Ontology-based Generation of Personalised Data Management Systems: an Application to Experimental Particle Physics

PhD thesis defense of Blerina GKOTSE Blerina.Gkotse@cern.ch

MINES ParisTech, PSL University, France

25 September 2020

Jury: Laura GONELLA, Rapporteur Jean-Baptiste LAMY, Rapporteur Laurent DUSSEAU, Examinateur Theodora VARVARIGOU, Examinateur Pierre JOUVELOT, Directeur de thèse Federico RAVOTTI, Maître de thèse

Motivation

©gapingvoid

From data to wisdom

Context

Experimental Particle Physics (EPP) Web Semantics

Web Semantics

Computers don't understand semantic meaning

E.g., "My mouse is broken..." ©vectorstock.com ©publiclibrariesonline.org

©vectorstock.com

Ontology = On (ov) + logos (λόγος)

In computer science: formal description and classification of "what exists", what can be represented as a knowledge fact

Ontology Origin

Deriving from ancient Greek:

In philosophy: subject of existence, science of being, "what exists" in the world

Ontology: Structure

- Class: a set of entities of a specific domain of knowledge
- Relation: a semantic link among classes, also called object property
- Property: attribute of specific type, also called data property

Excerpt from SOSA (Sensors, Observations, Samples and Actuators) ontology

Knowledge Base (KB)

- Individual instances of domain's classes
- RDF triples (Resource Description Framework)
- Stored in triple stores

Knowledge Graph (KG)

- Term coined by Google (2012)
- Knowledge bases from a variety of sources
- Used in academia and industry

Google Knowledge Graph

Ontology Goals

European Laboratory of Particle Physics (CERN)

CERN Accelerators Complex

©cds.cern.ch

CERN Proton Irradiation Facility (IRRAD)

- Reference facility for proton irradiation experiments
- Testing of components of EPP experiments

IRRAD Experiments

In 2018: **81** irradiation experiments, **97** users, **792** samples, **405** dosimeters, **2056** dosimetry measurements

Piezo actuators

CLARO ASIC

ECAL crystal

RD53A modules ©ps-irrad.cern.ch

Proper data management necessary

DC/DC converters

Full-tracking detector module

Si pad diode

IRRAD Data Manager (IDM)

Irradiation Experiments

beam irradiation

©Courtesy Frank-Holm Roegner

Bridging the Gap in Data Management

- Knowledge sharing among communities
- Small experiments, no strong IT support
- User Experience
- **IRRAD** Data Manager Irradiation Experiments IEDM Preferences nfiguration 0 0 0

- ✓ Web Semantics
- ✓ Automatic generation of web applications
- ✓ UI personalization

Outline

- > Context
 - Web Semantics
 - Experimental Particle Physics
- Irradiation Experiment Data Management Ontology (IEDM)
- > Automatic Generation of Web Applications from Ontologies
- UI Personalization with Ontology Embeddings

Data Management in EPP

Available tools for:

- Information registration
- Infrastructure availability

Reporting

SOLARIS Digital User Office

Web Extensible Display Manager used at Jefferson Lab for control-systems display

- No fully integrated solution for the follow-up of experiments' life cycle
- No use of web semantics

Domain Ontologies in EPP

Ontology	Authors	Content	Domain
Web Physics Ontology	V. Vjetkovic	physics equations and relations	Physics
Ontology Design Pattern	D. Carral, et al.	analysis of particle physics data	Physics
Synchrotron Ontology	J. Szota-Pachowic	synchrotron components	Physics
Radiation Protection Ontology	C. Barki, <i>et al.</i>	irradiation experiments focusing on medicine	Medicine
EXPO – Ontology of Scientific Experiments	L. Soldatova, et al.	scientific experiments	General

No ontology for the data management of irradiation experiments

Irradiation Experiments' Data Research

- Research and compilation of irradiation experiments' and related facilities' data
- Domain experts interviewed (~10)

Irradiation Experiment Data Management (IEDM)

Three foundational ontologies

Name	Authors	Concepts
EXPO – Ontology of Scientific Experiments	L. Soldatova, et al.	scientific experiments
OM-2 – Units of Measure ontology	H. Rijgersberg, et al.	experimental quantities and physical units
FOAF – Friend Of A Friend Ontology	D. Brickley, et al.	networks of people, activities and their relations

IEDM: Core Classes

IEDM: Instances

IEDM Online Documentation

http://cern.ch/iedm

Outline

- Web Semantics
- > Experimental Particle Physics
- Irradiation Experiment Data Management Ontology (IEDM)
- Automatic Generation of Web Applications from Ontologies
- > UI Personalization with Ontology Embeddings

Ontology-based User Interface (UI) Generation

Several related works, more pertinent by Hitz et al.*:

- User selection of Application ontology and instances
- Automatic transformation to a Target ontology for UI generation
- Proprietary annotations are required, limiting their universality

*M. Hitz, T. Kessel and D. Pfisterer, "Towards Sharable Application Ontologies for the Automatic Generation of UIs for Dialog based Linked Data Applications" 2017.

UI Ontologies

Existing ontologies reused:

- Semantic UI framework
- LOV UI, supported by the Linked Open Vocabularies (LOV)
- RaUL, RDFa User Interface Language (supported by LOV)
- HUICA, Hierarchical User Interface Component Architecture

Ontology	UI elements concepts (Forms, Tables,)	Style properties (color, background color,)	Data operations	Back-end concepts
Semantic UI	×	-	-	-
LOV UI	×	×	-	-
RaUL	×	-	×	-
HUICA	×	×	-	-

Ontology-based Web Application Ontology (OWAO)

Web Application Generator (GenAppi)

Loading domain and OWAO ontologies (OWL)

Transforming domain classes and object/data properties to Model classes and attributes

Generating Django view files for data operations (CRUD)

Creating Django Template and URLs files for the UI

Grouping files in specific directories

Migrating Model and server ready for start

IEDM Use Case

- Input form for each domain-ontology class instance:
 - Data properties = input fields
 - Object properties = selection fields, links to the corresponding class forms
- Django authentication and authorisation
- **UI adaptable** to user's preferences
- Visualisation of domain ontology

ResponsiblePerson		
SingularField	IEDM	UI Preferences
StorageArea		configurations
System	UpdatedBy	Background body color:
TechnicalRequirements	Blerina Gkotse	
UnaryFunction		Font color:
UnaryFunctionEntry	Add	Font size: px
IrradiationExperiment	CreatedBy	10
Requirements	Blerina Gkotse	* Save
DUTIrradiation	Haleht	
CumulatedQuantity	0.1	
IrradiationExperimentObject	Identification	
User	SET-001029	
IrradiationFacilityRole	Legation	
InteractionLength	Bid. 14 R12	
InteractionLengthOccupancy	Webb	
MonitoringSystem	0.001	
DomainOfExperiment		
StorageArea	Width	
IrradiationFacilityCoordinator	via	
Operator	Name	
IrradiationFacility	31.10%1	
IrradiationFacilityManager	Cancel Create	

Registering an IrradiationExperimentObject instance

Visualisation using WebVOWL

Generated Application vs. IDM

	IDM	Generated Application
Purpose	IRRAD facility data management	any domain
Software infrastructure	CERN	free and open-source
Storage	Oracle database	any relational database, ontology or triple store
Web Semantic technologies	no	yes
UI Customisation	no	yes
Functionalities	more advanced	CRUD [*] operations

CRUD* = Create Read Update Delete

User Interfaces Comparison: List Table

CERN Accelerating	g science			Signed in as:	blerina.gkotse@	cern.ch	Sign out	Directory			
HOME EXPERIMENT	S BPM IRRAD INFO					M	Proton Facility				
		IRRA	D Data Manag	ger							
		FCC	C-RADMON users	S							
< Back		Search				Q		+ New User			
Name Blerina	Surname Gkotse	E-mail blerina.gkotse@cern.ch	T	elephone	Role User		Actions]			
DM list tab	ble	UnaryFunction UnaryFunctionEntry	•			IED	Μ			UI Preferences	
		IrradiationExperiment Requirements				Use	r			Configurations Background body color:	
		DUTIrradiation CumulatedQuantity				Creat	e			Font color:	
		IrradiationExperimentOb	oject surname	email		name	hasRole	Actions		Font size: px	
		User	Gkotse	blerina.gkotse@	Deern.ch	Blerina	Responsible	View Update	Delete	Save	
		InteractionLength									
									EDM AF	P list table	1

Outline

- Web Semantics
- > Experimental Particle Physics
- Irradiation Experiment Data Management Ontology (IEDM)
- > Automatic Generation of Web Applications from Ontologies
- UI Personalization with new Ontology Embeddings

User Experience

"User Experience (UX) refers to a person's entire experience using a particular product,

system or service."

©Interaction Design course UNIL

User Experience Honeycomb

©Peter Morville, "User Experience Design" http://semanticstudios.com/user_experience_design/

User Experience

Bad UI design can cause serious human errors

Hyperspace - Pro	duction - DUBLIN PEDIATRICS	 00 • 000	i Gridita, GG u Resulta, Result Hutes, Resulta, Auus	enuum,	X
Back 📥 Euri 💏	Home 🎧 Schedule 🖓 In Rasket 🖓 Chat 🍕	r Encounter 🤫 Tel Enc 🥣 Betill 🌧 Orders Only	🚐 Stall Man 🗺 Sec Pt Man	A Dirt - 🔍 Serue	and Loss Du
	Zatard Ad		San Huy 🔤 Sec i Chuy		EnirCa
	MRN DOB A	Age Sex Allergies	PCP Type PHI FSC Online	Alerts	
Zziesi, Au	18774711 4/15/1950 60	yea M No Known Allergies PC	'P, NO (None)* * BX35, HN35 Basic		
SnapShot	SnapShot				
Chart Review	4 SnapShot 🖫 ADVANCE DIRECTIVE/CO	DDE STATUS		Report Snaps	P /P
Demographics	BE Demographics 5		Re Allernies 5		÷
Results Review	AD 77TEST 122 Eacy St		No Known Alloratos		_
Flowsheets	60 year old male Xxx, XX 99999		NO KIOWI Allengies		
Graphs	Home: 999-999-	-9999	C Medications 5	🔍 Long	Term
Growth Chart	Problem List 5	S Chronic	PREVPAC Pack		
Synopsis	Chronic		lisinopril (PRINIVIL, ZESTRIL) 10mg Tab		
Problem List	ESOPHAGEAL REFLUX		tramadol (ULTRAM) 50mg Tab		
History	Other		fluticasone (FLONASE) 50mcg Nasal Susp		
Health Maintenance	ASTHMA NOS W/O STATUS ASTHM		PREVPAC (PREVPAC) Pack		
Letters	ESSENTIAL HYPERTENSION NOS		ranibdine (ZANTAC) 300mg Tab		
Allergies	ERRONEOUS ENCOUNTER		/ Immunizations/Injections 5		
Medications	A Health Maintenance	Overdue A Due On Due Soon	None		
intro E di Recolto		04060060			
Online Lab Release	INFLUENZA VACCINE	0901/2010	Significant History/Details		
Unane Lab Helease	LIPID SCREENING	04/15/1985	Tobacco: Not on File		
	PNEUMOCOCCAL VACCINE	0000000	Alcohol: Not on File		
	(PNEUMOVAX)	04/15/1952	3 open orders		
	➡ POTASSIUM	04/15/1950	Language: UNKNOWN		
	TDAP VACCINE	04/15/1961	2 Specialty Comments	Report Show Al	Edit
	UNIVERSAL HIV SCREENING DISCUSSION	04/15/1963	No comments regarding your specially		
	 VARICELLA ZOSTER VACCINE (ZOSTAVAX) 	04/15/2010	Tamily Comments		Edd
	COLORECTAL CANCER SCREENIN DISCUSSION	08/02/2011	None		
	Reminders and Results				
Hotkey List	None		1		
Evit Worksmann					
IODIN	Care Team and Communications	ite Besuit Notes Besuite Addeedure Ch	ate CCVI To Ma. Evolution Ord. Once Charte		
Boolini	C O O W O Etc Hyperspace - Pro	aduct	ans cold to me, Explaining ord, open chans,	2×0	
	a ca ca ca ca presente ente				
	Epic	software (in the US	SA)		

Personalisation

User Experience factors:

- UI content
- Cultural background
- Physiology
- Cognitive capability

Images better displayed on black background

©Tubic Studio | Museu by Ernest Asanov

Eye tracking of websites for population of Western countries

©nngroup.com NN/g

OWAO UI Preferences

- Part of OWAO (Ontology-based Web Application Ontology)
- Used for recommending UI style

OWAO UI Preferences Example

Excerpt from OWAO ontology showing "User1" instance and UI Preferences (displayed from web Protégé)

Ontology Embedding

- Ontology instances \rightarrow words, text
- (e.g. TemperatureSensor1 observes Temperature)
- Word representation as feature vectors for tracking
- similar words and
- words appearing in the same context
- Used in recommender systems for suggesting similar items

word2vec

NLP Model for generating word embeddings*:

- Continuous Bag of Words (CBOW)
- Skip-gram

*A. T. Mikolov et al., "Efficient Estimation of Word Representations in Vector Space"

node2vec / RDF2Vec

- Ontologies ~ directed graphs
- Random walks extraction to create "sentences"
- Two NLP models:
 - node2vec based on Breadth-first Search (BFS) and Depth-first Search (DFS)¹
 - RDF2Vec based on BFS of certain depth and Weisfeiler-Lehman (subtree comparison algorithm)²

BFS and DFS paths

¹A. Grover and J. Leskovec, "node2vec: Scalable feature learning for networks" ²P. Ristoski, et al., "RDF2Vec: RDF graph embeddings and their applications"

New embedding: ontowalk2vec

New hybrid NLP model:

- $node2vec \rightarrow$ explicit structure of the ontology
- $RDF2Vec \rightarrow RDF$ triples

Algorithm:

Evaluation: MUTAG

- KB of 340 complex molecules (carcinogenic, i.e., "MUTAGenic" or not)
- Source ontology for classifying molecules (mutagenic / not-mutagenic)

MUTAG Results

Experiments with *RDF2Vec*, *node2vec* and *ontowalk2vec* (run 10 times).

Classification accuracy test:

- Random Forest (RF): decision trees on data sub-groups and averaging
- Support Vector Machine (SVM): optimal hyperplane on labeled data

Evaluation: OWAO UI Preferences

- Lack of actual UI datasets → Artificial statistics-based data
- Four UI Style components taken as an example
- Statistics on UI preferences (bibliographic research)

OWAO UI Preferences Results

Classification accuracy:

	Random Forest	SVM				
BFS	1.00 (±0.00)	1.00 (±0.00)				
WL	1.00 (±0.00)	0.99 (±0.01)				
preferred / not preferred						
	Random Forest	SVM				
BFS	0.990 (±0.001)	0.995 (±0.002)				
WL	0.993 (±0.002)	0.995 (±0.001)				
	popularity zero / low / m	nedium / high				
	Random Forest	SVM				
BFS	0.83 (±0.04)	0.94 (±0.04)				
WL	0.86 (±0.06)	0.92 (±0.05)				

popularity low / medium / high

Cosine Similarity Testing

Conclusion

- Interdisciplinary work bridging the gap between Web Semantics and EPP
- Automatic generation of web applications from ontologies and KGs:
 - GenAppi methodology and software tools developed
 - Use case based on the IEDM ontology (and other ontologies)
- Generated web applications:
 - Based on web semantic technologies, enabling data integration
 - Functional (as is) or starting point (for further software development)
- Ontology embedding (ontowalk2vec):
 - Evaluated with two ontologies
 - Some evidence of better accuracy than state of the art
 - Generating OWAO embeddings and finding similarities in instances
 - Used for recommending personalized UIs

Perspectives

- IEDM:
 - Further validation by the EPP community
 - Standardisation of data management for irradiation experiments
 - Common tools in the EPP community
- GenAppi methodology:
 - More UI components to be integrated in OWAO
- ontowalk2vec:
 - Collection of data regarding actual UI preferences
 - Evaluation with larger datasets
 - Extended use (irradiation experiments similarities IEDM)

Ontology-based Generation of Personalised Data Management Systems: an Application to Experimental Particle Physics

PhD thesis defense of Blerina GKOTSE Blerina.Gkotse@cern.ch

MINES ParisTech, PSL University, France

25 September 2020

Jury:

Laura GONELLA, Rapporteur Jean-Baptiste LAMY, Rapporteur Laurent DUSSEAU, Examinateur Theodora VARVARIGOU, Examinateur Pierre JOUVELOT, Directeur de thèse Federico RAVOTTI, Maître de thèse

This work has received funding from the European Union's Horizon 2020 Research and Innovation program under Grant Agreement no. 654168.

Backup: word2vec - Skip-gram

Given a sequence of training words $w_1, w_2, w_3, \dots, w_T$, maximize log probability:

Example for training word sentences*

Word2Vec Neural Network *

^{*}McCormick, C. (2016, April 19). *Word2Vec Tutorial - The Skip-Gram Model*. Retrieved from http://www.mccormickml.com

20 July 2020

B. Gkotse

e Séminaire CRI

Backup: NLP Model node2vec

Ontologies considered as directed graphs \rightarrow need for extracting **random walks** in the graph to create "sentences".

- Two algorithms for traversing graphs:
 - Breadth-first Search (BFS)
 - Depth-first Search (DFS)
- Based on hyperparameters:
 - o p: controlling the probability that a node in the walk is revisited
 - q: controlling the choice whether a BFS or DFS approach should be employed
- word2vec for generating the final embeddings

$$P(c_i = x \mid c_{i-1} = v) = \begin{cases} \frac{\pi_{vx}}{Z} & \text{if } (v, x) \in E\\ 0 & \text{otherwise} \end{cases}$$

 π is the unnormalized transition probability between nodes $_{\rm VX}$

v and x, and Z is the normalizing constant.

$$\alpha_{pq}(t,x) = \begin{cases} \frac{1}{p} & \text{if } d_{tx} = 0\\ 1 & \text{if } d_{tx} = 1\\ \frac{1}{q} & \text{if } d_{tx} = 2 \end{cases}$$

 $\begin{aligned} \pi_{vx} &= \alpha_{pq}(t, \, x) \cdot \, w_{vx} \\ d_{tx} &= \text{shortest path distance between t and } x \end{aligned}$

The walk transitions from t to v and is evaluating its next possible steps out of node v

*A. Grover and J. Leskovec, "node2vec: Scalable feature learning for networks"

20 July 2020

. Gkotse Séminaire CRI

Backup: Hyperparameters

Hyperparameter	Explanation	Default	Range	Comments
alpha	The initial learning rate	0.025	[0.1, 0.05,0.025,0.01]	Too big learning rate may not converge, too small may get to a local minimum
iteration	Number of iterations (epochs) over the corpus	5	[1,5,20,50]	The more iteration, the better the model is trained
vector size	Dimensionality of the word vectors	100	[20,100, 200, 500]	Bigger vector space the more features are learned for each word
window	Maximum distance between the current and predicted word within a sentence	5	[3,5,7]	since we are using RDF triples it would be wise to keep a window of min 3 words, and we add 2 more levels about the preferences and styles
min_count	Ignores all words with total frequency lower than this.	5	[0,1]	Since there are not many data and repeating instances, we don't want to remove too many data
negative / hierarchical softmax	If negative > 0, negative sampling will be used, the int for negative specifies how many "noise words" should be drawn (usually between 5-20). If set to 0, no negative sampling is used. If negative = 0, hierarchical softmax is used	5	[0,1,5,10]	Since we don't have too many noisy words, we try to run our algorithm with low negative sampling
depth	maximum level traversing the graph	1	[1,2,3]	After 3, too many and long random walks generated and the training becomes too heavy

20 July 2020

53

Backup: Hyperparameters

Figure 6.12: BFS F1 score histogram

Figure 6.13: WL F1 score histogram

	Hyperparameters								ation r	netrics
win	vs	hs	lr	iter	neg	cnt	dep	rec	prec	F1
3	200	1	0.010	1	0	1	1	1	0.85	0.923
7	100	0	0.025	1	5	0	2	1	0.857	0.923
5	500	0	0.025	1	20	0	2	1	0.857	0.923
7	500	0	0.025	1	10	0	2	1	0.857	0.923
5	200	1	0.010	1	0	1	1	1	0.857	0.923
5	100	10	0.025	1	5	0	2	1	0.857	0.923
7	500	0	0.010	5	5	1	1	1	0.857	0.923
7	20	0	0.025	50	1	0	2	0.833	1	0.909

Table 6.19: Top F1 score (> 0.9) for BFS

Hyperparameters								Evalu	ation r	netrics
win	vs	hs	lr	iter	neg	cnt	dep	rec	prec	F1
7	100	0	0.010	5	5	1	1	1	0.857	0.923
7	500	0	0.025	1	10	0	2	1	0.857	0.923
3	500	0	0.050	1	5	0	1	1	0.857	0.923
5	500	0	0.025	1	20	1	1	1	0.857	0.923
5	20	0	0.025	1	20	1	1	1	0.857	0.923
7	20	0	0.025	1	10	1	1	1	0.857	0.923
7	100	0	0.025	1	10	0	2	1	0.857	0.923
3	100	0	0.050	1	5	0	1	1	0.857	0.923
7	20	0	0.010	5	5	1	1	1	0.857	0.923
3	20	0	0.050	1	5	1	1	1	0.857	0.923

Table 6.20: Top F1 score (> 0.9) for WL

20 July 2020

Backup: Metrics

		Actual						
		Positive	Negative					
cted	Positive	True Positive	False Positive					
Predi	Negative	False Negative	True Negative					

Precision = ||True Positives|| ||True Positives||+|| False Negatives ||

 $Recall = \frac{||True Positives||}{||True Positives|| + ||False Positives||}$

F1 score = 2 * $\frac{Precision*Recall}{Precision+Recall}$

20 July 2020

Backup: Cosine Similarities Example

$$\cos(\theta) = \frac{A.B}{\|A\| \|B\|}$$

 $\begin{bmatrix} [1. & 0.75 & 0.75 & \dots & 0.25 & 0. & 0. \\ 0.75 & 1. & 0.75 & \dots & 0. & 0.25 & 0. \\ 0.75 & 0.75 & 1. & \dots & 0. & 0. & 0.25 \end{bmatrix}$... $\begin{bmatrix} 0.25 & 0. & 0. & \dots & 1. & 0.75 & 0.75 \\ 0. & 0.25 & 0. & \dots & 0.75 & 1. & 0.75 \end{bmatrix}$ $\begin{bmatrix} 0. & 0. & 0.25 & \dots & 0.75 & 1. & 0.75 \end{bmatrix}$

Cosine similarity table

20 July 2020

56

Backup: Weisfeiler Lehman Algorithm

20 July 2020

57

Backup: Recommenders

- Content-based methods:
- A model for user-item interactions where items or users' explicit features are provided
- + Advantages: User independence, transparency, no cold start
- Disadvantages: Overspecialisation
- Collaborative filtering methods:
 - Model-based: A model for user-item interactions where users and items representations are learned from interaction matrix
 - Memory-based: Depending on similarities between users or items in terms of observed interactions
- + Advantages: It may suggest more different items
- Disadvantages: It requires a lot of interactions, users and item ratings

Backup: GenAppi Algorithm

Algorithm 1 GenAppi

Input: domain_ontology

 $Output:\ client\ code\ and\ server$

- 1: load domain_ontology, owao
- 2: load $Jinja_templates$
- $3: map_domain_ontology_to_model(domain_ontology, owao)$
- 4: create URL_file
- 5: for op in owao.Operations() do
- 6: create $view_file(op)$
- 7: get template(op) from $Jinja_templates$
- 8: for cl in $domain_ontology.classes()$ do
- 9: adjust template(op) to cl
- $10: \qquad view_file(op).append(cl.template(op))$
- 11: create cl.URL(op)

12: $URL_file.append(cl.URL(op))$

13: **end for**

- 14: end for
- 15: $WebVOWL_JSON_file \leftarrow owl2vowl(domain_ontology)$
- 16: assemble files in directory
- 17: migrate Model
- 18: start server

20 July 2020

Backup: ontowalk2vec Algorithm

Algorithm 2 ontowalk2vec and classification Input: ontology, training_data, test_data Output: ontology embeddings and classification analysis data 1: Read ontology, training data, test data 2: Separate training_data to training_members and training_labels 3: Separate test data to test members and test labels 4: $qraph \leftarrow ontology$ to qraph conversion(ontology) 5: $node2vec \ graph \leftarrow node2vec.graph(graph, directed, p, q)$ 6: node2vec_graph.preprocess_transition_probabilities() 7: $node2vec_walks \leftarrow node2vec_graph.simulate_walks()$ 8: $bfs_walks \leftarrow RDF2VecBFS(graph, training_members \cup test_members)$ 9: $bfs embeddings \leftarrow word2vec(bfs walks \cup node2vec walks)$ 10: $wl walks \leftarrow RDF2VecWL(graph, training members \cup test members)$ 11: $wl embeddings \leftarrow word2vec(wl walks \cup node2vec walks)$ 12: for embeddings in [bfs_embeddings, wl_embeddings] do Separate embeddings to training embeddings and test embeddings 13: $rf \leftarrow RandomForestClassifier()$ 14: $svm \leftarrow SVM()$ 15: for classifier in [rf, svm] do 16: classifier.fit(training embeddings, training labels) 17: $classifier.predictions \leftarrow classifier.predict(test embeddings)$ 18: $classifier.accuracy \leftarrow$ 19: classifier.accuracy score(test labelspredictions) 20: $classifier.confusion matrix \leftarrow$ 21:confusion matrix(test labels, classifier.predictions) 22: end for 23: $tsne \leftarrow TSNE().fit \ transform(embeddings)$ 24:Plot tsne 25: top similarities \leftarrow embeddings.most similar(instance_1) 26: similarity value \leftarrow embeddings.similarity(instance1, instance2) 27: 28: end for

Backup: IEDM in Protégé

20 July 2020