MODULO SCHEDULING

WITH REGULAR UNWINDING

Benoit Dupont de Dinechin

Benoit.Dupont-de-Dinechin@st.com

Abstract. Modulo scheduling is used by compilers to build 1-periodic cyclic schedules. We
present a new framework for modulo scheduling, based on the unwinding of the modulo
scheduling problem, and the acyclic scheduling of the resulting unwinded problem under
an additional constraint of regularity. Given A the modulo schedule initiation interval, a
regular unwinded schedule is such that two successive instances of any unwinded operation
are scheduled at least A\ cycles apart. The regular unwinding framework is based on the
equivalence between modulo schedules, and regular unwinded schedules of suitable size. Its
first application is to solve new modulo scheduling relaxations in pseudo-polynomial time.

Key Words. Cyclic scheduling, modulo scheduling, instruction scheduling.

1 Introduction

1.1 Modulo Scheduling Problems

Modulo scheduling [9, 5, 10] is the cyclic instruc-
tions scheduling technique used by compilers for
the software pipelining of loops on VLIW proces-
sors. In modulo scheduling problems, a set of op-
erations {O;}1<i<n is repeatedly executed with a
period of A cycles, called the initiation interval.
Let {0;}1<i<n denote the modulo schedule dates.
Modulo scheduling is constrained as follows [4]:

° Uniofg)lgp dependence constraints denoted
O; == 0;: for each such dependence, a valid
modulo schedule satisfies o; + a{ —)\sz < oj.
The latency a{ and the distance ,Bf of the de-
pendences are non negative integers. The car-
ried dependences are such that 8! > 0. In
addition, the dependence graph without the
carried dependences is a DAG.

e Modulo resource constraints: each operation
O; requires b; > 0 resources for all the time
intervals [o; + kX, 0, + kA+p; — 1],k € IN, and
the total resource use at any time must not
exceed B. The positive integer value p; is the
processing time of operation O;.

The first difficulty of modulo scheduling prob-
lems is that the dependence constraints and the
resource constraints are parameterized by the initi-
ation interval A. To solve modulo scheduling prob-

lems, one has to select a given value of A, then try
to build a schedule. If scheduling fails, a new at-
tempt is made at a higher A value. In the classic
modulo scheduling framework [10], the search of a
value of A starts at max(Aec, Ares), where:

)
Y ol

Aree = Maxg S :
c i

C dependence circuit

e " opib? .=
Ares d:f maxi<r<Rr ’721371741)1“ : R = dll’Il(B)

That is, Aqec is the minimum A such that there
are no positive length circuits in the dependence
graph, and \A,.s is the minimum A such that the
renewable resources B are not over-subscribed.

Even when A is set to a particular value, a mod-
ulo scheduling problem is difficult to solve in prac-
tice, due to the modulo resource constraints, and
because the dependence graph may include circuits
(directed cycles). These two features prevent the
application of classic machine scheduling theory to
modulo scheduling problems.

1.2 Overview of Regular Unwinding

Regular unwinding is our proposed framework to
solve modulo scheduling problems. Its principle is
the unwinding of the modulo scheduling problem,
followed by the acyclic scheduling of the resulting
unwinded scheduling problem, under an explicit or
implicit constraint of regularity:

Unwinding is the creation of an acyclic schedul-
ing problem by instancing p iterations of the
set of operations {O;}i<i<, of the modulo
scheduling problem, and by instancing the de-
pendences accordingly.

Regularity means that any two operation in-
stances OF, O created by the unwinding
of any operation O; of the modulo scheduling
problem are scheduled at least A cycles apart.

Thanks to the regularity condition, we show that
either the unwinded schedule becomes stationary
with all the OF OF' operations scheduled ex-
actly A cycles apart, or the regularized unwinded
scheduling problem is infeasible, implying there is
no modulo schedule at initiation interval A. From
the stationary part of the unwinded schedule, we
extract a 1-periodic cyclic schedule with period A,
that is, a modulo schedule. In cases the regular-
ity needs to be explicitly enforced, the extra con-
straints introduced are forward dependences with
a positive length .

Like the classic modulo scheduling framework
[9, 5, 10], the regular unwinding framework re-
quires that an initiation interval A be assumed be-
fore scheduling, a difficulty addressed by perform-
ing a dichotomy search over the feasible values of \.
The strength of regular unwinding however, is that
for any given value of A, existing machine schedul-
ing techniques apply to the unwinded scheduling
problem, yielding in particular the new modulo
scheduling results of this paper.

Although solving cyclic instruction scheduling
problems by combining unwinding and acyclic
scheduling has been proposed earlier [2, 1], these
approaches build P-periodic cyclic schedules [4],
and require that the span of any iteration be
bounded by extra constraints in order to ensure
convergence. These extra constraints are depen-
dences with negative length, which make the un-
winded scheduling problem harder to solve.

The organization of the paper is as follows. In
section 2, we provide the needed background about
parallel machine scheduling, in particular exten-
sions to the «|f|y scheduling problem denotation
[3] for modulo scheduling, and a survey of the
acyclic scheduling algorithm of Leung, Palem, and
Pnueli [6]. In section 3, we describe the regular
unwinding framework, then apply it to solve two
modulo scheduling problems relaxations:

P|ri;di;pi = 1;w; = Mo , based on the proper-
ties of the Graham List Scheduling Algorithm
(GLSA) on unwinded scheduling problems.

Plcircuit(a), B]);ri;dispi = Lw; = Ale , by ap-
plying the algorithm of Leung, Palem, and
Pnueli [6] to unwinded scheduling problems.

2 Scheduling Background

2.1 Parallel Machine Scheduling

In parallel machine scheduling problems, an op-
eration set {O;}1<i<n is processed on m identical
processors. To be processed, each operation O; re-
quires the exclusive use of one processor during p;
time units, starting at its schedule date o;.

Parallel machine scheduling problems may also
involve release dates r;, and due dates d;. In such
cases, the schedule date o; of operation O; is con-
strained by o; > r;, and there is a penalty when-
ever C; > d;, with C; the completion date of O; de-
fined as C; = o; + p;. For problems where C; < d;
is mandatory, the d; are called deadlines.

The dependence constraints if any are specified
by a partial order between the operations. A de-
pendence between two operations O; and O; re-
quires O; to complete before O; starts, that is,
o; +p; < 0j. In case of time-lags lz, the depen-
dence constraint becomes o; + p; + lg < o0;, and we
call p; + lg the length of the dependence.

Machine scheduling problems are denoted by a
triplet notation a|f|y [3], where a describes the
processing environment, [specifies the operation
properties, and v defines the optimality criterion.
For the parallel machine scheduling problems, the
common values of «, 3,7 are:

a : 1 for a single processor, P for parallel proces-
sors, Pm for the given m parallel processors.

B : r; for release dates, d; for deadlines (if 7y = o)
or due dates, p; = 1 for Unit Execution Time
(UET) operations.

v : o for the problem feasibility, Cyuqe Or Lyjpeq for
the minimization of these objectives.

The makespan is Chpaz ' max; C;, and the maxi-
mum lateness is Lyas = max; L; : L; = C; — d;.
The meaning of the additional /3 fields is:

prec(ly) Dependences with time-lags 7.
prec(ll =1) All the I/ have the same value I.
inTree The dependence graph is an in-tree.
outTree The dependence graph is an out-tree.

intOrder(mono lf) The dependence graph is a
monotone interval order.

As introduced by Papadimitriou & Yannakakis
[8], an interval-order is defined by an incompara-
bility graph that is chordal. An interval-order is
also the complement of an interval graph [8].

A monotone interval-order graph is an interval-
order graph (V,E) with a weight function w on
the arcs such that, given any (v;, v;), (vi,vx) € E :
w(v;,v;) < w(v;,vx) whenever the predecessors of
v; are included in the predecessors of vy.

We extend the «|f8]y notation to cyclic schedul-
ing by introducing the additional § fields:

prec(ag , ,Bf) Uniform dependences, implying

cyclic scheduling.

circuit(a{,,@ﬁ) The dependence graph is a single
circuit of uniform dependences.

m; = A; The processing period of operation O; is
i, implying cyclic scheduling.

A modulo scheduling problem at initiation interval
A is thus implied by m; = A in the f field, because
it requires that all the operations have the same
processing period A.

The Graham List Scheduling Algorithm (GLSA)
is a fundamental algorithm of machine schedul-
ing, where scheduling is performed by scanning the
time slots in increasing order. For each time slot,
if a processor is idle, it schedules the highest prior-
ity operation available at this time. An operation
is available if the current time slot is not earlier
than its release date, and all its predecessors have
completed their execution early enough to satisfy
the entering dependences of this operation.

Blazewicz showed in 1977 that the GLSA op-
timally solves P|r;;d;;p; = 1|e and Plri;p; =
1|Lpaz, when using the earliest d; dates first as
a priority (also known as Jackson’s rule).

2.2 The Scheduling Algorithm of
Leung, Palem, and Pnueli

Leung, Palem, and Pnueli proposed in 2001 the
following algorithm for scheduling UET operations
on a parallel machine [6]:

1. Compute the latest possible date d}, called
“modified deadline”, any operation O; can be
scheduled at in any feasible schedule.

2. Schedule with the GLSA, using the earliest d;
first as priorities, and check that the resulting
schedule does not miss any deadline.

3. In case of minimizing the maximum comple-
tion time Cj,q2, or the maximum lateness
L0, binary search to find the minimum
scheduling horizon such that the scheduling
problem is feasible.

The steps 1 and 2 of this algorithm solve the
following problems in O(n?logna(n) + ne) time:

Problem |
1|prec(l! € {0,1})|e

Uprec(l! € {0,1});ri;d; pi = 1]o
P2|p7“ec(llj € {-1,0});ri;di;pi = 1]e
PlintOrder(mono lzj);ri; di;p; = 1]e
PlinTree(l! =1);di;p; = 1|
PloutTree(l! = 1);rs;pi = 1]e

In order to compute the modified deadlines in
step 1, Leung et al. apply a technique of backward
scheduling [7], where a series of relaxations are op-
timally solved by the GLSA in order to find, for
each operation, its latest schedule date such that
the relaxations are feasible. Precisely, the imple-
mentation of backward scheduling is as follows:

e Iterate in backward topological order on the
scheduling problem operation set, to build
a series of scheduling sub-problems S; =
{0i, suce; U indep;, v}, d;}. Here suce; is the
set of successors of O;, and indep; is the set of

operations that are independent from O;.

e For each scheduling sub-problem S;, binary
search for the latest schedule date p of O; such
that the constrained sub-problem (7 = p)AS;
is feasible. If there is such p, define the mod-
ified deadline of O; as d; = p + 1. Else the
original scheduling problem is infeasible.

e To find if a constrained sub-problem (r; =

(2
p) A S; is feasible, convert the transitive de-
pendence lengths from O; to all the other O;
of S; into release dates, then forget the depen-
dences. This yields a relaxation, which is the

simpler scheduling problem P|r;;d;; p; = 1]e.

e Optimally solve this P|r;;d;;p; = 1|e relax-
ation using the GLSA with the earliest d; first
priority (Jackson’s rule). This gives the feasi-
bility status of the relaxation.

The main theoretical contributions of this work
by Leung, Palem, and Pnueli, are the proofs that
the feasible schedules computed this way are in fact
optimal for all the cases listed above, and the uni-
fication of many earlier modified deadlines tech-
niques under a single framework [6].

3 Regular Unwinding

3.1 Regular Unwinding of the Mod-
ulo Scheduling Problem

Given a modulo scheduling problem with Jt}ég
operation set {O;}i<i<n, dependences {O; A
Oj}(i.j)ep, release dates {r;}1<i<n, and deadlines
{di}lgign, its p-unwinded scheduling problem is:

Operation Set {OF Efgg with schedule dates
{ k}lsksp T
i J1<i<n
Dependence Constraints of + ag
k+3° L. ;
V(Z7]) € E)Vk € [Lp_ﬂzj]

;
7;

IN

. 7 def
Resource Requirements bf =

p; Vi€ [l,n],Vk€[1,p]

by A pf =

Release Dates r¥ = + (k — DX Vi €
[1,n],VEk € [1, p]

Deadlines d¥ < d; + (k— 1)\ Vi € [1,n],Vk €
[1,p]

We denote f = max; j\er Bg, and 0 =
maxﬂ%] .B).

Property 1 The p-unwinded scheduling problem
of a modulo scheduling problem is acyclic with non-
negative dependence lengths for any p > 0.

Proof: We defined the modulo scheduling problem
such that the dependence graph without the car-
ried dependences is acyclic. Carried dependences
yield unwinded dependences between OF and O

with [= k + Bg > k. Therefore the unwinded
dependence graph has a topological sort. 0

Definition 1 A ¢-stationary p-unwinded schedule
s a solution to a p-unwinded scheduling problem
such that: Vi € [1,n],Vk € [¢,p—1] : cF + X = oFT!

A ¢-stationary p-unwinded schedule satisfies:
Vte[L,p—q|Vi€[1,n]: 0! +tA =0

Claim 1 Vp > 0: a modulo schedule can be trans-
formed into a 1-stationary p-unwinded schedule.

Proof: ~ Given the feasible modulo schedule
{0i}1<i<n at initiation interval A, the 1-stationary
p-unwinded schedule defined by {of = o +
k)\}}éfgg is also feasible. 0

Definition 2 An interesting unwinded schedule
is a g-stationary p-unwinded schedule such that:
{oiti<icn Z {0} 1<icn is a modulo schedule.

Theorem 1 Given a A-feasible modulo schedul-
ing problem, any q-stationary p-unwinded schedule
with p—q > © is an interesting unwinded schedule.

Proof: We show that the dates {o; == ol hi<i<n

define a modulo schedule at initiation [}pterval A
For any uniform dependence O; A Oj of the

modulo scheduling problem, we have o? 4+ of <

q+Bf_ q Joo j > _
o; =0 + AB;, since f; < B <w<p-g

Therefore o; + ag —)\Bg <oj.

For the resources, let us consider their latest use
date by iteration ¢, and their earliest use date by
iteration p. The latest use date is max;(o] + p; —
1) < max; d]. The earliest use date is min; o? =
min; of + (p—¢)A > min; 7! + (p— g)A. The choice
of @ ensures max; d} < min;r! + (p—q)\, so there
are no resource conflicts between iterations ¢ and
p in the unwinded schedule.

Let us now extend the g-stationary p-unwinded
schedule to g-stationary p+1-unwinded with the
schedule dates {o?T" % o 4 Ati<i<n. There
are no resource conflicts between this iteration
p+ 1, and iterations ¢q...p, otherwise this contra-
dicts the existence of the g-stationary p-unwinded
schedule. By induction, we extend Vn € IN the
g-stationary p-unwinded schedule to g-stationary
p+n-unwinding without resource conflicts.

Thus for any O;, the resource requirements b; for
all the time intervals [0} +k:/\ U +k)\+p,—1] kEeIN
are satisfied by taking o; = U 0

3.2 Foundations of the Regular Un-
winding Framework

We know from § 3.1 that enough stationarity yields
a modulo schedule. Let us show now that enough
regularity implies stationarity.

Definition 3 A g-reqular p-unwinded schedule is
s-successive-stationary if It e [q p — s|Vi €
[1,n]VEk € [t,t+s—1]:0F + X = o

In other words, stationarity holds for s successive
iterations. When a g-regular p-unwinded sched-
ule is not s-successive-stationary, by regularity we
have: Vt € [¢,p — s]3i € [L,n] : ot + sA < olt5.

Theorem 2 Given a A-feasible modulo scheduling
problem with finite deadlines ¥s > 03dr > 0Vq >
0Vp > q+r : any g-regular p-unwinded schedule is
s-successive-stationary.

Proof: By contradiction, assume ds > 0Vr >
0dg > 0dp > g+ r : a g-regular p-unwinded
schedule is not s-successive-stationary. This im-
plies Vt € [¢,p—s]Fi € [I,n] : ot +sA+1 < ol 5.

From the definition of the deadline dates of the
unwinded scheduling problem, we have df + s\ =
di®, so each inequality becomes Vt € [¢,p—s] i €
[1 n] ot —di +1<olts —dits.

Summlng over i € [1,n] yields the inequality
V€ fg,p—s]: Y,(0f —d) +1 < ¥ (01 —di),
Then for each ¢t € (q,q + s,...q + ms), with

= |25%], we sum this inequality and obtain
(0! —df) +m < 3 (of T =t

By increasing m = LUJ, we get 0 < >, (of —
dl)y+m,so 0 < Y. (o] bms —d?"™*) and the g¢-
regular p-unwinded schedule is infeasible.

7
ob O
l k k+1[nl+1
| [0]0 oro;
Uerl—)\Uk Ul{chl

Figure 1: Illustration of the proof of Theorem 3.

In particular, >, (o} —d}) +m > .(r! —d}) +
m =2y ,(ri —d;) +m,som >>",(d; — r;) ensures
infeasibility. Finally, a choice of r > s .(d; —
r;) + s ensures the g-regular p-unwinded schedule
is infeasible. This completes the contradiction. 0

Corollary 1 A modulo scheduling problem and its
reqularized p-unwinded scheduling problem, with

p>p=Zw ;(di — ;) + @+ 1, are equivalent.

Proof: Let us first assume a feasible modulo
scheduling problem at initiation interval A. By
Claim 1, this yields a 1-stationary p-unwinded
schedule for any p, in particular for p > p.
Conversely, assume a feasible regularized p-
unwinded scheduling problem, with p > p. Thanks
to regularization, any solution is a 1l-regular p-
unwinded schedule. Theorem 2 and the definition
of p ensure this 1-regular p-unwinded schedule is w-
successive-stationary, so by Theorem 1, it contains
an interesting unwinded schedule. The interesting
unwinded schedule yields a modulo schedule. 0

This provides the foundations of the regular un-
winding framework: to solve a modulo scheduling
problem at initiation interval A, build the corre-
sponding regularized p-unwinded scheduling prob-
lem, with p > p. By Corollary 1, either this regu-
larized p-unwinded scheduling problem is feasible,
and we convert its solution to a modulo schedule,
or it is not, and there is no feasible modulo sched-
ule at initiation interval A\ either.

By comparison, the earlier unwinding techniques
proposed for cyclic scheduling with resource con-
straints [2, 1] neither guarantee optimality, nor
bound the unwinding degree that guarantees to
converge on a P-periodic schedule.

3.3 Modulo Scheduling Relaxations
with Regular Unwinding

Theorem 3 Running the GLSA on the p-
unwinded scheduling problem without dependences,
with UET operations, and with a priority func-
tion P such that P(Of) < P(O}) = P(O1) <
P(Oé"'l), yields a 1-regular p-unwinded schedule.

Proof: Assume that the unwinded schedule is not

regular. Let Of be the earliest scheduled opera-
tion such that oF + X\ > of ™. At date of ™! —),

E o ktl
Po=r =X <

— . Since operation OF was not scheduled at
—\ < oF even though it was available, and be-
cause of the UET hypothesis, there must exist op-

erations Of, Oé-’,,... that are all scheduled at date
ohtt
(2

operation OF is available, as r
k1

%,

UZ +1

— A, meaning they have a higher priority than

OF. At date 0", the operations Oé‘-“,O;l’,H, .

are also available, because o} = Uf"'l —A=> ré- <

J
Uf“ A= T;H < Uf“. These operations cannot

be scheduled earlier, that is, 0’;+1 < of“, because
aé‘-“ > ol + \ by regularity, and o} = ™" — A,
Thus, operation Of“ is scheduled before at least
one of the operations Oé’-“, Oé-’,ﬂ, ..., meaning it
has a higher priority. This contradicts the hypoth-
esis on the priority function P. 0

Corollary 2 The modulo scheduling problem
Piri;di;pi = 1;w; = A|e can be solved in pseudo-
polynomial time.

Proof: ~ Build the corresponding p-unwinded
scheduling problem, with p > p. This yields a
P|ri;d;;p; = 1|e problem that is optimally solved
by the GLSA using the earliest d; first priority.
The priority P(O¥) & d¥ = d; + (k — 1)\ of an un-
winded scheduling problem satisfies the conditions
of Theorem 3, so the resulting schedule if feasible
is 1-regular. The value of p ensures this schedule
contains an interesting schedule. 0

Theorem 4 Unwinding a modulo scheduling prob-
lem Plcircuit(al,B!);ri;dispi = Liw; = Ae
and adding the regularizing dependences creates a
PlintOrder(mono I);r;; di; p; = 1]e problem.

Proof: Unwinding a modulo scheduling problem
Plcircuit(ad, B]);ri;dispi = Lw; = A|e without
adding the regularizing dependences yields an un-
winded dependence graph that is a chain. The
transitive closure of a chain is an interval-order
graph, as we can associate to the k-th vertex in
the chain the closed interval [k, k].

For each arc of the transitive closure leaving a
vertex v;, now assign to it the same weight (length)
as the arc from wv; to its direct successor along
the chain. The result is a monotone interval-order
graph, as for any two of arcs (v;,v;) and (v;,v)
their weights w are the same. This dependence
graph only enforces the chain dependences.

Now add each regularizing dependence arc in
turn to the above graph. Each such arc is parallel
to an existing arc (v;,vy), and if not redundant,
this has the effect of increasing w(v;, vi) to A. Let
us consider any successor v; of v;. If v; is between
v; and v in the chain, then w(v;,v;) < w(v;,vk)

still holds. If v; is after vy in the chain, w(v;,v;) >
w(v;, v) may no longer hold. In such case increas-
ing w(v;, v;) to w(v;,vy) restores the monotone in-
terval order property, without further constrain-
ing the problem because w(v;,v;) = w(v;,vg) <
w(vg, vg) + w(vg,vj). 0

Corollary 3 The modulo scheduling problem
Plcircuit(ag, B]);ri;dispi = l;w; = Ae can be
solved in pseudo-polynomial time.

Proof: ~ Build the corresponding p-unwinded
scheduling problem, with p > p, and add
the regularizing dependences. This yields a
PlintOrder(mono I7);7;;d;; p; = 1|e problem that
is optimally solved by the algorithm of Leung,
Palem, and Pnueli [6]. 0

Theorem 5 Given a regularized p-unwinded UET
problem with p > s ,(d; — r;) + s + 1, the modi-
fied deadlines computed by the algorithm of Leung,
Palem, and Pnueli [6] are s-successive stationary.

Proof: The modified deadlines d¥ computed by
the backward scheduling process verify: dgk + A<
d¥+ and r¥ +1 < d* < d¥. The dates {o/F =
d’* — 1} thus define a pseudo 1-regular p-unwinded
schedule, and the proof of Theorem 2 applies. 0

This result is useful when using the algorithm
of Leung, Palem, and Pnueli [6], to build the p-
unwinded schedules: further backward scheduling
is not necessary as soon as the modified deadlines
become stationary for s iterations. Moreover, using
d* = d' + (k — 1)\ improves the convergence rate
of the p-unwinded schedules.

Conclusions

We propose a new framework for modulo schedul-
ing, whose principles are to unwind the modulo
scheduling problem, and to apply acyclic schedul-
ing techniques in a way that ensures the regularity
of the resulting unwinded schedule.

Our main result is the equivalence between any
modulo scheduling problem, and its regularized p-
unwinded problem, for p > p of pseudo-polynomial
size: either the regularized p-unwinded schedule
becomes stationary for enough iterations to yield a
modulo schedule, or there is no modulo schedule.

Given this equivalence, the application of ex-
isting parallel machine scheduling theory to regu-
larized unwinded scheduling problems yields new
facts and techniques for modulo scheduling. In
particular, we show that the modulo schedul-
ing problems P|ri;di;p; = l;w; = Ae, and
P|circuit(ag, B]);ri;di;pi = 1;w; = Ale, can be
solved in pseudo-polynomial time.

References

[1] A. AKEN, A. NI1coLAU, S. NOVACK:
Resource-Constrained — Software Pipelining
IEEE Transactions on Parallel and Distributed
Systems, 6, 12, 1996.

[2] F. BopiN, F. CHAROT: Loop Optimization for
Horizontal Microcoded Machines Proceedings
of the 1990 International Conference on Super-
computing, Amsterdam 1990.

[3] G. FINkE, V. GorbpoN, J.-M. PROTH:
Scheduling with Due Dates (Annotated Bib-

liography of Complexity and Algorithms)
Les cahiers du laboratoire Leibniz, Jan.
2002. http://www-leibniz.imag.fr/

LEIBNIZ/LesCahiers/2002/Cahier42/

[4] B. DupONT DE DINECHIN: From Ma-
chine Scheduling to VLIW Instruction
Scheduling Technical Report A/352/CRI,

November 2003, http://www.cri.ensmp.fr/
classement/2003.html.

[5] M. LaMm: Software Pipelining: an Effec-
tive Scheduling Technique for VLIW Machines
SIGPLAN Conference on Programming Lan-
guage design and Implementation — PLDI’88,
June 1988.

[6] A. Leung, K. V. PALEM, A. PNUELL
Scheduling Time-Constrained Instructions on
Pipelined Processors ACM TOPLAS Vol. 23,
No. 1, Jan. 2001.

[7] K. V. PALEM, B. SiMONS: Scheduling Time-
critical Instructions on RISC' Machines ACM
Symposium on Principles of Programming Lan-
guages — POPL’90, 1990.

[8] C. PapADIMITRIOU, M. YANNAKAKIS:
Scheduling Interval-Ordered Tasks SIAM
Journal of Computing, 8,1979.

[9] B. R. Rau , C. D. GLAESER: Some

Scheduling Techniques and an Easily Schedu-
lable Horizontal Architecture for High Perfor-
mance Scientific Computing 14th Annual Mi-
croprogramming Workshop on Microprogram-
ming — MICRO-14, Dec. 1981.

[10] B. R. RAu: Iterative Modulo Scheduling The
International Journal of Parallel Processing,
24, 1, Feb 1996.

