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Architecture of GCC and Loop Nest Optimizer
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Future Plans for the LNO

© GRAPHITE: extension of linear transforms
@ parallel code generation (via libgomp)

© machine models and abstract simulators
© static profitability analyses

(5] hybrld analyses (compress static analysis + dynamic part)
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Problems with Classical LNO Transforms

Motivations for GRAPHITE:
e ‘‘source to source’ modifies the compiled program
o difficult to undo
e order of transforms fixed once for all
o invalidated data deps: ad-hoc correction or rebuild

o difficult to compose
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Problems with Classical LNO Transforms

Motivations for GRAPHITE:
e ‘'source to source’ modifies the compiled program
o difficult to undo
o order of transforms fixed once for all
o invalidated data deps: ad-hoc correction or rebuild
o difficult to compose

solved in WRaP-IT (from 2002 at INRIA on ORC/Open64)
GRAPHITE = WRaP-IT for GCC
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GRAPHITE: Intuitive Idea
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GRAPHITE: Intuitive Idea

Boat Castle
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GRAPHITE: Intuitive Idea

Boat Basic Bricks Castle
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GRAPHITE: Intuitive Idea

Boat Basic Bricks Castle
|
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C,C++,F95,..: GIMPLE GRAPHITE

(programming languages) (basic imperative language) (geometrical lan
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GRAPHITE : Representation on Top of Gimple-SSA

Statements + parametric affine inequalities

@ a domain = bounds of enclosing loops

for (i=0; i<m; i++) i j m n cst
i ) ) T 0 0 0 0 i>0
-c. . s >
for (J. 23 Jens J ) -1 0 1 0 -1 —itm>-1
A[2%i] [j+11 = ... O 1 00 5 i>s
0 -1 0 1 -1 —j+n>-1
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GRAPHITE : Representation on Top of Gimple-SSA

Statements + parametric affine inequalities
@ a domain = bounds of enclosing loops

@ a list of access functions

for (i=0; i<m; i++)
e s Lo I J m n cst
for (;1 5,' j<n; j++) 2 0 0 0 0 2%
A[2xi] [j+1] = ... 01 0 0
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GRAPHITE : Representation on Top of Gimple-SSA

Statements + parametric affine inequalities
@ a domain = bounds of enclosing loops
@ a list of access functions

© a schedule = execution time (static 4+ dynamic)

GRAPHITE(1,2, 3) extends LAMBDA(1, 2)
GRAPHITE: Gimple Represented As Polyhedra

(with interchangeable envelopes)

Sebastian Pop LNO of GCC



GRAPHITE versus LAMBDA

@ common part: unimodular transform data and iteration order

o transform regions: extended from loops to SCoP

“static control parts”: sequences, affine conditions and loops

o GRAPHITE knows about the sequence!

enables more loop transforms: fusion, fission, tiling, software

pipelining, scheduling
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Compose Transforms

Small set of primitives (basic operations on matrices)
Q@ motion

interchange

strip-mine Composed transforms
insert, delete e fission, fusion: 1
shift o tiling: 2 + 3

skew, reversal, reindexing

© © 06 6 0 ©

privatize
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Optimal Transform?

Find sequences of transforms based on
e size of loops
o cache misses
e simulation
Automatic selection of transforms
e amounts to choosing a point in a vector space
o hard part (open questions)
o WRaP-IT uses directives
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Results From WRaP-IT on Top of PathScale EKOPath

swim from SPEC CPU2000
o 32% speedup on AthlonXP wrt. peak EKOPath (V2.1)
o 38% speedup for Athlon64 wrt. peak EKOPath (V2.1)
o principal SCoP: 421 lines of code
o apply 30 transforms to principal SCoP

fusion, tiling, peeling, unrolling, interchange, strip-mining

e result 2267 LOC

o 39 sec source to assembly on AthlonXP 2.08GHz
e 22 sec in the backend

e 12 sec polyhedral data deps

e 4 sec polyhedral code gen



Static Estimation of Runtime Properties

How hard is it to simulate a processor?
o DSP: almost deterministic
e superscalar: hard to predict processor transforms
o VLIW: hard to predict compilers future decisions

Need to simulate exact behavior?
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Static Estimation of Runtime Properties

How hard is it to simulate a processor?
o DSP: almost deterministic
e superscalar: hard to predict processor transforms
o VLIW: hard to predict compilers future decisions

Need to simulate exact behavior? No!
Idea: abstract simulation.
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Abstract Simulation

Program Semantics Precise Machine Description—= Simulator
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Abstract Simulation

Program Semantics Precise Machine Description—= Simulator

Abstraction Abstraction

Abstract Program + Abstract Machine— Abstract simulator
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Hybrid Analyses (Static + Dynamic)

Properties for validating a transform:

When static analysis fails,
o collect failed static problems

e symbolically compress

e instrument code (instantiate at run time)

o code generation problems (code size +
completing static analysis overhead)
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GRAPHITE: Road Map

select SCoPs ilter out difficult codes (Alexandru Plesco)
extend LAMBDA build schedule functions, GLooG
cost models more static analyzers, and transform selection

array regions improve data deps in interproc mode

© © 6 © ¢

lib integration PolyLib, PiPLib, Omega, lib-APRON

1 2
From GIMPLE GIMPLE Generatio

GIMPLE —p» GRAPHITE — = GIMPLE

0 Data Dependencgs 3 Transform Selectio)
4(Array Regiong 3("Cost Model3
5| Numerical Domains Common Interfage
Omega PIPlib Intervals

PolyLib Octagons Congruences|
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Questions?
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lib-APRON: interchange envelopes

limit computation complexity = restrict expressivity
use coarser representations

' E ¥ 2 |

Polyhedra Octagons Boxes
(n constraints) (8 constramts) (4 constraints)
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