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Context The semantic gap

Different levels of description
In control engineering, work on different levels to design and build a
control system:

e Format/high-level aspects: system conception, modeling, possibly
proof.
e Concrete/low-level aspects: creation of an object implementing the

system.
Quadricopter, DRONE Project, MINES ParisTech & ECP.
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Formal aspect

model object

System definition:
e Inputs: sensors [accelerometer, sonar...| + references [operator

instructions].
Outputs: actions to act on environment [rotors rotation speed].

e Modeling in the form of equations to express relations between inputs
and outputs: differential equations/transfer functions between [Os.

Vivien Maisonneuve From Reals to Floats November 23, 2012 4 /24



Formal aspect

model object

System definition:
e Inputs: sensors [accelerometer, sonar...| + references [operator

instructions].
Outputs: actions to act on environment [rotors rotation speed].

e Modeling in the form of equations to express relations between inputs
and outputs: differential equations/transfer functions between [Os.

System requirements:

e Stability conditions [bounded rotation speed)].
e Pursuit of reference input [try to reach the ordered position].

e Perturbation rejection [wind].
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Concrete aspect

model object

Creation of a real object implementing the system.
e Electronic circuit that physically computes the transfer function.
e With a microcontroller: a small system with processor, memory,
I/O devices, that runs a program implementing the transfer function.

[ATMEGA128
5 Frequency: 16 MHz
16AU 0601 RAM 4 KB

Prog. mem.: 128 KB]
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The semantic gap
Semantic gap

SN

model C code 1C code

Antagonism:
e Abstract, mathematical model.
e Microcontroller code: program written in C, then compiled.
Long (thousands of LoC), low-level (elementary operations, hardware
management, interruptions).

Series of transformations to go from abstract model to microcontroller
code.
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Semantic gap

Y YR

model C code 1C code

Antagonism:
e Abstract, mathematical model.

e Microcontroller code: program written in C, then compiled.

Series of transformations to go from abstract model to microcontroller
code.

Problem of proof transposition: Considering a model with correction
proofs [stability], how to transpose down these proofs at the code level?

Interest: formally check the code, not only the model.

Difficulties: semantic gap, non-equivalent transformations (= proofs must
be checked).
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Control-theoretical aspects

Y YR

model pseudocode C code uC code

Produce a pseudocode from the abstract model:

e Solve the model differential equation, get a transfer function.
(Laplace transform/Z transform, initial conditions problem.)

e |f continuous-time model, discretization.
(Problems with sampling, execution times.)

while transposing the proof.
Usual problems in control engineering.

Once done, discrete-time system with a loop on the transfer function =
pseudocode [in MATLAB]J. Proof: invariants on this code.
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Compilation aspects

Y YR

model pseudocode C code

1C code

At the other end: compilation of C code to machine code.
Risks of error:

e Important changes in the code: elementary operations, management
of registers and of memory stack, instruction jumps.

e Possible optimizations.
Solutions:
e “Existing C compilers are reliable enough.”

e Proof-preserving compilation [Barthe].

e Certified compilation [CompCert].

Vivien Maisonneuve From Reals to Floats

November 23, 2012 8 /24


http://compcert.inria.fr/

(€ it [l
What's between?

Y YR

model pseudocode C code 1C code

Opener question. Several challenges:

@ Highlevel-mathematical-operations ~ series of elementary

instructions [matrices, sinus].
® Real-values ~ machine words with limited precision.

©® On a microcontroller, data/events acquisition raises interruptions
(real-time answer, energy consumption) = particular code structure.
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From real to floats Example of linear invariant system

Example system

Very simple, open-loop, linear system [Feron|.

Pseudocode:

Ac = [0.4990, -0.0500; 0.0100, 1.0000];
Bc = [1;0];

Cc = [564.48, 0];

Dc = -1280;

xc = zeros(2,1);

receive(y,2); receive(yd,3);
while 1
yc = max(min(y - yd,1),-1);
u = Cc*xc + Dc*yc;
xc = Ac*xc + Bcxyc;
send(u,1);
receive(y,2);
receive(yd,3);
end

Vivien Maisonneuve From Reals to Floats

state matrix (matrice de dynamique)
input matrix (matrice de commande)
output matrix (matrice d’observation)
feedthrough matrix (matrice d’'action directe)
Xe = (Xq> € R2: controller state

Xcp
y € R : reference input; yy € R : real position

ye € [-1,1] : bounded gap
u € R : action to be performed

send, receive: blocking, 2" arg. is channel id
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Bxample of linear invariant system
Lyapunov theory

(Lyapunov) stability: all reachable states x. start near an equilibrium point
Xe and stay in a neighborhood V of x, forever.

Lyapunov theory: NSC on V. On linear systems, provided as an equation

that can be solved with LMIs, generally as an ellipsoid.

Here, show that x. = (Xq) belongs to the ellipse:

()

0,6742 0,0428
B 2, T . p. =103 ’
Ep={xeR"|x" -P-x <1}, P =10 (0,0428 2,4651) )

Xc € Ep <= 0.6742x2 + 0.0856xc, xc, + 2.4651xZ, < 1000.
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Bxample of linear invariant system
Stability proof

xc = zeros(2,1); Proof given as code
xc € Ep , invariants.
receive(y,2); receive(yd,3);
xc € Ep . . . .
hile 1 Implication (\.Nea!<en|n‘g) if
xc € Ep two consecutive Invariants.
yc = max(min(y - yd,1),-1);
xc€€p, y2<1 Most of them easy to check,
Xc uP o 02x1
& = , = 0.9991 .
(yc> €&, | Qu (01X2 1 —u) M some depend on theorems
u = Cc*xc + Dcxyc; . . .
(Xc) Last implication: £z C Ep
€ -
Ye % closes the loop. Validity

xc = Ac*xc + Bcxyc; .
wegs | P=[(A B) @' (A BC)T] 1 relies on paramete_rs Ac, Be,
send(u,1); Ce, D¢, p: algebric or
X € &p numerical verification
receive(y,2);
xc € & needed.
receive(yd,3);
Xc € 5,5
Xc € Ep

end
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From real to floats Example of linear invariant system

Digression: with C instructions

High-level-mathematical-operations ~ series of scalar elementary

instructions.
Here, matrix operations are expanded: the instruction

Xe
€&
(Yc) u
xc = Acxxc + Bcxyc;

xe | P=[(A B) Qt-(A B)']7
becomes:
Xc
(yc) € &q,
xb[0] = xc[0]; xb: buffer
xb[1] = xc[1];
xc[0] = Ac[0][0]*xb[0]+Ac[0] [1]1*xb[1]+yc;
xc[1] = Ac[1][0]*xb[0]+Ac[1] [1]*xb[1];
77
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From real to floats Example of linear invariant system

Digression: with C instructions

High-level-mathematical-operations ~» series of scalar elementary

instructions.
Here, matrix operations are expanded: the instruction
Xc
&
(Yc) € ca.
xc = Acx*xc + Bcxyc;
~ _ Tq-1
xc€& | P=[(A B) Q' (A B) |

becomes:
Xe
(YC) € %o,
xb[0] = xc[0]; xb: buffer
xb[1] = xc[1];
xc[0] = Ac[0][0]*xb[0]+Ac[0] [1]1*xb[1]+yc;

Ac[1] [0 *xb[0]+Ac[1] [1]*xb[1];
Xcegp | r):[(Ac Bc)'QJI'(Ac BC)T}_I

Same computation: output invariant can be found [Feron].

Vivien Maisonneuve From Reals to Floats November 23, 2012 13 /24



From real to floats Numerical precision problems

Numerical precision problems

To produce C code: real-numbers ~ binary finite-length machine words
(32b. or 64b.).
= Loss in accuracy, two consequences:

@ Constant values are slightly altered.

® Rounding errors during computations.
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Machine representation of real numbers
Machine representation of real numbers
@ Floating point: IEEE 754.

Not usual on microcontrollers.

sign exponent(8-bit) fraction (23-bit)
I m 1

00111110001000000000000000000000 =0.15625

31 23 0

number = sign x 28xPonentcst. offset o £ o tion

Correct rounding for base operations: +, -, *, /.
= If [bounds on] operands are known, not special, far enough from
extremal values, then rounding error is bounded for +, -, * (not /).

® Fixed point.
If operands are not special, far enough from extremal values, then
rounding error is bounded for +, -, *.

© Two integers.
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Machine representation of real numbers
Machine representation of real numbers

@ Floating point.
® Fixed point.

© Two integers. Rational representation: numerator, denominator.

e Base behavior: +, -, *, / follow rational definition + fraction
simplification:

p1 | P2 . <P1Q2 + Pz%)
— 4+ = =simpl | ——————— ], etc.
a q q192

No rounding error.
Problem: numerator value can easily exceed integer bounds.
e Approximated behavior to ensure bounded numerator.
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FETNCEIRTRIEICIN  Alteration of constants

Alteration of constants

With |IEEE 754, 32 bits, constants

Ac = [0.4990, -0.0500; 0.0100, 1.0000];

Bc = [1;0];

Cc = [564.48, 0];

Dc = -1280;

become

Ac ~ [0.49900001287460327 , -0.05000000074505806;
0.009999999776482582, 1.0000];

Bc ~ [1;0];

Cc =~ [564.47998046875, 0];

Dc =~ -1280;
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FETNCEIRTRIEICIN  Alteration of constants

Effect on proof

xc = zeros(2,1); Rest of the code and proof
Xe € &p . sketch unchanged.
receive(y,2); receive(yd,3);
xc € Ep ~
vhile 1 P de:pends on A, B, C.,
xc € Ep D., is altered.
yc = max(min(y - yd,1),-1);
xc€&p, y2<1 = Check that £ C Ep still
Xc _ [ uP  02x1 _
(yc> €&y, | Qu= (01X2 1_ M) .1 =0.9991  holds.

u = Cc*xc + Dcxyc;

Xc
(YC) S 5@M
xc = Ac*xc + Bcxyc;
xc€& | P=[(A B)-Q.' (A B)
send(u,1);
Xc € Eﬁ,
receive(y,2);
Xc € 5;—,
receive(yd,3);
Xc € SP
Xc € SP
end
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From real to floats Rounding errors

Rounding errors

With real numbers, the implication

Xc
(yc) €£&q,

xc = Ac*xc + Bckyc;
x€& | P=[(A B)-Qt (A B) ]

holds.
With floats, + and * introduce rounding errors.

As xc, yc belong to an ellipsoid, they are bounded so the rounding error on
Xc can be bounded by (e1, ).

Vivien Maisonneuve From Reals to Floats November 23, 2012 18 / 24



From real to floats Rounding errors

Super-ellipsoid
Let £ D &p an ellipse s.t.
Vxe € Epy XL ER? Xl —xo| S el A Ixl, —xo| <o = xL € ¢ (%)

/V7—L*_.
T

Then: & can be the smallest magnification of £p s.t. (*)
. holds.

() <.

xc = Ac*xc + Bexyc; Can be computed, whatever number of dimensions.

Xc € 5,}
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ReumGiig aiess
Effect on proof

xc = zeros(2,1); Replace £z by £¢ in proof
xc € Ep , sketch.
receive(y,2); receive(yd,3);
xc € Ep -
hile 1 = Check that & C &p
xc € Ep holds.
yc = max(min(y - yd,1),-1);
xc€&p, yi<1 Here it works: system stable
Xe _ [ nP 02x1 o .
(yc> €&, | Qu= (Om o #) . =0.9991 with floats ©.

u = Cc*xc + Dcxyc;

X,

(yz) € .
xc = Ac*xc + Bcxyc;
Xc € g,"_—
send(u,1);
Xc € g/:—
receive(y,2);
Xc € 5,:—
receive(yd,3);
Xc € 5,:—
xc € Ep

end
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From real to floats Other systems

Other functions

Elementary operations +, * are sufficient for linear, invariant systems.
The method applies if the proof sketch fits: no tight assumptions, complex
operations on weakened invariants.
1-var, differentiable, periodic functions can be computed
e with an abacus and a polyhedral interpolation function
e with a polyhedral approximation
with a bounded error (sin, cos).

Idem for 1-var, differentiable functions restricted to a finite range. OK if
proof ensures the operand is bounded to the range.
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Closed-loop system
Closing the loop

Modeling the result of the effects of the action on the environment, with
feedback.
Design: here, two parallel, synchronized programs:

controller + plant (abstract).
Ac = [0.4990, -0.0500; 0.0100, 1.0000]; Ap = [1.000, 0.0100; -0.0100, 1.000];
Bc = [1;0]; Bp = [0.00005; 0.01];
Cc = [564.48, 01; cp = [1, 01;
Dc = -1280;
xc = zeros(2,1);
receive(y,2); receive(yd,3);
while 1 while (1)
yc = max(min(y - yd,1),-1); yp = Cp * xp;
u = Cc*xc + Dc*yc; send(yp,2);
xc = Ac*xc + Bexyc; receive(up,1);
send(u,1); xp = Ap * xp + Bp * up;
receive(y,2); end
receive(yd,3);
end

System is not linear.
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(GBI Proof scheme

Proving the system

Lyapunov stability: global state (xc, x,) in some ellipsoid Ep.
= + Boundedness of variables in physical system.

Difficulties:

e Non-linearity issues: trickier to find a suitable £p, post-condition to
Ve definition.
Usual case here, has been dealt.

e Handling concurrency in invariants: switch between system and plant
analysis.
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(GBI Proof scheme

Proving the system

Ac = [0.4990, -0.0500; 0.0100, 1.0000]; Ap = [1.000, 0.0100; -0.0100, 1.000];
Bc = [1;0]; Bp = [0.00005; 0.01];
Cc = [564.48, 01; cp = [1, 01;
Dc = -1280;
xc = zeros(2,1);
receive(y,2); receive(yd,3);
while 1 while (1)
yc = max(min(y - yd,1),-1); yp = Cp * xp;
u = Cc*xc + Dc*yc; send(yp,2);
xc = Ac*xc + Bcxyc; receive(up,1);
send(u,1); xp = Ap * xp + Bp * up;
receive(y,2); end
receive(yd,3);
end
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Closing the loop Proof scheme

Proving the system

Lyapunov stability: global state (xc, x,) in some ellipsoid Ep.
= + Boundedness of variables in physical system.
Difficulties:

e Non-linearity issues: trickier to find a suitable £p, post-condition to
Ve definition.
Usual case here, has been dealt.

e Handling concurrency in invariants: switch between system and plant
analysis.

e Invariants of greater dimension: cannot test algebraically invariant
inclusion, fails with floats.

e C code with interrupts.

SIGNAL(2) SIGNAL(3) while(1) {

y= ... yd = ... sleep();
}

Vivien Maisonneuve From Reals to Floats November 23, 2012 23 /24



(GBI Proof scheme
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