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ANR project: FREIA software environment for

image application development on modern architectures
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Terapix Hardware Accelerator
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e 1P + 128 SIMD PE array, 1024 pixels per PE, neighbor coms
e computation // communication (in or out) double buffer

e issues: small memory implies tiles, 5.3 pixels/cycle bandwidth with DDR
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SPoC Hardware Accelerator Vector Unit

2 paths, 5 image ops + reductions, 4 pixels/cycle bandwidth
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Portability vs Performance?
Portability write one generic code

Performance re-write code for every accelerator

API-Compilation for Image Hardware Accelerators 4



Coelho & Irigoin MINES ParisTech

(Pure) Library Approach?
e domain-specific API, optimized (by hand)
e small library: not enough operator aggregation, missed opportunities

e l|arge library: cost? portability? VSIPL 1000s functions

(Pure) Compiler Approach?
e start from source, inline functions, loop fusion. ..

® issues: complexity, impact of stencils, conditions for borders. ..
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Mixed Library/Compiler Approach

Input small domain-specific image-level APl in plain C
basic/composed operators relevant to application developers

library implemented (optimized?) by hand — quickly available

Locality hardware and runtime handle loop fusion details!
SPoC: delay lines with cyclic buffers

Terapix: overlapping tiling induces redundant computations, (-code

Compilation get ops, merge ops, schedule, allocate
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ANR999: running example excerpt

// SKIPPED declarations and inits

freia_common_rx_image (1n, &fin); // INPUT

freia_globalmin(in, &min); // COMPUTE
freia_global_vol (in, &vol);
freia dilate(od, in, 8, 10);

freia_gradient (og, in, 8, 10);
printf ("min=%d, vol=%d\n", min, vol),; /OUTPUT

freia_common_tx_image (od, &fout);

freia_common_tx_image (og, &fout);
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Compilation Strategy

Standard techniques for low-cost implementation

1. Build large basic blocks of elementary operations: generic

inlining, scalar const. prop., loop unroll., dead-code elimination

2. Build and optimize DAGs of image operations: generic

constant propagation, CSE, SDC, copy propagation

3. Generate code for target: specific
SPoC: DAG splitting and scheduling, compaction, cutting
Terapix: DAG splitting, scheduling, memory allocation

OpenCL: DAG splitting, simple operation aggregation
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2.1 Build Image Expression DAG

from Video Survey

e expression DAG of simple image operations

morpho, ALU, threshold, measure, copies, scalar ops

e arrows: image and scalar dependencies
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2.2 Optimize DAG

freia_erode connexity=8 depth=10
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freia_dilate connexity=8 depth=10
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3. Target-dependent code generator

MINES ParisTech

mostly NP-Complete, greedy heuristics to split DAG and schedule ops

SPoC

Terapix

OpenCL
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Performance aggregated speedups for 9 applications

Hardware Target HL L/C | H/C
FPGA SPoC 14.2 6.5 | 91.5
Accelerators | Terapix 20.5 2.3 | 47.6
Multi-cores Intel dual-core 09 20 1.9
OpenCL AMD quad-core 1.3 2.7 3.5
GPGPU GeForce 8800 GTX - 7.8 —
NVIDIA Quadro 600 - 221 —
OpenCL Tesla C 2050 - 10.2 —

H one thread on host, L library version, C compiled version
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Implementation in PIPS: add 5% to code base
® source-to-source, easier to debug output
e phase 1 —reuse (more or less) standard phases: 155000 LOCs
e phase 2 — DAG building, optimization, utils: 4000 LOCs

e phase 3 — code generation for three targets: 4400 LOCs
SPoC 1900 LOCs Terapix 1400 LOCs OpenCL 1100 LOCs

BPIPSw

http://pipsdu.org/
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Benefits: Cost effective reusable applications!
Portability through small common API

Performance through high-level coarse-grain low-cost compilation

Key success factors

Co-design APl / compiler / runtime / hardware
e overlapping tiling moved from compiler to runtime
e double buffers moved from runtime to compiler

e borders management moved to runtime and hardware
Source-to-source ease development and testing

Functional simulators help testing
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Applicability
Apps quite static (but not only!) structure and behavior
API one data type, few dozen ops, a lot of parallelism

Hardware well suited, hides loop fusion...

Future Work
e Kalray MPPA data-flow model target?
® new applications? new transformations?

e consider other application domains?
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Questions?
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Hardware Accelerators
e more or less domain specific

e ASIC, FPGA, GPGPU, multi-cores. ..

e embedded? real-time? systems

Motivation?
e better execution time

e |ower energy footprint
e (hide) intellectual property

e product life time: up to 30

years

Two accelerators: Terapix (128 PE SIMD) and SPoC (chained vector)
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2.2 Optimize DAG (1)

from Deblocking
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Application Domain: image processing
algebra on images: one data type, basic (hw) and composed ops

Retina (106 ops)
OOP (22 ops) e g o

I

Antibio (49 ops) Burner (422 ops)
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