since the shared memory algorithm plays an important

role in reducing the execution time, our goal here is

to properly understand the cache effect and employ

different optimization techniques to further reduce the

computational cost.

III. VECTOR-KRONECKER PRODUCT

MULTIPLICATION

Definition 1 (Kronecker Product). The Kronecker prod-

uct of two matrices A ∈ R
na×ma and B ∈ R

nb×mb ,

denoted by A ⊗ B, defined as the following matrix

∈ R
nanb×mamb :

A⊗B ≡

⎡
⎢⎣
a11B . . . a1nB

...
. . .

...

am1B . . . amnB

⎤
⎥⎦

Let us consider four different matrices M,N,P,Q of

compatible orders. Let us also define In the identity

matrix of order n. We have the following properties of

the kronecker product:

Associativity

M ⊗ (N ⊗ P) = (M ⊗N)⊗ P (1)

Factorization (normal factors)

A⊗B = (A⊗ Ina)× (Inb ⊗B) (2)

By using Equation (1), it’s possible to define a kro-

necker product of N matrices A(i) of size ni ×mi, i =
1, 2, ..., N , denoted by ⊗N

i=1A
(i), which is a matrix of

size
∏N

n=1 ni ×
∏N

n=1 mi [9].

As can be seen from previous formula, the kronecker

product can be a considerable challenge to properly

266

handle because of both its size and complexity. In

an attempt to turn ⊗N
i=1A

(i) into a more manageable

operation, it’s necessary to take all matrices A(i) to be

square matrices of order ni, i = 1, 2, 3,N , followed

by the use of Equation (2), which yield Equation (3).

⊗N
i=1A

i =
N∏
s=1

(In1⊗ ...⊗Ins−1⊗As⊗Ins+1⊗·⊗InN)

(3)

It is also important to mention that the ordinary matrix

operation is commutative with normal factors.

Definition 2 (Vector-Kronecker Product Multiplication).
Consider N square matrices A(i) of order ni and a vector

x ∈ R
1×L where L =

∏N
n=1 ni. The Vector-Kronecker

Product Multiplication is defined as:

z = x(⊗N
n=1A

(i)) (4)

The construction of the kronecker product matrix

⊗N
n=1A

(i) to perform the multiplication (4) would take a

large amount of space-memory, where the order of this

matrix is (
∏N

n=1 ni)
2. Besides, the naive approach in

building it would yield the same prohibitive complexity.

Considering N square matrices A(i) of order ni,

i = 1, 2, · · · , N a naive computation of the matrix-vector

product yields

(

N∏
i=1

ni)
2 (5)

floating-point multiplications. Using the recurrent ap-

proach with the so-called normal factor, this complexity

drops down to

(
N∑
i=1

ni)× (
N∏
i=1

ni). (6)

If we consider the case of equal size matrices, i.e. ∀i ∈
{1, 2, · · · , n} ni = n, the optimal complexity becomes

(Nn)× (nN) = NnN+1 (7)

The number of memory accesses is proportional to the

floating-point operations (FLOPS) complexity. However,

the sustained performance will depend on the memory

access pattern, which depends on the scheduling of the

generic computing loop and how the storage is managed

between the steps of the main loop. Table I shows some

complexity values for different scenarios.

A. The Algorithm

In [9], Tadonki and Philippe proposed a sequential and

parallel implementation of the vector-kronecker product

multiplication algorithm. In the sequential algorithm, the

������N
ni 8 12 16 18 20

10 8.6× 1010 7.4× 1012 1.7× 1014 6.4× 1014 2.1× 1015

12 6.6× 1012 1.3× 1015 5.4× 1016 2.5× 1017 9.8× 1017

14 4.9× 1014 2.1× 1017 1.6× 1019 9.4× 1019 4.6× 1020

16 3.6× 1016 3.5× 1019 4.7× 1021 3.5× 1022 2.1× 1023

18 2.6× 1018 5.7× 1021 1.4× 1024 1.3× 1025 9.4× 1025

20 1.8× 1020 9.2× 1023 3.9× 1026 4.6× 1027 4.2× 1028

Table I
COMPLEXITY OF DIFFERENT SCENARIOS

main kronecker matrix is usually very large and known

as descriptor. The descriptor is never completely formed,

and instead, the algorithm performs all the computations

using the smaller matrices that form it.

The sequential algorithm is shown in Algorithm 1.

The inputs are N matrices A(p) of size np × np and a

vector X of size
∏N

p=1 np. These matrices are used one

at a time, and which matrix is being used is controlled

by the outermost loop at line 4. In order to perform

all computation with each matrix, the algorithm takes

specific chunks of the main vector V and uses them

in the computations, we control the indexes of these

specific elements of the vector V with the loops from

line 6 and line 7, which we store in our (much smaller)

auxiliary vector U of size ns, at line 8 and 9.

The computations are performed in the two innermost

loops which start at line 11 and end at line 16. The

computations can be understood as the dot product

between the vector U and the current matrix A(s). These

will be done for each chunk of V selected at lines 8 and

9 and updated back to the main vector at line 15, which

is why it is saved in U .

Algorithm 1: Vector-Kronecker product

1 V ← X

2 L ←∏N
p=1 np

3 r ← 1

4 for s← N to 1 do
5 l ← L/ns

6 for k ← 1 to l do
7 for i← 1 to r do
8 for t← 1 to ns do
9 U [t]←

V [((k − 1) ∗ ns + t− 1) ∗ r + i]
10 for j ← 1 to ns do
11 for t← 1 to ns do
12 scal ← scal + A(s)(t, j) ∗ U [t]
13 V [((k − 1) ∗ ns + j − 1) ∗ r + i]

← scal
14 r ← r ∗ ns

15 Z ← V

267

The shared memory parallel implementation of this

algorithm, also proposed in [9], mainly focuses on par-

allelizing the loop at line 6. The idea is to split equally

the computation among the threads, which correspond to

the computation of the recursive step s with A(s). This

approach has no communication between processors.

IV. ANALYZING THE CACHE BEHAVIOR

Before optimizing the Vector-Kronecker Product Mul-

tiplication algorithm, we performed an in-depth study

on its cache behavior. The experiments were performed

on an Intel Core i7 930 with 8Gb of RAM memory

running Ubuntu 16.04 LTS Linux distribution. They

consist of operating a vector-kronecker multiplication

with two square matrices of different order N . The

implementation of Algorithm 1 was done in C, using gcc

version 5.4 with the optimization flag -O3. We analyzed

only the L1 behavior because the number of L2 accesses

for this algorithm is negligible when compared to the L1

accesses (L2 accesses represent only 0.5% of the total

memory accesses). The L1 data cache accesses and hit

rate were collected using the Performance Application

Programming Interface (PAPI) library [16].

Figure 1 shows the values of the L1 hit ratio for

different matrix sizes, {2, 4, 6, ...1000}. We can observe

in this figure a considerable drop in the cache hit

ratio when the matrices sizes are roughly bigger than

330×330. The detailed explanation of this drop is related

to the innermost loop of the algorithm and the hardware

prefetching mechanisms.

Figure 1. L1 Hit ratio for increasing matrix sizes

The L1 data cache of the Intel Core i7 930 is an 8-

way set associative with 32KB size, which can store up

to 8192 float elements. The cache line size is 64 bytes

thus can store 16 float elements. Intel processors have

two types of hardware prefetchers for the L1 cache [17].

The L1 hardware prefetchers are called Data Cache Unit

(DCU). The first prefetcher, called DCU, fetches the next

cache line into the L1 data cache. The second prefetcher,

called DCU IP, recognizes the load history (based on the

Instruction Pointer of previous loads), and this way it can

determine whenever to prefetch additional lines with an

appropriate stride.

The two innermost loops of the vector-kronecker

product comprise the multiplication of the vector U of

size n with the matrix A of size n × n. From these

two loops, the innermost one comprises an inner product

between V and Aj , where Aj is a column of matrix A.

The great majority of the cache accesses are concentrated

on this innermost loop. In this way, the analysis of

the L1 cache behavior focuses on the accesses of the

three main variables inside this loop, which are U , A,

and scal. The values of U and scal always fit in L1

for any n ≤ 4000 (for n = 4000, U uses 15.6KB

of the L1 cache). For values of n ≤ 90, the whole

matrix A also fits in the L1 cache (for n = 90, A
uses 31.6KB and U uses 360 bytes). For values of

n > 90, the cache performance depends heavily on the

hardware prefetching mechanisms, because A would not

fit completely into the L1 data cache.

In the innermost loop of the vector-kronecker product,

A is accessed by columns. The problem is that A
is stored by rows in the main memory. So, for each

element A[i, j] that generates a cache miss, the miss

brings sixteen contiguous elements of a row of A in the

cache line A[i, j], A[i, j+1], A[i, j+2], ..., A[i, j+15].
In addition the DCU prefetcher brings the next cache

line, which comprises A[i, j + 16], A[i, j + 17], A[i, j +
18], ..., A[i, j+31]. If the DCU IP prefetcher can detect

the access pattern of columns of A, it will bring in

advance the cache line that contains A[i + 1, j], this

cache line will bring to L1 the values of A[i+1, j], A[i+
1, j +1], A[i+1, j +2], ..., A[i+1, j +15]. When N is

smaller than 330, what happens is that the values brought

in advance will stay on the cache, and when the column

j+1 is accessed it won’t generate misses, since they were

brought in advance in the cache lines already prefetched.

For N = 330, when column j is accessed, the DCU

prefetcher brings two cache lines for each access, which

will bring a total of 330× 32 = 10560 elements for the

whole column, that occupy around 42KB, and this would

exceed the capacity of 32KB of the L1 cache. So, the

access of element A[i, j+1] will generate a miss, since it

is not stored in L1 anymore. This explains the drop in the

curve after N reaches 330. For values greater than 330,

for each access to A[i, j] that generates a miss, the DCU

IP prefetcher will bring A[i+1, j]. After that, A[i+2, j]
will generate a miss and bring A[i + 3, j], and so on.

In this way, half of the column accesses will generate

misses. Inside the innermost loop, there is one access to

U , one access to scal, and one access to A[i, j]. So, the

268

accesses to A represent 1
3 of the L1 accesses inside the

loop. Since half of the accesses will generate misses, the

algorithm will generate around 1
6 of faults, which gives

a hit rate of around 80%, as shown in the graph.

In order to evaluate how the execution time of the

vector-kronecker product multiplication is affected by

the L1 cache hit ratio, we performed a set of experiments

varying the matrices sizes and also varying the number of

matrices. The idea is to vary the size of the problem, but

maintaining approximately constant the number of mem-

ory accesses, which can be done by selecting a collection

of input data that has roughly the same complexity, as

computed from Equation 7.

Table II shows for each matrix size and number of

matrices, the size of the problem (complexity), the L1

cache hit ratio, the execution time (in seconds), and the

number of cache accesses. This set of experiments had

the objective of showing that for a similarly complex

experiment, matrices with size larger than 330 have

lower hit ratio, thus resulting in a lower execution time

when compared to several matrices of smaller sizes.

For this set of experiments, the matrices used for the

same execution are of the same size. Considering the 3

accesses in the innermost loop (one for U , one for scal,
and one for A[i, j]), the number of memory accesses for

these experiments is roughly given by 3 × N × nN+1,

where N is the number of matrices and n is the size of

each the matrix.

ni N Complexity Hit Ratio Time(s) Accesses
×(1010) ×(1010)

4 14 1.5 0.995 25.031 5.2
7 10 2.0 0.997 26.661 6.5
11 8 1.9 0.998 23.418 6.1
23 6 2.1 0.999 23.707 6.4
290 3 2.0 0.949 28.200 6.4
2000 2 1.6 0.642 131.148 6.4

Table II
CACHE BEHAVIOR AND EXECUTION TIME FOR DIFFERENT MATRIX

SIZES AND NUMBER OF MATRICES.

A. Parallel Implementation

Table III shows the L1 hit ratio, time, number of

accesses and the speedup for the shared memory parallel

implementation using 4 threads. The hit ratios in Table

III show similar behavior as the sequential version,

considering that the threads are independent of each

other. We can observe, however, an important drop in

the speedup for the matrices sizes of 290 × 290 and

2000× 2000. This drop is caused by a load imbalance.

According to Algorithm 1, as the execution progresses,

the l index will become smaller and r will become

bigger. For the very last matrix, l should be 1 and the

execution will be essentially sequential.

ni N L1 hit ratio time(s) # accesses Speedup
×(1010)

4 14 0.991 7.693 5.6 3.25
7 10 0.994 9.093 6.8 2.93
11 8 0.996 8.149 6.2 2.87
23 6 0.998 8.793 6.4 2.71
290 3 0.951 15.478 6.4 1.82
2000 2 0.568 93.319 6.4 1.4

Table III
PARALLEL IMPLEMENTATION RESULTS

V. PROPOSED OPTIMIZATIONS AND PERFORMANCE

IMPROVEMENTS

Based on the previous performance analysis of the

vector-kronecker product multiplication, we performed

some optimizations to the code to increase its perfor-

mance. This section presents the proposed optimizations

and the performance improvements obtained with each

of them. The experiments were undertaken on the same

experimental platform like the one described in the

previous section.

A. Optimizing the data access

As explained in Section IV, the innermost loop of

the vector-kronecker product multiplication accesses the

matrix Ai by columns. The problem of accessing Ai by

columns is that for N > 330, there is a considerable

drop in L1 hit ratio. Therefore, the first recognizable

optimization made to the code is direct: transpose A and

perform the inner loop of the vector-kronecker product

multiplication by row.

Figure 2 shows the L1 hit ratio of the optimized code

as the matrices sizes increase. For all the experiments,

the transpose operation is precomputed. We can observe

in this graph an almost constant high L1 hit ratio, regard-

less of the matrices sizes. The spike at the beginning

of the graph occurs because for N < 90, the whole

matrices and vectors fit in L1 (as explained in Section

IV). The comparison of this graph with the graph of

Figure 1 shows that transposing A before computing the

vector-kronecker product multiplication produces better

L1 performance.

Table IV shows the hit ratio, number of memory

accesses, and execution times for the implementations

accessing A by rows and by columns. We can observe

that our optimization was able to reduce the execution

time of the vector-kronecker product multiplication, for

all matrices sizes. This reduction is more prominent for

bigger matrices.

269

Input Size Access per row Access per column

ni N hit ratio time(s) # accesses ×(1010) hit ratio time(s) # accesses ×(1010)
4 14 0.994 23.33 4.0 0.995 25.03 5.2
7 10 0.996 25.38 4.8 0.997 26.66 6.5
11 8 0.999 21.75 4.4 0.998 23.41 6.1
23 6 0.999 22.19 4.4 0.999 23.70 6.4
290 3 0.982 21.51 4.3 0.949 28.20 6.4
2000 2 0.857 16.91 3.2 0.642 131.14 6.4

Table IV
L1 HIT RATIO, NUMBER OF MEMORY ACCESSES AND EXECUTION TIMES FOR THE ORIGINAL AND OPTIMIZED CODE

Figure 2. L1 hit ratio for increasing matrices sizes

One interesting aspect of these results is that the

implementation by rows could greatly reduce the number

of memory accesses of the algorithm. For N > 290,

the memory accesses of the implementation by row are

half of the memory accesses of the implementation by

column. This was an unexpected result.

To explain this behavior, we went through the assem-

bly code of both implementations. We performed two

small experiments and analyzed the assembly generated

by gcc using -O3 optimization flag. In the first exper-

iment, we used N = 2 and ni = 16. Figure 3 shows

the assembly code of the innermost loop of the vector-

kronecker product when ni = 16 for the implementation

by column. For ni = 16, the compiler unrolls the

innermost loop, and we can observe 16 repetitions of

the operation in (8).

scal = scal +A[i][j]× U [i] (8)

These operations are performed by 16 movss in-

structions to bring the matrix value from memory to

a xmm register, 16 mulss instructions to multiply the

value of the matrix (in xmm) to the vector element

that is in a memory position, and 16 addss results to

accumulate the results. The compiler, however, put the

instructions in a non-intuitive order to take advantage

of the pipelines. What we can observe in this code is

that, before the innermost loop, the compiler loads the

matrix addresses into the registers r8 to r15, rbx, rcx,

rbp, rdi, rsi. So, inside the innermost loop, the addresses

are not computed. The problem is that, since there is not

enough registers for all the addresses, the compiler uses

the stack pointer for some addresses as marked in the

figure in the red rectangles. So, for each execution of the

innermost loop the implementation by column requires

3 more accesses to the memory for accessing the stack.

Figure 3. Assembly code for the innermost loops when N=16,
accessing the matrices by column

On another hand, the implementation by row does not

require the load of the matrix addresses to registers.

Since the matrix is accessed by row the compiler just

needs to increase the offset by 0, 4, 8, 16,..., 60.

Memory accesses in the assembly code are the instruc-

tions where one of the operands are registers between

parenthesis. Counting the number of accesses of the

two implementations, we obtain 16 accesses for the

matrix, 16 accesses for the vector, 2 accesses for the

indexes summing up 34 accesses. The implementation

by columns has 3 more accesses to the stack, which

produces roughly 10% more accesses. In this experiment,

the number of memory accesses for the implementation

by row is 20922, while the number of accesses for the

implementation by column is 22891.

We also made a second experiment, where we used

270

N = 2 and ni = 32, to investigate the memory ac-

cesses when there is not enough registers to hold the

addresses to the matrix. Surprisingly, the assembly code

generated is completely different. Figures 4 and 5 show

the assembly code for the innermost loops of the vector-

kronecker product when ni = 32 for column and row

implementations, respectively. These figures show that

for ni = 32, the compiler uses less registers to build

the loops. The innermost loop is no longer unrolled.

The loop is reduced to 3 instructions: one move, one

multiplication and one addition to perform the operation

of (8), with two jne instructions defining the loop limits.
Despite using fewer registers, the drawback of the

column implementation is that it requires one extra

memory access for every loop repetition. The extra

access is performed in the movq instruction that brings

the next matrix memory address to a register. So, with

one more memory access within the loop, the increase in

the number of accesses in the assembly code is roughly

50%. This experiment shown 203693 memory accesses

with the column implementation and 140222 memory

accesses with the row implementation.

Figure 4. Assembly code for N=32, accessing the matrices by column

Figure 5. Assembly code for for N=32, accessing the matrices by row

B. Load Imbalance
As explained in Section IV-A, the parallel algorithm

shown a load imbalance when the l index becomes

small and r becomes big. We propose here a solution

to this thread imbalance problem. Algorithm 2 shows

our optimization in order to improve the load balance

among the threads. In this optimization, we have to

define two different parallel regions, by using an IF

statement, comparing the value of l and p, where p is the

number of available processors. Whenever l > p, our op-

timized algorithm will perform exactly like Algorithm 1.

However, when l < p the parallel region will change to

an inner loop allowing all processors to be used until the

end of the execution.

Algorithm 2: Optimized parallel Vector-matrix

multiplication

1 V ← X

2 L ←∏N
p=1 np

3 r ← 1

4 p ← num threads

5 for s← N to 1 do
6 l ← L/ns

7 if (l ¿ p) then
8 #pragma omp parallel for
9 for k ← 1 to l do

10 for i← 1 to r do
11 for t← 1 to ns do
12 U [t]←

V [((k−1)∗ns+ t−1)∗r+ i]
13 for j ← 1 to ns do
14 for t← 1 to ns do
15 scal ← scal +

A(s)(t, j) ∗ U [t]
16 V [((k−1)∗ns+ j−1)∗ r+ i]

← scal
17 else
18 for k ← 1 to l do
19 #pragma omp parallel for
20 for i← 1 to r do
21 for t← 1 to ns do
22 U [t]←

V [((k−1)∗ns+ t−1)∗r+ i]
23 for j ← 1 to ns do
24 for t← 1 to ns do
25 scal ← scal +

A(s)(t, j) ∗ U [t]
26 V [((k−1)∗ns+ j−1)∗ r+ i]

← scal
27 r ← r ∗ ns

28 Z ← V

Table V shows the number of memory accesses for

both the unbalanced version and the optimized version

of the code for each thread. The optimization has greatly

reduced the imbalance in terms of memory access and

increased the speedup, especially for the larger matrices.

The execution times and speedups compared to the

sequential version are shown in Table VI.

C. Vectorization

Since the gcc compiler with -O3 optimization flag was

not able to vectorize the innermost loop of the vector-

kronecker product, we implemented the operation of (8)

using Intel SSE4.2 intrinsics. The innermost loop of

271

Input Size Original Optimized
ni N Thread ID # access # access

×(1010) ×(1010)
4 14 0 1.7 1.4
4 14 1 1.3 1.4
4 14 2 1.3 1.4
4 14 3 1.3 1.4
2000 2 0 4.0 1.6
2000 2 1 0.8 1.6
2000 2 2 0.8 1.6
2000 2 3 0.8 1.6

Table V
MEMORY ACCESSES OF THE ORIGINAL AND OPTIMIZED VERSION.

Input Size Original Optimized
ni N time(s) speedup time(s) speedup
4 14 7.69 3.25 6.5 3.85
2000 2 93.32 1.4 38.49 3.4

Table VI
EXECUTION TIME AND SPEEDUP OF THE UNBALANCED VERSION

AND THE OPTIMIZED VERSION OF THE CODE.

the vector-kronecker product is essentially a dot product

between vector U and one column of the matrix.

Table VII shows the execution time results for both

the sequential and the vectorized implementations. The

performance gains are noticeable for all matrix sizes and

more pronounced for larger matrices. Both the sequential

and the vectorized implementation uses the optimized

version where the matrix is accessed by rows.

Input Size Sequential Vectorized
ni N time(s) time(s) speedup
4 14 23.33 14.10 1.77
8 9 13.10 5.53 2.37
24 6 31.18 11.16 2.79
2000 2 16.91 7.00 2.41

Table VII
EXPERIMENTAL RESULTS OF VECTORIZATION

VI. CONCLUSIONS

Multiplying a vector by a kronecker product of matri-

ces has been widely applied to model complex systems.

In this paper, we analyzed the cache memory behavior

of a sequential and a parallel version of the vector-

kronecker product based on [9] and [15] and extended

them. We proposed three different optimizations to the

algorithm: changing the data access pattern, reducing

the load imbalance, and manually vectorizing the most

important loop with Intel SSE intrinsics.

Our results show performance improvements for trans-

posing the matrices, storing them by row, and performing

the inner loop of the vector-kronecker product by row,

instead of by column. The improvement in the load

imbalance yield performance gains for large matrices

and the vectorization of the innermost loop provided

speedups for all matrices sizes.

For future work, as most complex systems are rep-

resented by sparse matrices, we intend to focus on

algorithms that avoid the multiplications of all null ele-

ments. Also, we intend to observe the performance gains

in another computational environment with a greater

number of processors.

REFERENCES

[1] P. Fernandes, B. Plateau, W. J. Stewart, Efficient descriptor-vector
multiplications in stochastic automata networks, Journal of the
ACM (JACM) 45 (3) (1998) 381–414.

[2] A. Benoit, P. Fernandes, B. Plateau, W. J. Stewart, On the
benefits of using functional transitions and kronecker algebra,
Performance Evaluation 58 (4) (2004) 367–390.

[3] A. Benoit, B. Plateau, W. J. Stewart, Memory-efficient kronecker
algorithms with applications to the modelling of parallel systems,
Future Generation Computer Systems 22 (7) (2006) 838–847.

[4] C. Tong, P. N. Swarztrauber, Ordered fast fourier transforms on a
massively parallel hypercube multiprocessor, Journal of Parallel
and Distributed Computing 12 (1) (1991) 50–59.

[5] C. Van Loan, Computational frameworks for the fast Fourier
transform, SIAM, 1992.

[6] P. W. Shor, Quantum computing, Documenta Mathematica
1 (1000) (1998) 1.

[7] C. Tadonki, G. Grodidier, O. Pene, An efficient cell library for
lattice quantum chromodynamics, ACM SIGARCH Computer
Architecture News 38 (4) (2011) 60–65.

[8] T. Dayar, M. C. Orhan, On vector-kronecker product multi-
plication with rectangular factors, SIAM Journal on Scientific
Computing 37 (5) (2015) S526–S543.

[9] C. Tadonki, B. Philippe, Parallel multiplication of a vector by a
kronecker product of matrices (part ii), Parallel and Distributed
Computing Practices 3 (3) (2000).

[10] C. F. Van Loan, The ubiquitous kronecker product, Journal of
computational and applied mathematics 123 (1-2) (2000) 85–100.

[11] L. Brenner, P. Fernandes, A. Sales, The need for and the
advantages of generalized tensor algebra for kronecker structured
representations, International Journal of Simulation: Systems,
Science & Technology 6 (3-4) (2005) 52–60.

[12] P. Buchholz, G. Ciardo, S. Donatelli, P. Kemper, Complexity of
memory-efficient kronecker operations with applications to the
solution of markov models, INFORMS Journal on Computing
12 (3) (2000) 203–222.

[13] P. Buchholz, T. Dayar, J. Kriege, M. C. Orhan, On compact solu-
tion vectors in kronecker-based markovian analysis, Performance
Evaluation 115 (2017) 132–149.

[14] S. Dolev, N. Fandina, J. Rosen, Holographic parallel processor for
calculating kronecker product, Natural Computing 14 (3) (2015)
433–436.

[15] C. Tadonki, Large scale kronecker product on supercomputers,
in: 2011 Second Workshop on Architecture and Multi-Core
Applications (wamca 2011), IEEE, 2011, pp. 1–4.

[16] P. J. Mucci, S. Browne, C. Deane, G. Ho, Papi: A portable
interface to hardware performance counters, in: Proceedings of
the department of defense HPCMP users group conference, Vol.
710, 1999.

[17] K. Viswanathan, Disclosure of hardware prefetcher
control on some intel processors, https://
software.intel.com/content/www/us/en/develop/articles/
disclosure-of-hw-prefetcher-control-on-some-intel-processors.
html (2014).

272

