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Tensors in Computational Fluid Dynamics (CFD)

Loop characteristics:

3 to 4 dimensions nesting
Few iterations per dimension (e.g., 17 or 33
iterations)

Type of computations:

Tensor contractions
Outer products
Element-wise multiplications

Computations on each element of a structured
mesh

Inverse Helmholtz

tijk =
∑
l,m,n

AT
kn · AT

jm · AT
il · ulmn

pijk = Dijk · tijk

vijk =
∑
l,m,n

Akn · Ajm · Ail · plmn

Tensor Optimization Frameworks

Domain-specific
expressivity

Flexible/Adaptive
optimization

heuristics

Generic expressivity

Hidden and/or rigid
optimization

heuristics

Related Work

Different levels of expressiveness and control on optimizations

Specific Generic

Hidden/rigid

Flexible/adaptive

Chill •
Pluto •
TensorFlow •
TVM •
Tensor Contraction Engine •
Numpy •
Tensor Algebra Compiler •

Optimizing CFD Kernels with Existing Tools

Several limitations

Few opportunities for adaptations

Unadapted constructs

Unadapted heuristics

Limited optimizations

Limited expressivity

Should we create yet another domain-specific
solution?

Goal

A cross-domain intermediate language for tensor optimizations

Intermediate Language

Modular constructs

First-class citizens:

Arrays
Tensor operators
Loop iterators
Transformations

Envisioned Tool

Meta-programming

Intermediate
language

Source file
(C or DSL)

Optimized C

Iterative search

Generic expressivity
Flexible/Adaptive

optimization
heuristics

Search Space Exploration

Evaluation order of tensor
contractions

Fusions

Permutations

Vectorization

Collapsing

Unrolling

Inverse Helmholtz by Example

# Basic array declaration

A = array(2, double, [N, N])

u = array(3, double, [N, N, N])

D = array(3, double, [N, N, N])

# Transposition

At = vtranspose(A, 1, 2)

# Tensor contractions

tmp1 = contract(At, u, [2, 1])

tmp2 = contract(At, tmp1, [2, 2])

tmp3 = contract(At, tmp2, [2, 3])

# Element-wise multiplication

tmp4 = entrywise(D, tmp3)

# Tensor contractions

tmp5 = contract(A, tmp4, [2, 1])

tmp6 = contract(A, tmp5, [2, 2])

v = contract(A, tmp6, [2, 3])

# Iterator declaration

i1 = iterator(0, N, 1)

i2 = iterator(0, N, 1)

# ... other iterator declarations

# Association of iterators

# to computations

build(D, [td1, td2, td3])

build(tmp1, [i1, i2, i3, i4])

# Also applies to tmp2, ..., tmp6

build(v, [k12, k22, k32, k42])

# Loop interchanges

interchange(i4, i3)

interchange(i4, i2)

interchange(j2, j1)

interchange(j1, j4)

# Transpositions

tmp2t = vtranspose(tmp2, 1, 2)

replace_array(j3, tmp2, tmp2t)

replace_array(k4, tmp2, tmp2t)

tmp3t = vtranspose(tmp3, 1, 3)

replace_array(k4, tmp3, tmp3t)

interchange(k3, k2)

# ... other optimizations

Example of assessment: Different heuristics of
loop interchanges (+ parallelization)
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Variant L1: Loop
interchanges only;

Variant L2: Loop
interchanges + data
transpositions with
copying;

Variant L3: Loop
interchanges + data
transpositions without
copying.

Baseline: sequential execution (3.32s). Machine: 24-core
Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz (Haswell)

Future Work

Applications to other domains

Syntax refinement

Formal semantics
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