Remote Execution Daemon (RED)
A Simple Service for Remote Execution and Remote Storage
Version 1.0

Georges-André Silber
CRI/ENSMP Technical Report E-267

April 25, 2005

Contents
1 Introduction 1
2 RED interface 2
2.1 Worlds e e 3
2.1.1 Method red.hello 3
2.1.2 Method red_worldo 4
2.1.3 Method red_properties)
2.14 Method reddestroy)
2.2 Files . . . e 6
2.2.1 Method red_list. 6
2.2.2 Method red directory 6
223 Method redperm. 7
2.2.4 Method red_remove 7
2.3 Jobs ..o e 8
2.3.1 Method red_sink. e 8
2.3.2 Method red_source 9
2.3.3 Methodredrun e 10
2.34 Method red kill.o 11
23,5 Method red_jobs. 11
3 Conclusion 11

1 Introduction

In this document, we describe the interface of RED (Remote Execution Daemon), a simple
service for remote file storage and remote program execution. The implementation of this
service can be a TCP/IP server that waits for connections on a given port. When the server
receives a message containing a method call it returns immediately a message containing the
method results. Many methods of a RED trigger actions that can run asynchronously on the
host. The main methods that act this way are the methods red_run (section 2.3.3), red_sink
(section 2.3.1), and red_source (section 2.3.2). The method red_jobs (section 2.3.5) can then
be used afterward to get informations about the end of the action.

RED can be seen as very simple “grid” operating system model. The only way to interact
with it is by its network service interface. To use this operating system, clients must connect
to the service interface and request a workspace that we call a world. Worlds are identified by
a key that must be used by a client to operate on a world. A world is mainly a private virtual
file system to store programs and data, but it is also a container for running jobs. Operations
on a world are performed via the service interface and can be grouped in three classes: 1)
configuration and information about the world or the RED (section 2.1), 2) operations to
transfer files to and from the world (section 2.2), and 3) creation and management of jobs
(section 2.3).

When a RED is launched, it has only one world created by default. This world can be used
by every client and can be seen as a public world. By default, when a new world is created
on a RED by a client, it is almost empty: it only contains some directories, special files, and
required dynamic libraries. The list of files present is dependent of the implementation. The
method red_list (section 2.2.1) can be used to get the list of files that are present on a newly
created world.

The emptiness of a world implies that prior to the run of a program into a world, the
executable code and the files it requires must be transfered. The end of a world occured when
the RED stops or when the user requests its destruction. All files contained in a world are lost
when the world ends. By default, a RED does not provide any persistent storage of data. It loses
all data when it is turned off and all keys created during the life of a RED are lost and cannot
be reused on another RED. A RED has an underlying software and hardware architecture: it
uses a particular kind of processor and a particular kind of kernel.

2 RED interface

We describe this interface with the hypothesis that this server runs over an existing Unix kernel
(Linux, BSD, Mach, Solaris, etc.). Thus, all the notions used must be understood in the
“natural” way, i.e. like the corresponding Unix notions.

File names appearing in the following methods can be absolute (beginning with '/’) or
relative, i.e. beginning with a file, a ’.” (current directory) or a ’..’ (parent directory).

We use a C syntax to describe the methods, their parameters, and the message they returns.
The system data types (like time_t) are from a Linux system. Correspondance with other
systems should be easy.

A structure fault is contained in the message returned by all the methods of RED interface:

struct red_fault {
int red_errno;
char *red_msg;
char *red_extras;
} red_fault;

where red_errno contains the number of the error and red msg a string describing the error.
The string red_extras can contain a message that precise the error. The possible values of
red_errno are described for each method. Two values are common to all methods and can be
returned by all methods:

RED_ENONE No error.

RED_EUNKNOWN Unknown error. Usually, the field red msg and red_extras gives a more precise
description of the error. This error is a “fallover” for all errors that are not taken into
account in this specification.

In the following, the use of '*’ in the type definition of a variable means that this variable
is an array ended with the NULL element.

2.1 Worlds
2.1.1 Method red_ hello

The structure red key contains a key that uniquely identifies a RED on a given network. A
key contains the address of a RED, the number of its service port, and the time when the RED
has been started. We do the hypothesis that two RED cannot be created at the same time on
a host. The combination of those three elements uniquely identifies a RED on a given network.

struct red_key {
struct timeval red_start; /* time when RED started */
struct red_addr red_addr; /* address of the RED */

}s;

typedef enum { RED_AF_INET, RED_AF_INET6 } red_addrtype;
struct red_addr {

char *red_hostname; /* name of RED host */

char *red_address; /* IP address of RED host */

int red_length; /* lenght of address */
red_addrtype red_addrtype; /* RED_AF_INET or RED_AF_INET6 */
u_int16_t red_port; /* service port number */

};

The method red hello can be used to detect RED servers on a network, and select some
of them based on their processors and kernel types. The main purpose of this method is to get
a red key to identify a RED and to use more elaborate methods. This method is the only one
that can be called without a red key.

struct red_hello_response {

struct red_fault fault; /* error status */

char red[4]; /* contains ’R’,’E’,’D’,0 */
struct red_key key; /* RED key */

struct red_world_key dworld; /* Default world */

char *machine; /* result of ’uname -m’ */

char xkernel_name; /* result of ’uname -s’ */

char *kernel_release; /* result of ’uname -r’ */

char *kernel_version; /* result of ’uname -v’ */

char **properties; /* list of available properties */

};

struct red_hello_response
red_hello ();

The field properties contains a list of the available properties for this RED running on this
particular host. This is an array of chains of characters ended with the null chain (NULL). A
chain describing a property must have the following structure:

PROPERTYNAME-property description

i.e., a property name without spaces and characters -’, and a property description. For instance,
CPUFREQUENCY-Frequency of the CPU in GHz

is a valid property description.

2.1.2 Method red world

The structure red_world key uniquely identifies a world on a RED and is called a world key.
We do the hypothesis that two worlds cannot be created at the same time with the same name
on a RED. A combination of a red key and a world key uniquely identifies a world over all
running RED.

struct red_world_key {
struct timeval world_creation; /* time of world’s creation */
char *world_name; /* name given to the world by the RED */

};

To call methods of a RED, a world must be provided. The method red_world is used to
create a world in a RED and get a key to enter this world. When a RED is launched, all worlds
are invalid except the default world. The name of this world is implementation dependent.

A world key opens the access to a private directory that is the root ’/’ of the file system. All
jobs and files created in a world cannot be seen by other worlds. A world can only be accessed
with the world key.

struct red_world_response {
struct red_fault fault; /* error status */
struct red_world key; /* world key */

s

struct red_world_response
red_world (struct red_key rkey /* RED key */);

The field fault.red_errno can take the following values:

RED_EBADKEY The key used to access this RED is not valid.

RED_ENOMOREWORLD A RED can create a limited number of worlds. This error is returned when
a RED has created all possible worlds.

Note to implementers. A world is a private directory in the main file system of the system
running a RED, and a specific Unix user owner of this world/filesystem. The more obvious
way to implement a world is with a RED running under super user identity, and that goes to
a world with 'chroot(2)’, 'chdir(2)’, and 'setuid(2)’ calls. Note that only methods that
actually create jobs has to actually go to a world. Those methods are red_run, red_sink, and
red_source.

2.1.3 Method red properties
The structure red_property is a container for a property asked to or received from a RED.

struct red_property {
char *property_tag; /* Tag identifying the property */
char *property_content; /* Content of the property */

s

When a propery is asked, the field property_content is empty. The same structure is returned
with the field property_content filled if the property is available on the RED.

The method red_properties returns information about a RED. The list of available prop-
erties is returned by the red_world method.

struct red_properties_response {
struct red_fault fault; /* error status */
struct red_property *properties; /* values of the properties */

};

struct red_properties_response
red_properties (struct red_key rkey, /* RED key */
struct red_world_key wkey, /* World key */
struct red_property *properties
/* Asked properties */);

The field fault.red_errno can take the following values:

RED_EBADKEY The key used to access this RED is not valid.

RED_EBADWORLD The world does not exist on this RED.

RED_EBADPROPERTY A property asked is not available on this RED. This property is returned

in fault.red_extras.

Note to implementers. The list of properties available for a RED is dependent of the
implementation.
2.1.4 Method red destroy

This method destroys a world and inhibits its key. All running jobs of this world are destroyed
and so is the file system of the world. Note that this operation is not recoverable.

struct red_destroy_response {
struct red_fault fault; /* error status */

};

struct red_destroy_response
red_destroy (struct red_key rkey, /* RED key */
struct red_world_key wkey /* World key */);

The field fault.red_errno can take the following values:
RED_EBADKEY The key used to access this RED is not valid.

RED_EBADWORLD The world does not exist on this RED.

Note to implementers. This operation does not need to be done under a world identity.
It mainly consists to completely delete a file system and to destroy all the processes running
under a world’s identity.

2.2 Files

2.2.1 Method red_list

The method red_list returns informations files. If filename is not a directory, it returns
informations about this file. If filename is a directory, it returns informations about the
directory (the first element of the field files in the returned structure red_list_response)
and a non recursive list of informations about the files it contains.

typedef enum { RED_FDIR, RED_FFILE, RED_FSLINK, RED_FDEV } red_file_type;

struct red_file {

char xfilename; /* Filename */
red_file_type type; /* Type of the file */
struct red_mode mode; /* Permissions *x/
off_t size; /* Size of the file */

};

struct red_list_response {
struct red_fault fault;
struct red_file xfiles;

s

struct red_list_response

red_list (struct red_key rkey, /* RED key */
struct red_world_key wkey, /* World key */
const char *dir /* Directory */);

The field fault.red_errno can take the following values:

RED_EBADKEY The key used to access this RED is not valid.
RED_EBADWORLD The world does not exist on this RED.

RED_ENOENT A component of the path filename does not exist, or the path is an empty string..

2.2.2 Method red directory

This method creates a directory.

struct red_directory_response {

struct red_fault fault;
s
struct red_directory_response
red_directory (struct red_key rkey, /* RED key */
struct red_world_key wkey, /* World key */
const char *dir /x Directory */);

The field fault.red_errno can take the following values:

RED_EBADKEY The key used to access this RED is not valid.
RED_EBADWORLD The world does not exist on this RED.

RED_ENOENT A component of the path dir does not exist, or the path is an empty string..

2.2.3 Method red perm

This method changes the permissions of a file.

struct red_mode {

char read; /* O=don’t set, *=set */
char write; /* 0=don’t set, *=set */
char execute; /* O=don’t set, *=set */
+;
struct red_perm_response {
struct red_fault fault;
+;
struct red_perm_response
red_perm (struct red_key rkey, /* RED key */
struct red_world_key wkey, /* World key */
const char xfilename, /* Filename */
struct red_mode mode /* Permissions */);

The field fault.red_errno can take the following values:

RED_EBADKEY The key used to access this RED is not valid.
RED_EBADWORLD The world does not exist on this RED.

RED_ENOENT A component of the path filename does not exist, or the path is an empty string..

2.2.4 Method red_remove

This method removes a file or an empty directory.

struct red_remove_response {

struct red_fault fault;
s
struct red_remove_response
red_remove (struct red_key rkey, /* RED key */
struct red_world_key wkey, /* World key */
const char xfilename /* Filename */);

The field fault.red_errno can take the following values:

RED_EBADKEY The key used to access this RED is not valid.

RED_EBADWORLD The world does not exist on this RED.
RED_ENOENT A component of the path filename does not exist, or the path is an empty string..

RED_ENOTEMPTY filename is a directory and is not empty.

2.3 Jobs

The following methods create jobs. All those methods two common parameters that are props
and wait. The first one is used to tell RED the properties that are to be returned from the
job. The second one decides whether the method has to respond immediately or after the end
of the launched job.

The structure red_job_info contains informations about a job.

struct red_job_info {
int job_number; /* Number of the job */
char xjob_name; /* Job name */
struct red_job_property *job_props; /* Job properties */

s

The structure red_job_property is a container for properties asked or received from a job.

struct red_job_property {
char *job_property_tag; /* Tag identifying the property */
char *job_property_content; /* Content of the property */

s

When a property is asked, the field property_content is empty. The same structure is returned
with the field property_content filled.

Note to implementers. The list of properties available for jobs on a RED is up to the im-
plementer. It could be interesting to define a minimal set of properties existing on all platforms,
like START_TIME, STOP_TIME, MEM_USED, etc.

2.3.1 Method red_sink

This method prepares a file “sink” on a RED. Informally, it prepares a server that waits for a
TCP connection on a port and when this connection arrives, copies all received data into a file.
The job really starts when a connection is made on the incoming port.

The parameter blocksize determines the number of bytes that are read from the socket
before they are written in the file. A value 0 means that the red_sink method uses a default
value (implementation dependent).

struct red_sink {

char *filename; /* New or existing local file */
struct red_addr incoming; /* Connection to wait for data */
int append; /* O=create/erase, l=append */

};

struct red_sink_response {
struct red_fault fault;

struct red_job_info job; /* Informations about the job */

s
struct red_sink_response
red_sink (struct red_key rkey, /* RED key */
struct red_world_key wkey, /* World key */
struct red_sink sink, /* Sink */
struct red_job_property *props, /* Properties */
unsigned int wait, /* Wait for job’s end 7 */
unsigned int blocksize /* Buffer size */);

The field fault.red_errno can take the following values:

RED_EBADKEY The key used to access this RED is not valid.
RED_EBADWORLD The world does not exist on this RED.

RED_EBADSINK The sink is invalid (bad filename, bad receiving port).

2.3.2 Method red_source

This method creates a file “source” on a RED. Informally, it creates a TCP client that establishes
a TCP connection on a specific host/port and transfers in this connection the data of a file
present on the RED.

The parameter blocksize determines the number of bytes that are read from the file before
they are written to the socket. A value 0 means that the red _source method uses a default
value (implementation dependent).

The host defined in the source parameter of the method must be available when this method
is called, otherwise, a RED_EBADSOURCE error is returned.

struct red_source {

char *filename; /* existing local file */
struct red_addr outgoing; /* Destination of file content */
s
struct red_source_response {
struct red_fault fault;
struct red_job_info job; /* Informations about launched job */
s
struct red_source_response
red_source (struct red_key rkey, /* RED key */
struct red_world_key wkey, /* World key */
struct red_source source, /* Source */
struct red_job_property *props, /* Properties */
unsigned int wait, /* Wait for job’s end 7 */
unsigned int blocksize /* Buffer size */);

The field fault.red_errno can take the following values:

RED_EBADKEY The key used to access this RED is not valid.

RED_EBADWORLD The world does not exist on this RED.

RED_EBADSOURCE The source is invalid (bad filename, bad distant port).

2.3.3 Method red_run

This method prepares a program execution on a RED. Informally, it prepares a server that waits
for a TCP connection on a port and when this connection arrives, it runs the given program,
connecting the stdin, stdout and stderr streams of the running program to the specified
hosts/ports or local files.

struct red_command {
char *command; /* Command name */

char **argv; /* NULL terminated list of arguments*/

s

struct red_run {
struct red_addr net_stdio; /* Port for incoming connection */
char xfile_stdio; /* Name of local file */

/* (override net_stdio) */

struct red_addr net_stdout; /* Port for outgoing connection */
char *file_stdout; /* Name of local file */
/* (override net_stdout) */
int append_stdout; /* O=create/erase, l=append */
struct red_addr net_stderr; /* Port for outgoing connection */
char xfile_stderr; /* Name of local file */
/* (override net_stdout) */
int append_stderr; /* O=create/erase, l=append */
s
struct red_run_response {
struct red_fault fault;
struct red_job_info job; /* Informations about launched job */
s
struct red_run_response
red_run (struct red_key rkey, /* RED key */
struct red_world_key wkey, /* World key */
struct red_command cmd, /* Command */
struct red_run run, /* run parameters */
struct red_job_property *props, /* Properties %/
unsigned int wait /* Wait for job’s end 7 */);

The field fault.red_errno can take the following values:

RED_EBADKEY The key used to access this RED is not valid.

RED_EBADWORLD The world does not exist on this RED.

10

RED_EBADCOMMAND The command is invalid.

RED_EBADRUN The run parameters are invalid.

2.3.4 Method red kill

This method sends a signal to a specified job. Valid signal numbers are the POSIX reliable
signals (in Linux systems, they are called “standard signals”).

struct red_kill_response {
struct red_fault fault;

s
struct red_kill_response
red_kill (struct red_key rkey, /* RED key */
struct red_world_key wkey, /* World key */
int job_number, /* Job number */
int signal /* Signal to send */);

If job_number is positive, then signal signal is sent to job_number. If job_number is null or
negative, signal is sent to every job of the world. The field fault.red_errno can take the
following values:

RED_EBADKEY The key used to access this RED is not valid.
RED_EBADWORLD The world does not exist on this RED.
RED_EBADSIGNAL The signal is invalid.

RED_EBADJOB The job is invalid.

2.3.5 Method red_jobs

This method returns the list of running or zombie jobs. Zombie jobs are the finished jobs
for whom no red_job_info structures have been reclaimed. Once the method red_jobs has
returned a red_job_info structure for those jobs, they are not zombie anymore and are removed
from the finished jobs table.

struct red_jobs_response {

struct red_fault fault;
struct red_job_info *jobs;
s
struct red_jobs_response
red_jobs (struct red_key rkey, /* RED key */
struct red_world_key wkey /* World key */);

3 Conclusion

In this document, we describe the interface of RED, a simple service for remote file storage and
remote program execution. This service can be easily implemented on top of an existing Linux
kernel, with an XML-RPC over HTTP messaging system.

11

