Field Evaluation with Cognitively-Impaired Older Adults of Attention Management in the Embodied Conversational Agent *Louise*

P. Wargnier, G. Carletti, Y. Laurent-Corniquet, S. Benveniste, P. Jouvelot and A.-S. Rigaud.

4th IEEE International Conference on Serious Games and Applications for Health (SeGAH), Orlando, USA – May 13th 2016

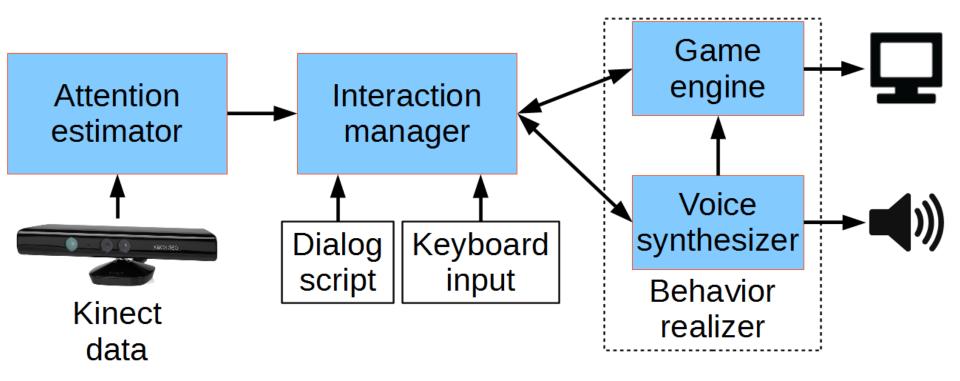
Motivations

- Over 100 millions people with dementia by 2050
- Dementia = loss of cognitive functions due to brain diseases in older adults
- High care costs
- Caregivers shortage

Outline

- 1. Motivations
- 2. Project overview
- 3. Why ECAs?
- 4. The Louise ECA
- 5. Attention estimation method
- 6. Evaluation
- 7. Anthropological analysis
- 8. Conclusion and future work

Project overview


- Challenge: Building an adapted user interface for older adults with cognitive impairment (and low computer literacy)
- Proposed solution: embodied conversational agents (ECAs)
- Design methodology: user-centered "livinglab" approach
- Place: Broca Hospital (Paris, France)

Why ECAs?

- Good task performance
- Attention and engagement
- Natural interaction
- Trust
- Better understanding
- Non-verbal behaviors
- Personalization

The Louise ECA (1/2)

The Louise ECA (2/2)



Figure 1 – ECA's embodiment

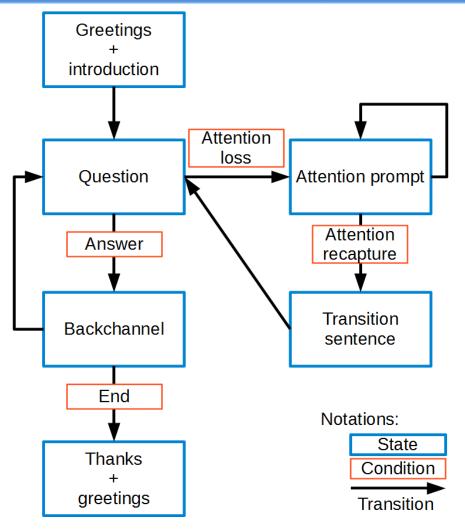


Figure 2 – ECA's behavior

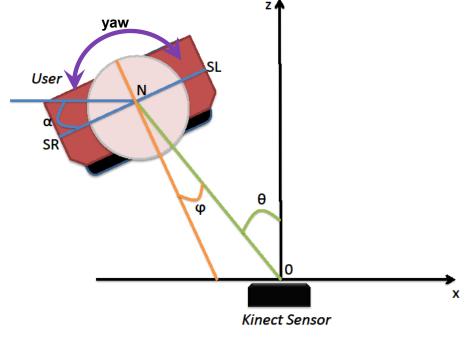
Attention estimation method (1/2)

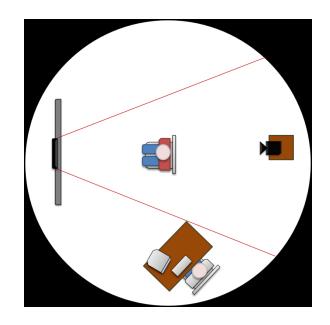
• A priori assumptions:

- Attention = looking towards the display
- Sensor placed on top of the display in the middle

• 3 features:

- φ = divergence from direct orientation of the body towards the sensor
- Yaw = the head's rotation around the vertical axis
- Pitch = face up/face down rotation of the head




Figure 3 – Angles used for attention estimation

Attention estimation method (2/2)

- Features f_j averaged over 1-second sampling
- Features normalized as: $\overline{f_j} = \frac{\cos(f_j) \cos(Max_j)}{1 \cos(Max_j)}$
- $Max_j = 60^\circ$ for φ , 30° for yaw and 20° for pitch
- Attention value A computed as: $A = \sum_{j=1}^{n} \omega_j \overline{f_j}$
- Sum of the weights ω_j is 10; features in [0; 1]
- $\omega_{\phi} = 3$; $\omega_{yaw} = 4$; $\omega_{pitch} = 3$; n = 3
- Decision: empirical hysteresis threshold

Evaluation

- Phase 1: Healthy younger adults
 - 14 participants : 10 men, 4 women
 - Assistive technology experts
 - \circ 22 < age < 62 (mean = 37)
- Phase 2: Older adults
 - 8 participants : 6 women, 2 men
 - o 3 MCI, 3 Alzheimer's disease
 - \circ 17 < MMSE < 29 (mean = 23)
 - 63 < age < 91 (mean = 78)</p>

Results

- 6/8 participants successfully interacted (1 could not hear; 1 lost track of context)
- Correct estimations:
 - 83% in Phase 1
 - 76% in Phase 2
- No statistically significant differences between groups
- Effective attention recapture strategy

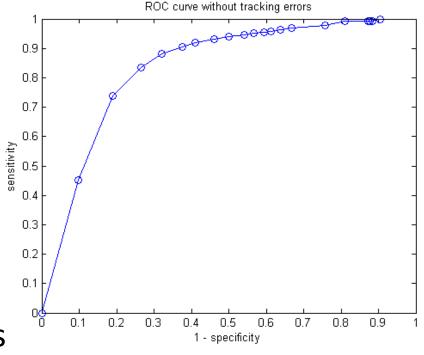
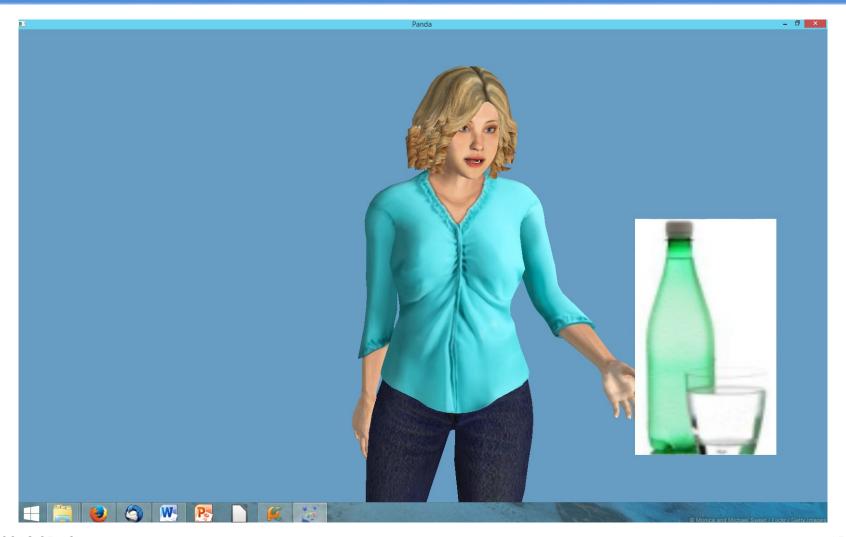


Figure 4 – Receiver Operating Characteristics (ROC) curve of the attention estimator

Anthropological interaction analysis

- Goal: gain insights for future work on interaction management automation
- Method: interaction videos annotation and interviews with Louise's designers
- Observations:
 - People with dementia (PWD) utter more words
 - PWD develop more topic expansion
 - PWD are slower to answer
 - Multi-party interaction (bi-party was intended)
 - PWD talked more to the experimenter


Conclusion

- Simple, fast, cheap and acceptably accurate attention estimation monitoring capabilities
- Little influence of age or cognitive impairment on performance
- Effective attention recapture strategy
- Louise is quite engaging [©]

Ongoing and future work

- Fully automatic system featuring:
 - Attention management
 - Context reminders
 - Keyword-spotting automatic speech recognition
 - Images and example videos display
 - High-quality animation, based on SmartBody
 - Interaction scenario edition in XML
- 2 types of tasks: multiple-option choice and guided task
- 14 participants with MCI or Alzheimer's disease

Louise 2.0

Field Evaluation with Cognitively-Impaired Older Adults of Attention Management in the Embodied Conversational Agent *Louise*

P. Wargnier, G. Carletti, Y. Laurent-Corniquet, S. Benveniste, P. Jouvelot and A.-S. Rigaud.

4th IEEE International Conference on Serious Games and Applications for Health (SeGAH), Orlando, USA – May 13th 2016

