
Scheduling Monotone Interval Orders

on Typed Task Systems

Benôıt Dupont de Dinechin

STMicroelectronics AST Embedded Systems Research Laboratory
Via Cantonale 16E 6928 Manno Switzerland

benoit.dupont-de-dinechin@st.com

Abstract

We present a modification of the Leung-Palem-Pnueli parallel machine scheduling
algorithm and prove its optimality for scheduling monotone interval orders with
release dates and deadlines on UET typed task systems in polynomial time.

Key words: monotone interval orders, typed task systems, modified deadlines,
backward scheduling

Introduction

The Leung-Palem-Pnueli algorithm (LPPA) [5] is a parallel machine schedul-
ing algorithm based on deadline modification and the use of lower modi-
fied deadline first priority in a Graham list scheduling algorithm (GLSA).
The Leung-Palem-Pnueli algorithm solves the following feasibility problems
in polynomial time (see §1.1 for problem denotations):

• 1|prec(lji ∈ {0, 1}); ri; di; pi = 1|−
• P2|prec(lji ∈ {−1, 0}); ri; di; pi = 1|−
• P |intOrder(mono lji); ri; di; pi = 1|−
• P |inTree(lji = l); di; pi = 1|−

Scheduling problems on typed task systems [3] generalize the parallel machine
scheduling problems by introducing k types {τr}1≤r≤k and

∑
1≤r≤k mr pro-

cessors with mr processors of type τr. Each operation Oi has a type τi ∈
{τr}1≤r≤k and may only execute on processors of type τi. We denote typed
task systems with ΣkP in the α-field of the α|β|γ scheduling problem de-
notation [1]. Jansen [4] gives a polynomial time algorithm for the problem
ΣkP |intOrder; pi = 1|Cmax.

Technical report E/283/CRI 7 November 2006

In the present work, we modify the algorithm of Leung, Palem and Pnueli [5]
in order to solve ΣkP |intOrder(mono lji); ri; di; pi = 1|− feasibility problems
in polynomial time. Presentation is as follows. In Section 1, we introduce
extensions to the α|β|γ scheduling problem denotation and we discuss the
Graham list scheduling algorithm (GLSA) for typed task systems. In Section 2,
we present our modified Leung-Palem-Pnueli algorithm (LPPA) and prove
its optimality for scheduling monotone interval orders with release dates and
deadlines on UET typed task systems.

1 Deterministic Scheduling Background

1.1 Machine Scheduling Problem Denotation

In parallel machine scheduling problems, an operation set {Oi}1≤i≤n is pro-
cessed on m identical processors. Each operation Oi requires the exclusive use
of one processor for pi time units, starting at its schedule date σi. Scheduling
problems may involve release dates ri and due dates di. This constrains the
schedule date σi of operation Oi as σi ≥ ri and there is a penalty whenever
Ci > di, with Ci the completion date of Oi defined as Ci

def
= σi + pi. For prob-

lems where Ci ≤ di is mandatory, the di are called deadlines. A dependence
Oi ≺ Oj between two operations constrains the schedule with σi + pi ≤ σj.
The dependence graph has one arc (Oi, Oj) for each dependence Oi ≺ Oj.

Machine scheduling problems are denoted by a triplet notation α|β|γ [1], where
α describes the processing environment, β specifies the operation properties
and γ defines the optimality criterion. For the deterministic machine schedul-
ing problems, the common values of α, β, γ are:

α : 1 for a single processor, P for parallel processors, Pm for the given m
parallel processors. We denote typed task systems with k types by ΣkP .

β : ri for release dates, di for deadlines (if γ = −) or due dates, pi = 1 for
Unit Execution Time (UET) operations.

γ : − for the feasibility, Cmax or Lmax for the minimization of these objectives.

The makespan is Cmax
def
= maxi Ci and the maximum lateness is Lmax

def
=

maxi Li : Li
def
= Ci − di. The meaning of the additional β fields is:

prec(lji) Dependence delays lji ≥ −pi, where Oi ≺ Oj implies σi +pi + lji ≤ σj.
prec(lji = l) All the dependence delays lji have the same value l.
inTree The dependence graph is an in-tree.
intOrder(mono lji) The dependence graph weighted by w(Oi, Oj)

def
= pi + lji is

a monotone interval order (see below).

2

����
���� ����

����
-

-

�����1

A

B

C

D

A

B

C

D

Fig. 1. Set of intervals and the corresponding interval order graph.

As introduced by Papadimitriou & Yannakakis [7], an interval order is de-
fined by an incomparability graph that is chordal. An interval order is also
the transitive orientation of the complement of an interval graph [7] (see
Figure 1). A monotone interval order graph [6] is an interval order graph
(V, E) with a non-negative weight function w on the arcs such that, given any
(vi, vj), (vi, vk) ∈ E : pred vj ⊆ pred vk ⇒ w(vi, vj) ≤ w(vi, vk). Here pred vj

and pred vk respectively denote the direct predecessors of vj and vk.

Given a scheduling problem over operation set {Oi}1≤i≤n with release dates
{ri}1≤i≤n and deadlines {di}1≤i≤n, the dependence-consistent release dates

{r′i}1≤i≤n are recursively defined as r′i
def
= max(ri, maxOj∈pred Oi

(r′j + pj + lij)).
Likewise, the dependence-consistent deadlines {d′i}1≤i≤n are recursively defined

as d′i
def
= min(di, minOj∈succ Oi

(d′j − pj − lji)).

1.2 Extension of the Graham List Scheduling Algorithm

The Graham list scheduling algorithm (GLSA) is a classic scheduling algo-
rithm where the time steps are considered in non-decreasing order. For each
time step, if a processor is idle, the highest priority operation available at this
time is scheduled 1 . An operation is available if the current time step is not
earlier than its release date and all its direct predecessors have completed their
execution early enough to satisfy the entering dependences of this operation.

The GLSA is optimal for P |ri; di; pi = 1|− and P |ri; pi = 1|Lmax when using
the earliest deadlines (or due dates) di first as priority [1] (Jackson’s rule).
This property directly extends to typed task systems:

Theorem 1 The GLSA with Jackson’s rule optimally solves ΣkP |ri; di; pi =
1|− and ΣkP |ri; pi = 1|Lmax.

PROOF. In typed task systems, operations are partitioned by processor
type. In problem ΣkP |ri; di; pi = 1|− (respectively P |ri; pi = 1|Lmax), there
are no dependences between operations. Therefore, optimal scheduling can

1 On typed task systems, the operation type must match the processor type.

3

be achieved by considering operations and processors of each type indepen-
dently. For each type, the problem reduces to P |ri; di; pi = 1|− (respectively
P |ri; pi = 1|Lmax), which is optimally solved with Jackson’s rule.

In this work, we allow dependences delays lji = −pi ⇒ σi ≤ σj, that is,
dependences with zero cycle start-start time lags. Thus we assume the GLSA
is extended as follows: in cases of available operations with equal priorities,
schedule first the earliest operations in the dependence topological sort order.

2 The Modified Leung-Palem-Pnueli Algorithm

2.1 Algorithm Description

The Leung-Palem-Pnueli algorithm (LPPA) is similar to classic UET schedul-
ing algorithms on parallel processors like Garey & Johnson [2], in that it uses
lower modified deadlines first priority in a GLSA. Generally speaking, given
a scheduling problem with deadlines {di}1≤i≤n, modified deadlines {d′i}1≤i≤n

are such that ∀i ∈ [1, n] : σi + pi ≤ d′i ≤ di for any schedule {σi}1≤i≤n.

The main feature of the LPPA is its computation of fixpoint modified dead-
lines 2 by solving backward scheduling problems denoted B(Oi, Si). Precisely,
the LPPA computes the latest possible schedule date σ′

i of operation Oi in
each B(Oi, Si) and updates its current modified deadline as d′i ← σ′

i +pi. This
process of deadline modification is iterated over all problems B(Oi, Si) until a
fixpoint of the modified deadlines {d∗i }1≤i≤n is reached [5].

Our modification of the Leung-Palem-Pnueli algorithm (LPPA) computes the
fixpoint modified deadlines {d∗i }1≤i≤n by executing the following procedure:

(i) Compute the dependence-consistent release dates {r′i}1≤i≤n and initialize
the modified deadlines {d′i}1≤i≤n as the dependence-consistent deadlines.

(ii) Define an iteration order over the operation set {Oi}1≤i≤n.
(1) Let Oi be the current operation in the iteration.
(2) Compute the optimal backward schedule date σ′

i of Oi in B(Oi, Si).
(3) Update the modified deadline of Oi as d′i ← σ′

i + 1.
(4) Update the modified deadlines of each Ok ∈ pred Oi with d′k ← min(d′k, d

′
i−

1− lik) (pred Oi is the set of direct predecessors of Oi).
(5) Go to (1) until a fixpoint of the modified deadlines {d′i}1≤i≤n is reached.

2 Leung, Palem and Pnueli call them “consistent and stable modified deadlines”.

4

In our modified algorithm, we also define the backward scheduling problem
B(Oi, Si) with Si

def
= succ Oi ∪ indep Oi (succ Oi is the set of direct successors

of Oi) as the search for a set of dates {σ′
j}Oj∈{Oi}∪Si

that satisfy:

(a) ∀Oj ∈ Si : Oi ≺ Oj ⇒ σ′
i + 1 + lji ≤ σ′

j

(b) ∀t ∈ lN,∀r ∈ [1, k] : |{Oj ∈ {Oi} ∪ Si ∧ τj = r ∧ σ′
j = t}| ≤ mr

(c) ∀Oj ∈ {Oi} ∪ Si : r′j ≤ σ′
j < d′j

An optimal backward schedule for Oi maximizes σ′
i in B(Oi, Si).

Constraints (a) state that only the dependences between Oi and its direct
successors are kept in the backward scheduling problem B(Oi, Si). Constraints
(b) are the resources limitations of the UET typed task systems. Constraints
(c) ensure that operations are backward scheduled within the dependence-
consistent release dates and the current modified deadlines.

Let {r′j}1≤i≤n be the dependence-consistent release dates and {d′j}1≤i≤n be the
current modified deadlines. The simplest way to find the optimum backward
schedule date of Oi in B(Oi, Si) is to linear search the latest s ∈ [r′i, d

′
i − 1]

such that the constrained backward scheduling problem σ′
i = s ∧ B(Oi, Si) is

feasible. Even though each such problem can be solved in polynomial time,
optimum backward scheduling would require pseudo-polynomial time.

In order to avoid the pseudo-polynomial time complexity of optimum back-
ward scheduling, the LPPA relies on two dichotomy searches on the feasibility
of the constrained backward scheduling problem σ′

i ∈ [p, q]∧B(Oi, Si). For con-
venience, assume lji = −∞ if Oi 6≺ Oj. The feasibility of σ′

i ∈ [p, q]∧B(Oi, Si)
is checked by converting the dependences from Oi to each direct successor
Oj ∈ Si into release dates. This defines a relaxation ΣkP |r̂j; d̂j; pj = 1|− as: r̂j

def
= if j 6= i then max(r′j, q + 1 + lji) else p

d̂j
def
= if j 6= i then d′j else q + 1

This ΣkP |r̂j; d̂j; pj = 1|− relaxation is optimally solved by the GLSA and

the earliest d̂j first priority (Theorem 1). If infeasible, so is the constrained
backward scheduling problem σ′

i ∈ [p, q] ∧B(Oi, Si).

The first dichotomy search of the LPPA initializes p = r′i and q = d′i − 1.
Then it proceeds to find the latest q such that the above relaxation is feasible
over operation set Si. The second search of the LPPA finds the latest p such
that the above relaxation is feasible over operation set {Oi} ∪ Si. When both
searches succeed, the optimum backward schedule date of Oi is taken as σ′

i = p
so the new modified deadline is d′i = p + 1. If any dichotomy search fails to
find a feasible relaxation, B(Oi, Si) is assumed infeasible.

5

2.2 Algorithm Optimality

Lemma 2 The optimal backward scheduling procedure applied to B(Oi, Si)
computes the latest σ′

i that satisfies conditions (a), (b), (c).

PROOF. First assume that the two dichotomy searches are replaced by lin-
ear searches. If no feasible relaxation ΣkP |r̂j; d̂j; pj = 1|− exist in any of these
linear searches, the backward scheduling problem B(Oi, Si) is obviously in-
feasible. If a feasible relaxation exists in the second linear search, this search
yields a backward schedule with σ′

i = p. Indeed, let {σ̂j}Oj∈{Oi}∪Si
be schedule

dates for the relaxation of σ′
i ∈ [p, q] ∧ B(Oi, Si). We have σ̂i = p because

relaxation of problem σ′
i ∈ [p + 1, q] ∧B(Oi, Si) is infeasible and the only dif-

ference between these two relaxations is the release date of Oi. Moreover, the
dates {σ̂j}Oj∈{Oi}∪Si

satisfy (a), (b), (c).

Let us prove that the backward schedule found by the second search is in fact
optimal, that is, there is no s ∈ [p+1, q] such that problem σ′

i ∈ [s, s]∧B(Oi, Si)
is feasible. This is obvious if p = q, so consider cases where p < q. Relaxation
of problem σ′

i ∈ [p, q] ∧ B(Oi, Si) is feasible while relaxation of problem σ′
i ∈

[p + 1, q]∧B(Oi, Si) is infeasible imply there are no scheduling slots available
in range [p + 1, q], else Oi would use one of them. The relaxation of problem
σ′

i ∈ [p + 1, s] ∧B(Oi, Si) is also infeasible ∀s ∈ [p + 1, q], as it can only differ
from the former relaxation on some release dates r̂j with r̂j > p+1. Therefore,
relaxation of problem σ′

i ∈ [s, s] ∧B(Oi, Si) is infeasible ∀s ∈ [p + 1, q].

We now prove that dichotomy searches yield the same results as linear searches.
The first dichotomy search keeps p constant and moves q. So it yields the same
results as linear search if a feasible relaxation of σ′

i ∈ [p, q]∧B(Oi, Si) implies
a feasible relaxation of σ′

i ∈ [p, q− 1]∧B(Oi, Si). This is the case, since decre-
menting q may only reduce some of the release dates in the relaxation. The
second dichotomy search keeps q constant and moves p. So it yields the same
results as linear search if a feasible relaxation of σ′

i ∈ [p, q] ∧ B(Oi, Si) im-
plies a feasible relaxation of σ′

i ∈ [p− 1, q] ∧ B(Oi, Si). This is the case, since
decrementing p only reduces the release date of Oi in the relaxation.

Theorem 3 The modified algorithm of Leung, Palem and Pnueli solves any
feasible problem ΣkP |intOrder(mono lji); ri; di; pi = 1|−.

PROOF. The correctness of this modified Leung-Palem-Pnueli algorithm
(LPPA), like the correctness of the original LPPA, is based on two argu-
ments. The first argument is that the fixpoint modified deadlines are indeed

6

tu + 1 d∗
i

� �� ��� ���� ���
� ��

�� �� -

�����)
�

�
�

��=

6 66

�� ��
�

6 Σ
tu σi

Ok

Oj

Oj′

Oj′′ Oi

Σ′

Fig. 2. The core proof of the Leung-Palem-Pnueli algorithm.

deadlines of the original problem. This is apparent, as each backward schedul-
ing problem B(Oi, Si) is a relaxation of the original scheduling problem and
optimal backward scheduling computes the latest schedule date of Oi within
B(Oi, Si). Let us call core the GLSA that uses the earliest fixpoint modified
deadlines first as priorities. The second correctness argument is a proof that
the core GLSA does not miss any fixpoint modified deadlines.

Precisely, assume that some Oi is the earliest operation that misses its fixpoint
modified deadline d∗i in the core GLSA schedule. In a similar way to [5], we
will prove that an earlier operation Ok necessarily misses its fixpoint modified
deadline d∗k in the same schedule. This contradiction ensures that the core
GLSA schedule does not miss any fixpoint modified deadline. The details of
this proof rely on a few definitions and observations illustrated in Figure 2.

Let r = τi be the resource type of operation Oi. An operation Oj is said
saturated if τj = r and d∗j ≤ d∗i . Define tu < d∗i as the latest time step that
is not filled with saturated operations on the processors of type r. If tu < 0,
the problem is infeasible, as there are not enough slots to schedule operations
within the deadlines. Else, some scheduling slots at tu are either empty or filled
with unsaturated operations. Define the operation set Σ

def
= {Oj saturated :

tu < σj < d∗i } ∪ {Oi}. Define the operation subset Σ′ def
= {Oj ∈ Σ : r′j ≤

tu}. Subset Σ′ only contains dependent operations, as independent operations
would have been scheduled at date tu or earlier by the core GLSA.

Consider problem P |intOrder(mono lji); ri; di; pi = 1|−. In an interval order,
given two operations Oi and Oj, either pred Oi ⊆ pred Oj or pred Oj ⊆ pred Oi.
This is easily understood by referring to the underlying intervals that define
the interval order. Select Oj′ among Oj ∈ Σ′ such that | pred Oj| is minimal.
As Oj′ ∈ Σ′ is not scheduled at date tu or earlier by the core GLSA, there
must be a constraining operation Ok that is a direct predecessor of operation
Oj′ with σk + 1 + lj

′

k = σj′ > tu ⇒ σk + 1 > tu − lj
′

k . By construction, pred Oj′

are the direct predecessors of all operations Oj ∈ Σ′ and no predecessor of Oj′

is in Σ′. Thus Ok 6∈ Σ′ is a direct predecessor of all operations Oj ∈ Σ′.

We call stable backward schedule any optimal backward schedule of B(Ok, Sk)
where the modified deadlines equal the fixpoint modified deadlines. Since Sk

def
=

succ Ok ∪ indep Ok, we have Σ ⊆ Sk. By the fixpoint property, we may assume

7

that a stable backward schedule of B(Ok, Sk) exists. Such stable backward
schedule must slot the mr(d

∗
i − 1 − tu) + 1 operations of Σ before d∗i on mr

processors. From Lemma 2, at least one operation Oj ∈ Σ′ is scheduled at
date tu or earlier by any stable backward schedule of B(Ok, Sk).

Since ∃Oj scheduled at date tu or earlier in a stable backward schedule of
B(Ok, Sk), from Lemma 2 σ′

k + 1 + ljk ≤ tu so d∗k − 1 + 1 + ljk ≤ tu. By the

monotone property, pred Oj′ ⊆ pred Oj ⇒ pk + lj
′

k ≤ pk + ljk ⇒ lj
′

k ≤ ljk for

Oj′ selected above and Oj ∈ Σ′, so d∗k ≤ tu − lj
′

k . However in the core GLSA

schedule σk + 1 > tu − lj
′

k , so Ok misses its fixpoint modified deadline d∗k.

The overall time complexity of this modified LPPA algorithm is the sum of
the complexity of initialization steps (i-ii), of the number of iterations times
the complexity of steps (1-5) and of the complexity of the final GLSA. Leung,
Palem and Pnueli [5] observe that the number of iterations to reach a fixpoint
is upper bounded by n2, a fact that still holds for our modified algorithm.
As the time complexity of the GLSA on typed task systems with k types is
within a factor k of the time complexity of the GLSA on parallel processors,
our modified LPPA algorithm has polynomial time complexity.

Summary and Conclusions

We present a modification of the algorithm of Leung, Palem and Pnueli (LPPA)
[5] that schedules monotone interval orders with release dates and deadlines on
UET typed task systems [3] in polynomial time. Using an extended α|β|γ de-
notation, this is scheduling problem ΣkP |intOrder(mono lji); ri; di; pi = 1|−.

Compared to the original LPPA [5], our main modifications are: use of the
Graham list scheduling algorithm (GLSA) adapted to typed task systems and
to zero start-start time-lags; new definition of the backward scheduling prob-
lem B(Oi, Si) that does not involve the transitive successors of operation Oi;
core LPPA proof adapted to the typed task systems and simplified thanks to
the properties of monotone interval orders. Note that including the transitive
successors of operation Oi in B(Oi, Si) can still be useful when using our mod-
ified LPPA as an heuristic for scheduling typed task systems. This would not
change its optimality in case of monotone interval orders.

Like the original LPPA, our modified algorithm optimally solves a feasibility
problem: after scheduling, one needs to check if the schedule meets the dead-
lines. By embedding our proposed algorithm in a dichotomy search for the
smallest Lmax such that the scheduling problem with deadlines di+Lmax is fea-

8

sible, one can also solve ΣkP |intOrder(mono lji); ri; pi = 1|Lmax in polynomial
time. This is a significant generalization over the ΣkP |intOrder; pi = 1|Cmax

problem solved by Jansen [4] in polynomial time.

In their work, Leung, Palem and Pnueli [5] also describe several techniques
that enable to lower the overall complexity of their algorithm. The first is a
proof that applying optimum backward scheduling in reverse topological order
of the operations directly yields the fixpoint modified deadlines. The second is
a fast implementation of list scheduling for problems P |ri; di; pi = 1|−. These
techniques could be applied to typed task systems as well.

References

[1] P. Brucker. Scheduling Algorithms -4th edition. Springer Verlag, 2004.

[2] M. R. Garey, David S. Johnson. Scheduling Tasks with Nonuniform Deadlines
on Two Processors. J of the ACM 23(3), pp. 461-467, 1976.

[3] J. M. Jaffe. Bounds on the Scheduling of Typed Task Systems. SIAM Journal
on Computing, 9, 3, pages 541–551, 1980.

[4] K. Jansen. Analysis of Scheduling Problems with Typed Task Systems. Discrete
Applied Mathematics 52, pages 223–232, 1994.

[5] A. Leung, K. V. Palem, A. Pnueli. Scheduling Time-Constrained Instructions
on Pipelined Processors. ACM TOPLAS 23, 1, pages 73–103, Jan. 2001.

[6] K. V. Palem, B. Simons. Scheduling Time-Critical Instructions on RISC
Machines. ACM Transactions on Programming Languages and Systems
(TOPLAS) 15, 4, pages 632–658, Sept. 1993.

[7] C. Papadimitriou, M. Yannakakis. Scheduling Interval-Ordered Tasks. SIAM J.
of Computing, 8, 3, pages 405–409, 1979.

9

