Loop Nest Optimizer of GCC

Sebastian Pop

CRI / Ecole des mines de Paris

AsrycT, 2006

Sebastian Pop LNO of GCC

Architecture of GCC and Loop Nest Optimizer

PP

GENERIC

GIMPLE
Analyses

“aliasing ——=[GIMPLE + CFG + SSA + Loops— LNO
- data dependences
- number of iterations

[Machine description H RTL j

Sebastian Pop LNO of GCC

Future Plans for the LNO

© GRAPHITE: extension of linear transforms
@ parallel code generation (via libgomp)

© machine models and abstract simulators
© static profitability analyses

(5] hybrld analyses (compress static analysis + dynamic part)

Sebastian Pop LNO of GCC

Problems with Classical LNO Transforms

Motivations for GRAPHITE:
e ‘‘source to source’ modifies the compiled program
o difficult to undo
e order of transforms fixed once for all
o invalidated data deps: ad-hoc correction or rebuild

o difficult to compose

Sebastian Pop LNO of GCC

Problems with Classical LNO Transforms

Motivations for GRAPHITE:
e ‘'source to source’ modifies the compiled program
o difficult to undo
o order of transforms fixed once for all
o invalidated data deps: ad-hoc correction or rebuild
o difficult to compose

solved in WRaP-IT (from 2002 at INRIA on ORC/Open64)
GRAPHITE = WRaP-IT for GCC

Sebastian Pop LNO of GCC

GRAPHITE: Intuitive Idea

Sebastian Pop LNO of GCC

GRAPHITE: Intuitive Idea

Boat Castle

Sebastian Pop LNO of GCC

GRAPHITE: Intuitive Idea

Boat Basic Bricks Castle

W b

Sebastian Pop LNO of GCC

GRAPHITE: Intuitive Idea

Boat Basic Bricks Castle
|
— Hm —
|
C,C++,F95,..: GIMPLE GRAPHITE

(programming languages) (basic imperative language) (geometrical lan

Sebastian Pop LNO of GCC

GRAPHITE : Representation on Top of Gimple-SSA

Statements + parametric affine inequalities

@ a domain = bounds of enclosing loops

for (i=0; i<m; i++) i j m n cst
i)) T 0 0 0 0 i>0
-c. . s >
for (J. 23 Jens J) -1 0 1 0 -1 —itm>-1
A[2%i] [j+11 = ... O 1 00 5 i>s
0 -1 0 1 -1 —j+n>-1

Sebastian Pop LNO of GCC

GRAPHITE : Representation on Top of Gimple-SSA

Statements + parametric affine inequalities
@ a domain = bounds of enclosing loops

@ a list of access functions

for (i=0; i<m; i++)
e s Lo I J m n cst
for (;1 5,' j<n; j++) 2 0 0 0 0 2%
A[2xi] [j+1] = ... 01 0 0

Sebastian Pop LNO of GCC

GRAPHITE : Representation on Top of Gimple-SSA

Statements + parametric affine inequalities
@ a domain = bounds of enclosing loops
@ a list of access functions

© a schedule = execution time (static 4+ dynamic)

GRAPHITE(1,2, 3) extends LAMBDA(1, 2)
GRAPHITE: Gimple Represented As Polyhedra

(with interchangeable envelopes)

Sebastian Pop LNO of GCC

GRAPHITE versus LAMBDA

@ common part: unimodular transform data and iteration order

o transform regions: extended from loops to SCoP

“static control parts”: sequences, affine conditions and loops

o GRAPHITE knows about the sequence!

enables more loop transforms: fusion, fission, tiling, software

pipelining, scheduling

Sebastian Pop LNO of GCC

Compose Transforms

Small set of primitives (basic operations on matrices)
Q@ motion

interchange

strip-mine Composed transforms
insert, delete e fission, fusion: 1
shift o tiling: 2 + 3

skew, reversal, reindexing

© © 06 6 0 ©

privatize

Sebastian Pop LNO of GCC

Optimal Transform?

Find sequences of transforms based on
e size of loops
o cache misses
e simulation
Automatic selection of transforms
e amounts to choosing a point in a vector space
o hard part (open questions)
o WRaP-IT uses directives

Sebastian Pop LNO of GCC

Results From WRaP-IT on Top of PathScale EKOPath

swim from SPEC CPU2000
o 32% speedup on AthlonXP wrt. peak EKOPath (V2.1)
o 38% speedup for Athlon64 wrt. peak EKOPath (V2.1)
o principal SCoP: 421 lines of code
o apply 30 transforms to principal SCoP

fusion, tiling, peeling, unrolling, interchange, strip-mining

e result 2267 LOC

o 39 sec source to assembly on AthlonXP 2.08GHz
e 22 sec in the backend

e 12 sec polyhedral data deps

e 4 sec polyhedral code gen

Static Estimation of Runtime Properties

How hard is it to simulate a processor?
o DSP: almost deterministic
e superscalar: hard to predict processor transforms
o VLIW: hard to predict compilers future decisions

Need to simulate exact behavior?

Sebastian Pop LNO of GCC

Static Estimation of Runtime Properties

How hard is it to simulate a processor?
o DSP: almost deterministic
e superscalar: hard to predict processor transforms
o VLIW: hard to predict compilers future decisions

Need to simulate exact behavior? No!
Idea: abstract simulation.

Sebastian Pop LNO of GCC

Abstract Simulation

Program Semantics Precise Machine Description—= Simulator

Sebastian Pop LNO of GCC

Abstract Simulation

Program Semantics Precise Machine Description—= Simulator

Abstraction Abstraction

Abstract Program + Abstract Machine— Abstract simulator

Sebastian Pop LNO of GCC

Hybrid Analyses (Static + Dynamic)

Properties for validating a transform:

When static analysis fails,
o collect failed static problems

e symbolically compress

e instrument code (instantiate at run time)

o code generation problems (code size +
completing static analysis overhead)

Sebastian Pop LNO of GCC

GRAPHITE: Road Map

select SCoPs ilter out difficult codes (Alexandru Plesco)
extend LAMBDA build schedule functions, GLooG
cost models more static analyzers, and transform selection

array regions improve data deps in interproc mode

© © 6 © ¢

lib integration PolyLib, PiPLib, Omega, lib-APRON

1 2
From GIMPLE GIMPLE Generatio

GIMPLE —p» GRAPHITE — = GIMPLE

0 Data Dependencgs 3 Transform Selectio)
4(Array Regiong 3("Cost Model3
5| Numerical Domains Common Interfage
Omega PIPlib Intervals

PolyLib Octagons Congruences|

Sebastian Pop LNO of GCC

Questions?

Sebastian Pop LNO of GCC

lib-APRON: interchange envelopes

limit computation complexity = restrict expressivity
use coarser representations

' E ¥ 2 |

Polyhedra Octagons Boxes
(n constraints) (8 constramts) (4 constraints)

Sebastian Pop LNO of GCC

