
Towards Compositional and Generative Tensor Optimizations
Adilla Susungi, Norman A. Rink, Jerónimo Castrillón, Immo Huismann, Albert Cohen, Claude Tadonki, Jörg Stiller and Jochen Fröhlich

adilla.susungi@mines-paristech.fr — norman.rink@tu-dresden.de

Tensors in Computational Fluid Dynamics (CFD)

Loop characteristics:

3 to 4 dimensions nesting
Few iterations per dimension (e.g., 17 or 33
iterations)

Type of computations:

Tensor contractions
Outer products
Element-wise multiplications

Computations on each element of a structured
mesh

Inverse Helmholtz

tijk =
∑
l,m,n

AT
kn · AT

jm · AT
il · ulmn

pijk = Dijk · tijk

vijk =
∑
l,m,n

Akn · Ajm · Ail · plmn

Tensor Optimization Frameworks

Domain-specific
expressivity

Flexible/Adaptive
optimization

heuristics

Generic expressivity

Hidden and/or rigid
optimization

heuristics

Related Work

Different levels of expressiveness and control on optimizations

Specific Generic

Hidden/rigid

Flexible/adaptive

Chill •
Pluto •
TensorFlow •
TVM •
Tensor Contraction Engine •
Numpy •
Tensor Algebra Compiler •

Optimizing CFD Kernels with Existing Tools

Several limitations

Few opportunities for adaptations

Unadapted constructs

Unadapted heuristics

Limited optimizations

Limited expressivity

Should we create yet another domain-specific
solution?

Goal

A cross-domain intermediate language for tensor optimizations

Intermediate Language

Modular constructs

First-class citizens:

Arrays
Tensor operators
Loop iterators
Transformations

Envisioned Tool

Meta-programming

Intermediate
language

Source file
(C or DSL)

Optimized C

Iterative search

Generic expressivity
Flexible/Adaptive

optimization
heuristics

Search Space Exploration

Evaluation order of tensor
contractions

Fusions

Permutations

Vectorization

Collapsing

Unrolling

Inverse Helmholtz by Example

Basic array declaration

A = array(2, double, [N, N])

u = array(3, double, [N, N, N])

D = array(3, double, [N, N, N])

Transposition

At = vtranspose(A, 1, 2)

Tensor contractions

tmp1 = contract(At, u, [2, 1])

tmp2 = contract(At, tmp1, [2, 2])

tmp3 = contract(At, tmp2, [2, 3])

Element-wise multiplication

tmp4 = entrywise(D, tmp3)

Tensor contractions

tmp5 = contract(A, tmp4, [2, 1])

tmp6 = contract(A, tmp5, [2, 2])

v = contract(A, tmp6, [2, 3])

Iterator declaration

i1 = iterator(0, N, 1)

i2 = iterator(0, N, 1)

... other iterator declarations

Association of iterators

to computations

build(D, [td1, td2, td3])

build(tmp1, [i1, i2, i3, i4])

Also applies to tmp2, ..., tmp6

build(v, [k12, k22, k32, k42])

Loop interchanges

interchange(i4, i3)

interchange(i4, i2)

interchange(j2, j1)

interchange(j1, j4)

Transpositions

tmp2t = vtranspose(tmp2, 1, 2)

replace_array(j3, tmp2, tmp2t)

replace_array(k4, tmp2, tmp2t)

tmp3t = vtranspose(tmp3, 1, 3)

replace_array(k4, tmp3, tmp3t)

interchange(k3, k2)

... other optimizations

Example of assessment: Different heuristics of
loop interchanges (+ parallelization)

L1 L2 L3

8

9

10

11

9

8

11

S
p

ee
d-

up

Variant L1: Loop
interchanges only;

Variant L2: Loop
interchanges + data
transpositions with
copying;

Variant L3: Loop
interchanges + data
transpositions without
copying.

Baseline: sequential execution (3.32s). Machine: 24-core
Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz (Haswell)

Future Work

Applications to other domains

Syntax refinement

Formal semantics

This work was partially funded by the German Research Council (DFG) through the Cluster of Excellence ‘Center for Advancing Electronics Dresden’ (cfaed) and by PSL Research University through the ACOPAL project.

adilla.susungi@mines-paristech.fr
norman.rink@tu-dresden.de

