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Context The semantic gap

Different levels of description
In control engineering, work on different levels to design and build a
control system:

• Format/high-level aspects: system conception, modeling, possibly
proof.

• Concrete/low-level aspects: creation of an object implementing the
system.
Quadricopter, DRONE Project, MINES ParisTech & ECP.
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Context The semantic gap

Formal aspect

model object

System definition:
• Inputs: sensors [accelerometer, sonar. . . ] + references [operator
instructions].
Outputs: actions to act on environment [rotors rotation speed].

• Modeling in the form of equations to express relations between inputs
and outputs: differential equations/transfer functions between IOs.

System requirements:

• Stability conditions [bounded rotation speed].
• Pursuit of reference input [try to reach the ordered position].
• Perturbation rejection [wind].
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Context The semantic gap

Concrete aspect

model object

Creation of a real object implementing the system.
• Electronic circuit that physically computes the transfer function.
• With a microcontroller: a small system with processor, memory,
I/O devices, that runs a program implementing the transfer function.

[ATMEGA128
Frequency: 16MHz
RAM: 4KB
Prog. mem.: 128KB]
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Context The semantic gap

Semantic gap

model C code µC code

Antagonism:
• Abstract, mathematical model.
• Microcontroller code: program written in C, then compiled.
Long (thousands of LoC), low-level (elementary operations, hardware
management, interruptions).

Series of transformations to go from abstract model to microcontroller
code.

Problem of proof transposition: Considering a model with correction
proofs [stability], how to transpose down these proofs at the code level?

Interest: formally check the code, not only the model.

Difficulties: semantic gap, non-equivalent transformations (⇒ proofs must
be checked).
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Context Control-theoretical aspects

Control-theoretical aspects

model pseudocode C code µC code

Produce a pseudocode from the abstract model:

• Solve the model differential equation, get a transfer function.
(Laplace transform/Z transform, initial conditions problem.)

• If continuous-time model, discretization.
(Problems with sampling, execution times.)

while transposing the proof.

Usual problems in control engineering.

Once done, discrete-time system with a loop on the transfer function ⇒
pseudocode [in MATLAB]. Proof: invariants on this code.
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Context Compilation aspects

Compilation aspects

model pseudocode C code µC code

At the other end: compilation of C code to machine code.
Risks of error:

• Important changes in the code: elementary operations, management
of registers and of memory stack, instruction jumps.

• Possible optimizations.

Solutions:

• “Existing C compilers are reliable enough.”
• Proof-preserving compilation [Barthe].
• Certified compilation [CompCert].
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Context C code production

What’s between?

model pseudocode C code µC code

Opener question. Several challenges:
1 High level mathematical operations ; series of elementary

instructions [matrices, sinus].

2 Real values ; machine words with limited precision.
3 On a microcontroller, data/events acquisition raises interruptions

(real-time answer, energy consumption) ⇒ particular code structure.
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From real to floats Example of linear invariant system

Example system

Very simple, open-loop, linear system [Feron].

Pseudocode:
Ac = [0.4990, -0.0500; 0.0100, 1.0000]; state matrix (matrice de dynamique)
Bc = [1;0]; input matrix (matrice de commande)
Cc = [564.48, 0]; output matrix (matrice d’observation)
Dc = -1280; feedthrough matrix (matrice d’action directe)

xc = zeros(2,1); xc =

(
xc1
xc2

)
∈ R2: controller state

receive(y,2); receive(yd,3); y ∈ R : reference input; yd ∈ R : real position
while 1

yc = max(min(y - yd,1),-1); yc ∈ [−1, 1] : bounded gap
u = Cc*xc + Dc*yc; u ∈ R : action to be performed
xc = Ac*xc + Bc*yc;
send(u,1); send, receive: blocking, 2nd arg. is channel id
receive(y,2);
receive(yd,3);

end
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From real to floats Example of linear invariant system

Lyapunov theory
(Lyapunov) stability: all reachable states xc start near an equilibrium point
xe and stay in a neighborhood V of xe forever.

Lyapunov theory: NSC on V . On linear systems, provided as an equation
that can be solved with LMIs, generally as an ellipsoid.

Here, show that xc =

(
xc1
xc2

)
belongs to the ellipse:

EP = {x ∈ R2 | xT · P · x ≤ 1}, P = 10−3
(
0, 6742 0, 0428
0, 0428 2, 4651

)
.

xc ∈ EP ⇐⇒ 0.6742x2
c1 + 0.0856xc1xc2 + 2.4651x2

c2 ≤ 1000.
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From real to floats Example of linear invariant system

Stability proof
xc = zeros(2,1);
xc ∈ EP
receive(y,2); receive(yd,3);
xc ∈ EP
while 1

xc ∈ EP
yc = max(min(y - yd,1),-1);
xc ∈ EP , y2

c ≤ 1(
xc
yc

)
∈ EQµ | Qµ =

(
µP 02×1
01×2 1− µ

)
, µ = 0.9991

u = Cc*xc + Dc*yc;(
xc
yc

)
∈ EQµ

xc = Ac*xc + Bc*yc;

xc ∈ EP̃ | P̃ =
[ (

Ac Bc
)
· Q−1

µ ·
(

Ac Bc
)T ]−1

send(u,1);
xc ∈ EP̃
receive(y,2);
xc ∈ EP̃
receive(yd,3);
xc ∈ EP̃
xc ∈ EP

end

Proof given as code
invariants.

Implication (weakening) if
two consecutive invariants.

Most of them easy to check,
some depend on theorems.

Last implication: EP̃ ⊆ EP
closes the loop. Validity
relies on parameters Ac , Bc ,
Cc , Dc , µ: algebric or
numerical verification
needed.
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From real to floats Example of linear invariant system

Digression: with C instructions

High level mathematical operations ; series of scalar elementary
instructions.
Here, matrix operations are expanded: the instruction(

xc
yc

)
∈ EQµ

xc = Ac*xc + Bc*yc;

xc ∈ EP̃ | P̃ =
[ (

Ac Bc
)
· Q−1

µ ·
(

Ac Bc
)T ]−1

becomes:(
xc
yc

)
∈ EQµ

xb[0] = xc[0]; xb: buffer
xb[1] = xc[1];
xc[0] = Ac[0][0]*xb[0]+Ac[0][1]*xb[1]+yc;
xc[1] = Ac[1][0]*xb[0]+Ac[1][1]*xb[1];
???

Same computation: output invariant can be found [Feron].
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From real to floats Numerical precision problems

Numerical precision problems

To produce C code: real numbers ; binary finite-length machine words
(32 b. or 64 b.).

⇒ Loss in accuracy, two consequences:
1 Constant values are slightly altered.
2 Rounding errors during computations.
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From real to floats Machine representation of real numbers

Machine representation of real numbers
1 Floating point: IEEE 754.

Not usual on microcontrollers.

number = sign× 2exponent+cst. offset × fraction

Correct rounding for base operations: +, -, *, /.
⇒ If [bounds on] operands are known, not special, far enough from
extremal values, then rounding error is bounded for +, -, * (not /).

2 Fixed point.
If operands are not special, far enough from extremal values, then
rounding error is bounded for +, -, *.

3 Two integers.
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From real to floats Machine representation of real numbers

Machine representation of real numbers
1 Floating point.
2 Fixed point.
3 Two integers. Rational representation: numerator, denominator.

• Base behavior: +, -, *, / follow rational definition + fraction
simplification:

p1
q1

+
p2
q2

= simpl
(

p1q2 + p2q1
q1q2

)
, etc.

No rounding error.
Problem: numerator value can easily exceed integer bounds.

• Approximated behavior to ensure bounded numerator.
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From real to floats Alteration of constants

Alteration of constants

With IEEE 754, 32 bits, constants
Ac = [0.4990, -0.0500; 0.0100, 1.0000];
Bc = [1;0];
Cc = [564.48, 0];
Dc = -1280;

become
Ac ≈ [0.49900001287460327 , -0.05000000074505806;

0.009999999776482582, 1.0000];
Bc ≈ [1;0];
Cc ≈ [564.47998046875, 0];
Dc ≈ -1280;
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From real to floats Alteration of constants

Effect on proof
xc = zeros(2,1);
xc ∈ EP
receive(y,2); receive(yd,3);
xc ∈ EP
while 1

xc ∈ EP
yc = max(min(y - yd,1),-1);
xc ∈ EP , y2

c ≤ 1(
xc
yc

)
∈ EQµ | Qµ =

(
µP 02×1
01×2 1− µ

)
, µ = 0.9991

u = Cc*xc + Dc*yc;(
xc
yc

)
∈ EQµ

xc = Ac*xc + Bc*yc;

xc ∈ EP̃ | P̃ =
[ (

Ac Bc
)
· Q−1

µ ·
(

Ac Bc
)T ]−1

send(u,1);
xc ∈ EP̃
receive(y,2);
xc ∈ EP̃
receive(yd,3);
xc ∈ EP̃
xc ∈ EP

end

Rest of the code and proof
sketch unchanged.

P̃ depends on Ac , Bc , Cc ,
Dc , is altered.

⇒ Check that EP̃ ⊆ EP still
holds.
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From real to floats Rounding errors

Rounding errors

With real numbers, the implication(
xc
yc

)
∈ EQµ

xc = Ac*xc + Bc*yc;

xc ∈ EP̃ | P̃ =
[ (

Ac Bc
)
· Q−1

µ ·
(

Ac Bc
)T ]−1

holds.

With floats, + and * introduce rounding errors.

As xc , yc belong to an ellipsoid, they are bounded so the rounding error on
xc can be bounded by (e1, e2).
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From real to floats Rounding errors

Super-ellipsoid
Let EF̃ ⊃ EP̃ an ellipse s.t.
∀xc ∈ EP̃ , ∀x

′
c ∈ R2, |x ′c1 − xc1 | ≤ e1 ∧ |x ′c2 − xc2 | ≤ e2 =⇒ x ′c ∈ EF̃ (∗)

Then:(
xc
yc

)
∈ EQµ

xc = Ac*xc + Bc*yc;
xc ∈ EF̃

EF̃ can be the smallest magnification of EP̃ s.t. (∗)
holds.

Can be computed, whatever number of dimensions.
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From real to floats Rounding errors

Effect on proof
xc = zeros(2,1);
xc ∈ EP
receive(y,2); receive(yd,3);
xc ∈ EP
while 1

xc ∈ EP
yc = max(min(y - yd,1),-1);
xc ∈ EP , y2

c ≤ 1(
xc
yc

)
∈ EQµ | Qµ =

(
µP 02×1
01×2 1− µ

)
, µ = 0.9991

u = Cc*xc + Dc*yc;(
xc
yc

)
∈ EQµ

xc = Ac*xc + Bc*yc;
xc ∈ EF̃
send(u,1);
xc ∈ EF̃
receive(y,2);
xc ∈ EF̃
receive(yd,3);
xc ∈ EF̃
xc ∈ EP

end

Replace EP̃ by EF̃ in proof
sketch.

⇒ Check that EF̃ ⊆ EP
holds.

Here it works: system stable
with floats ,.
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From real to floats Other systems

Other functions

Elementary operations +, * are sufficient for linear, invariant systems.
The method applies if the proof sketch fits: no tight assumptions, complex
operations on weakened invariants.

1-var, differentiable, periodic functions can be computed
• with an abacus and a polyhedral interpolation function
• with a polyhedral approximation

with a bounded error (sin, cos).

Idem for 1-var, differentiable functions restricted to a finite range. OK if
proof ensures the operand is bounded to the range.
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Closing the loop Closed-loop system

Closing the loop
Modeling the result of the effects of the action on the environment, with
feedback.
Design: here, two parallel, synchronized programs:

controller + plant (abstract).
Ac = [0.4990, -0.0500; 0.0100, 1.0000]; Ap = [1.000, 0.0100; -0.0100, 1.000];
Bc = [1;0]; Bp = [0.00005; 0.01];
Cc = [564.48, 0]; Cp = [1, 0];
Dc = -1280;
xc = zeros(2,1);
receive(y,2); receive(yd,3);
while 1 while (1)

yc = max(min(y - yd,1),-1); yp = Cp * xp;
u = Cc*xc + Dc*yc; send(yp,2);
xc = Ac*xc + Bc*yc; receive(up,1);
send(u,1); xp = Ap * xp + Bp * up;
receive(y,2); end
receive(yd,3);

end

System is not linear.
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Closing the loop Proof scheme

Proving the system
Lyapunov stability: global state (xc , xp) in some ellipsoid EP .
⇒ + Boundedness of variables in physical system.

Difficulties:
• Non-linearity issues: trickier to find a suitable EP , post-condition to

yc definition.
Usual case here, has been dealt.

• Handling concurrency in invariants: switch between system and plant
analysis.

• Invariants of greater dimension: cannot test algebraically invariant
inclusion, fails with floats.

• C code with interrupts.
SIGNAL(2) SIGNAL(3) while(1) {

y = ... yd = ... sleep();
... ... }
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Closing the loop Proof scheme
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