
Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências

Instituto de Matemática e Estatística

Alexandre Ribeiro Fernandes Azevedo

Analyzing and Optimizing the Kronecker Tensor Product of
Matrices

Rio de Janeiro
2021

Alexandre Ribeiro Fernandes Azevedo

Analyzing and Optimizing the Kronecker Tensor Product of Matrices

Dissertação apresentada como requisito par-
cial para obtenção do título de Mestre, ao
Programa de Pós-Graduação em Ciências
Computacionais, da Universidade do Estado
do Rio de Janeiro.

Orientador: Prof. Dr. Cristiana Barbosa Bentes
Coorientador: Prof. Dr. Maria Clícia Stelling Castro

Coorientador: Prof. Dr. Claude Tadonki

Rio de Janeiro
2021

Alexandre Ribeiro Fernandes Azevedo

Analyzing and Optimizing the Kronecker Tensor Product of Matrices

Dissertação apresentada como requisito par-
cial para obtenção do título de Mestre, ao
Programa de Pós-Graduação em Ciências
Computacionais, da Universidade do Estado
do Rio de Janeiro.

Aprovada em 14 de Setembro de 2021
Banca Examinadora:

Prof. Dr. Cristiana Barbosa Bentes (Orientador)
Departamento de Engenharia de Sistemas e Computação - UERJ

Prof. Dr. Maria Clícia Stelling Castro (Coorientador)
Instituto de Matemática e Estatística - UERJ

Prof. Dr. Claude Tadonki (Coorientador)
CRI - Mines ParisTech

Prof. Dr. Alexandre Sena
Instituto de Matemática e Estatística - UERJ

Prof. Dr. Diego Leonel Cadette Dutra
Departamento de Engenharia Eletrônica e de Computação (DEL) -
UFRJ

Rio de Janeiro
2021

TADONKI

TADONKI
CRI - Mines ParisTech / PSL Research University

RESUMO

O produto de Kronecker, também chamado de Produto Tensorial, é uma operação
fundamental da Álgebra Matricial, usada para modelar sistemas complexos usando des-
critores estruturados. Essa operação precisa ser calculada de forma eficiente, pois é uma
peça importante para a modelagem desses sistemas em diversas áreas. Neste trabalho,
nos concentramos na análise de desempenho da operação do produto vetor-kronecker, uti-
lizando dois algoritmos diferentes. O primeiro algoritmo, que pode calcular a operação do
produto vetor-kronecker para qualquer conjunto de matrizes. O segundo algoritmo realiza
o mesmo cálculo, mas é capaz de explorar a esparsidade das matrizes de entrada. Com
base na análise detalhada de desempenho, que tem foco nos acessos à memória, propuse-
mos três otimizações: alterar o padrão de acesso à memória, reduzir o desbalanceamento
de carga (para a versão paralela) e vetorizar manualmente algumas partes do código com
instruções (intrinsics) Intel SSE4.2. Os resultados experimentais mostram uma melhor
utilização da cache com as melhorias no padrão de acesso à memória e melhorias de
desempenho com a vetorização manual.

Palavras-chave: Kronecker Algebra, Multiplicação Vetor-Matriz, Vetorização.

ABSTRACT

The Kronecker product, also called tensor product, is a fundamental matrix algebra
operation, used to model complex systems using structured descriptors. This operation
needs to be computed efficiently, since it is an important piece for modelling these systems
in a number of different areas. In this work, we focus on the performance analysis of the
vector-kronecker product operation, using two different algorithms. The first algorithm,
that can calculate the vector-kronecker product operation for any set of matrices. The
second algorithm, performs the same computation, but is capable of exploiting the spar-
sity of the input matrices. Based on the in-depth performance analysis, that focus on
memory accesses, we proposed three optimizations: changing the memory access pattern,
reducing load imbalance (for the parallel version) and manually vectorizing some porti-
ons of the code with Intel SSE4.2 intrinsics instructions. The experimental results show
better cache usage with the improvements in the memory access pattern and performance
improvements with the manual vectorization.

Keywords: Kronecker Algebra, Vector-matrix multiplication, Vectorization.

LIST OF FIGURES

Figura 1 – L1 Hit ratio for increasing matrix sizes 22
Figura 2 – The two innermost loops of the kronecker product proposed in [] 24
Figura 3 – Hit ratio and number of cache accesses for -O0 and -O3 flags 25
Figura 4 – L1 hit ratio for increasing matrices sizes 27
Figura 5 – Assembly code for the innermost loops when N=16, accessing the ma-

trices by column . 29
Figura 6 – Assembly code for the innermost loops when N=16, accessing the ma-

trices by row . 30
Figura 7 – Assembly code for the innermost loops when N=32, accessing the ma-

trices by column . 30
Figura 8 – Assembly code for the innermost loops when N=32, accessing the ma-

trices by row . 30
Figura 9 – The innermost loop of the Kronecker product implemented using SSE

instructions. 32

Figura 10 –Data access pattern for s=2 . 34
Figura 11 –Data access pattern for s=1 . 35
Figura 12 –Data access pattern for s=1 . 35
Figura 13 –The innermost loop of the Kronecker product implemented using SSE

instructions. 38
Figura 14 – Shuffle operations in the vector V and U 40

LIST OF TABLES

Tabela 1 – Complexity comparison . 16

Tabela 2 – FLOPs complexity comparison . 24
Tabela 3 – L1 hit ratio, execution time and number of accesses for different matrix

sizes and number of matrices that provide similar amount of computation 24
Tabela 4 – Results using -O0 and -O3 flags . 25
Tabela 5 – Parallel experiment data . 26
Tabela 6 – L1 hit ratio, number of memory accesses and execution times for the

original and optimized code . 28
Tabela 7 – Number of memory accesses of the unbalanced version and the optimized

version of the code. 31
Tabela 8 – Execution time and speedup of the unbalanced version and the optimi-

zed version of the code. 31
Tabela 9 – Experimental results of vectorization 32

Tabela 10 – Execution time of SpVKP compared to VKP 33
Tabela 11 – L1 hit ratio and number of accesses for SpVKP and VKP 34
Tabela 12 – Execution time and cache behavior of CF-SpVKP compared to SpVKP 37
Tabela 13 – Execution time and cache behavior of Vectorizes SpVKP compared to

SpVKP . 38
Tabela 14 – Number of misses for Vectorired SpVKP and SpVKP. 39
Tabela 15 – SpVKP vs Vec-Shuffle SpVKP . 40

LIST OF ALGORITHMS

1 Vector-kronecker product multiplication . 17
2 Parallel Vector-matrix multiplication . 18
3 Sparse Vector-kronecker product multiplication 19

4 Optimized parallel Vector-matrix multiplication 29

5 CF-SpVKP . 36

SUMÁRIO

INTRODUCTION . 12

1 BACKGROUND . 14
1.1 Kronecker product . 14
1.2 Vector-Kronecker Product Multiplication 15
1.3 The VKP Algorithm . 16
1.3.1 Shared Memory Parallel Implementation 17
1.4 The Sparse VKP Algorithm . 18

2 RELATED WORKS . 20
2.1 The Kronecker product and formalism . 20
2.2 Memory Optimization for the Kronecker product 20
2.3 Parallelization of the vector-Kronecker product multiplication 21

3 ANALYSING THE PERFORMANCE OF THE VKP ALGORITHM 22
3.1 Execution Environment . 22
3.2 Memory behavior of the VKP algorithm . 22
3.2.1 L1 Cache Hit Ratio . 22
3.2.2 Cache Hit Ratio and Execution Time . 23
3.2.3 Impact of the Optimization Flags . 24
3.2.4 Parallelization and Cache . 26
3.3 Optimizing the VKP algorithm . 26
3.3.1 Optimizing the data access . 26
3.3.2 Load imbalance . 28
3.3.3 Vectorization . 31

4 ANALYSING THE PERFORMANCE OF THE SpVKP ALGO-
RITHM . 33

4.1 Execution Environment . 33
4.2 Performance Analysis . 33
4.2.1 Execution Time . 33
4.2.2 L1 Cache behavior . 33
4.2.3 Analysing the access pattern . 34
4.3 Optimizing the SpVKP algorithm . 36
4.3.1 Data storage . 36
4.3.2 Vectorization . 37
4.3.2.1 SpVKP Vectorized . 37
4.3.2.2 Exploiting Shuffle operations . 40

CONCLUSIONS . 41

REFERÊNCIAS . 42

12

INTRODUCTION

Matrix Algebra is widely used in a large number of applications across several fields of
Science and Technology [1, 2, 3]. From the most basic elementary matrix multiplications,
to more sophisticated matrix operations, they are used for modelling complex physical and
digital systems [4, 5]. In the recent decades, a prominent matrix multiplication, known as
Kronecker Product, is receiving extra attention from scientists of different areas [6] due
to its potential to help the modelling of complex systems.

An important application to the Kronecker Product appears with use of Stochastic
Automata Networks for performance modelling issues associated with distributed and
parallel computer systems [7]. Several systems have been developed for solving the as-
sociated Markov models [8, 9]. Algorithms and implementations that solve VKP are an
important tool to these models [10, 11].

The Kronecker product is defined as a block matrix formed with a special multipli-
cation between two matrices [12]. The complexity of forming the kronecker matrix from
N matrices of size ni is defined as (

∏N
i=1 n

2
i). This complexity can make the matrix

construction prohibitive.
In order to reduce the complexity of the matrix construction, some works use a different

approach for computing the VKP. Instead of building the full matrix, they exploit the
normal factor property in order to multiply each matrix individually [10].

In this work, we propose an in-depth study of the performance of two versions of the
VKP proposed in [10]: one that uses full matrices as input, called VKP, and one that uses
sparse matrix as input, called SpVKP. The performance study focus on the impact of the
size and quantity of matrices on the cache memory behavior. Based on this performance
study, we propose some optimizations to the two implementations. We improve the data
access, and exploit vectorization of the most important loop. For VKP, we also study a
parallel implementation and proposed a more efficient load balancing scheme.

We evaluated VKP and SpVKP using different input matrices, each input consists of
a number N of matrices with the same size ni. For VKP, we observed that, since this
is a memory bound application, the optimization on the data access produced significant
performance gains for large input matrices. The optimization proposed for balancing
the load of the parallel application greatly reduced the imbalance of memory accesses
among the threads and provided up to 3.9 of speedup. The vectorization also provided
performance gains with speedups around 2.5.

For sparse matrices, we observed that SpVKP is consistently faster than VKP. We
noticed a dynamic data access pattern during our performance analysis, which means that
the memory behavior changes during the execution of each experiment. This changing
pattern caused a memory access stride, that is the main focus of our optimizations for this
algorithm. The data access optimization had no beneficial impact on the performance.
The vectorization of the code was capable of increasing the performance of SpVKP for all
input data.

This Dissertation is organized in the following chapters:

13

• Chapter 2 covers the background for this work, where we presented the definitions
for the Kronecker product, the vector-kronecker product multiplication and the
algorithms to compute the vector-kronecker product multiplication

• Chapter 3 consists of all the experiments performed using the VKP algorithm. This
includes, the memory behavior investigation and all the optimizations performed in
the original code.

• Chapter 4 details our efforts analyzing and optimizing the SpVKP Algorithm. This
includes a detailed access pattern analysis and the performance optimization expe-
riments.

• Chapter 5 concludes our work and shows possible future works that could be followed
from this.

14

1 BACKGROUND

In this chapter we define the Kronecker product, the Vector-Kronecker Product Mul-
tiplication (VKP), and the Sequential and Parallel algorithms to compute the VKP.

1.1 Kronecker product

A vital mathematical operation that gained considerable importance throughout the
years and is currently used in several different applications [11, 3] is the kronecker product,
or tensor product of two matrices. This multiplication is defined for two matrices of any
arbitrary sizes and results in a block matrix [13].

The Kronecker product of two matrices A ∈ Rna×ma and B ∈ Rnb×mb is denoted by
A⊗B and defined as the following ∈ Rnanb×mamb matrix:

A⊗B ≡

a11B . . . a1nB
...

am1B . . . amnB

Taking two matrices, for instance,

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

B =

[
b11 b12 b13
b21 b22 b23

]

The kronecker product M = A⊗B is as follows:

a11b11 a11b12 a11b13
a11b21 a11b22 a11b23

a12b11 a12b12 a12b13
a12b21 a12b22 a12b23

a13b11 a13b12 a13b13
a13b21 a13b22 a13b23

a21b11 a21b12 a21b13
a21b21 a21b22 a21b23

a22b11 a22b12 a22b13
a22b21 a22b22 a22b23

a23b11 a23b12 a23b13
a23b21 a23b22 a23b23

a31b11 a31b12 a31b13
a31b21 a31b22 a31b23

a32b11 a32b12 a32b13
a32b21 a32b22 a32b23

a33b11 a33b12 a33b13
a33b21 a33b22 a33b23

Now let us consider four different matrices M,N,P,Q of compatible orders. Let us also

define In the identity matrix of order n. We have the following properties of the kronecker
product:

Associativity:

M ⊗ (N ⊗ P) = (M ⊗N)⊗ P (1.1)

Distributivity with respect to the addition of matrices:

M ⊗ (N + P) = (M ⊗N) + (M ⊗ P) (1.2)

15

Relationship between the kronecker product and ordinary matrix product

(M ×N)⊗ (P ×Q) = (M ⊗N)× (P ⊗Q) (1.3)

Compatibility with ordinary matrix inversion

(A⊗B)−1 = A−1 ⊗B−1 (1.4)

Compatibility with ordinary matrix transposition

(A⊗B)T = AT ⊗BT (1.5)

Factorization

A⊗B = (A⊗ Ina)× (Inb ⊗B) (1.6)

By using Equation 1.1, it’s possible to define a Kronecker product of N matrices A(i)

of size ni × mi, i = 1,2,...,N , denoted by ⊗N
i=1A

(i) which is a matrix of size
∏N

n=1 ni ×∏N
n=1mi. [10]
As can be seen above, the Kronecker product can be a considerable challenge to

properly handle for both its size and complexity, in an attempt to turn ⊗N
i=1A

(i) into a
more manageable operation, it’s necessary to take all matrices A(i) to be square matrices
of order ni, i = 1,2,3,....N , this step followed by the use of Equation 1.6, it is possible to
write,

⊗N
i=1A

(i) =
N∏
s=1

(In1 ⊗ ...⊗ Ins−1 ⊗ As ⊗ Ins+1 ⊗ · ⊗ InN) (1.7)

also important to mention that the ordinary matrix operation denoted by
∏N

n=1 is com-
mutative for this special set of factors.

1.2 Vector-Kronecker Product Multiplication

One important operation in tensor algebra is the multiplication of a vector by the kro-
necker product. As mentioned in the previous section, it can be difficult to construct the
kronecker product matrix and some steps are taken in order to compute the multiplication
without building the matrix.

Let us takeN square matrices Ai of order ni and a vector x ∈ R1×L where L =
∏N

n=1 ni.
Our interest is to compute the product,

z = x⊗N
n=1 A

(i) (1.8)

The construction of the matrix ⊗N
n=1A

(i) to perform the multiplication 1.8 would take
a large amount of space-memory in a computational environment, where the order of
this matrix is (

∏N
n=1 ni)

2. In addition, the naive approach in building it would yield a
prohibitive complexity.

Considering N square matrices A(i) of order ni, i = 1,2, · · · ,N a naive computation of
the matrix-vector product yield

(
N∏
i=1

ni)
2 (1.9)

16

floating-point multiplications. Using the recurrent approach with the so-called normalfactor,
this complexity drops down to

(
N∑
i=1

ni)× (
N∏
i=1

ni). (1.10)

If we consider the case of equal size matrices, i.e. ∀i ∈ {1,2, · · · ,n} ni = n, the optimal
complexity becomes

(Nn)× (nN) = NnN+1 (1.11)

The number of memory accesses is proportional to the floating-point operations (flops)
complexity. However, the sustained performance (effective running time) will depend on
the memory access pattern, which depends on the scheduling of the generic computing
loop and how the storage is managed between the steps of the main loop.

In our experimental investigations, we might look for scenarios with nearly equivalent
complexity. For this reason, we compute in the table 1 the values of the complexity for
different scenarios.

N
ni 2 4 6 8 10 12 14 16 18 20

10 2.1 ∗ 104 4.2 ∗ 107 3.6 ∗ 109 8.6 ∗ 1010 1.0 ∗ 1012 7.4 ∗ 1012 4.1 ∗ 1013 1.7 ∗ 1014 6.4 ∗ 1014 2.1 ∗ 1015
12 9.8 ∗ 104 8.1 ∗ 108 1.6 ∗ 1011 6.6 ∗ 1012 1.2 ∗ 1014 1.3 ∗ 1015 9.5 ∗ 1015 5.4 ∗ 1016 2.5 ∗ 1017 9.8 ∗ 1017
14 4.6 ∗ 105 1.5 ∗ 1010 6.6 ∗ 1012 4.9 ∗ 1014 1.4 ∗ 1016 2.1 ∗ 1017 2.2 ∗ 1018 1.6 ∗ 1019 9.4 ∗ 1019 4.6 ∗ 1020
16 2.1 ∗ 106 2.7 ∗ 1011 2.7 ∗ 1014 3.6 ∗ 1016 1.6 ∗ 1018 3.5 ∗ 1019 4.9 ∗ 1020 4.7 ∗ 1021 3.5 ∗ 1022 2.1 ∗ 1023
18 9.4 ∗ 106 4.9 ∗ 1012 1.1 ∗ 1016 2.6 ∗ 1018 1.8 ∗ 1020 5.7 ∗ 1021 1.1 ∗ 1023 1.4 ∗ 1024 1.3 ∗ 1025 9.4 ∗ 1025
20 4.2 ∗ 107 8.8 ∗ 1013 4.4 ∗ 1017 1.8 ∗ 1020 2 ∗ 1022 9.2 ∗ 1023 2.3 ∗ 1025 3.9 ∗ 1026 4.6 ∗ 1027 4.2 ∗ 1028

Table 1 – Complexity comparison

1.3 The VKP Algorithm

In [10], Tadonki and Philippe proposed a sequential and parallel implementation of the
VKP algorithm. The sequential implementation essentially computes the multiplication
of a vector by a kronecker product of matrices, this principal matrix is usually very large
and known as descriptor. The descriptor is never completely formed and instead the
algorithm performs all the computations using the smaller matrices that form it.

One version of the sequential algorithm is shown in Algorithm 1. The inputs are: N
matrices Ap of size np × np and a vector X of size

∏N
p=1 np. These matrices are used one

at a time and which matrix being used is controlled by the outermost loop in line 4. In
order to perform all computation for each said matrix, the algorithm takes specific chunks
of the main vector V and uses them in the computations, we control the indexes of these
specific elements of the vector V with the loops from line 6 and line 7 which we store in
our much smaller auxiliary vector U or size ns in line 8 and 9.

The computations are performed in the two innermost loops which start at line 11
and end at line 16. The computations can be understood as the dot product between the
vector U and the current matrix As, these will be done for each chunk of V selected in
line 8 and 9 and updated back to the main vector at line 15, which is why it is saved in
U.

17

Algorithm 1: Vector-kronecker product multiplication
1 V ← X
2 L ←

∏N
p=1 np

3 r ← 1
4 for s← N to 1 do
5 l ← L/ns

6 for k ← 1 to l do
7 for i← 1 to r do
8 for t← 1 to ns do
9 U [t]← V [((k − 1) ∗ ns + t− 1) ∗ r + i]

10 end
11 for j ← 1 to ns do
12 for t← 1 to ns do
13 scal ← scal + A(s)(t,j) ∗ U [t]
14 end
15 V [((k − 1) ∗ ns + j − 1) ∗ r + i] ← scal
16 end
17 end
18 end
19 r ← r ∗ ns

20 end
21 Z ← V

1.3.1 Shared Memory Parallel Implementation

The shared memory parallel implementation of this algorithm mainly focuses on paral-
lelizing the loop at line 6. The idea is to split equally the computation among the threads,
which correspond to the computation of the recursive step s with A(s). This approach
has no communications between processors. This algorithm has an inefficiency, where the
loops at line 6 and 7 will cause load imbalance among the threads as the loop in line 4
progresses. This is due to the fact that as the execution progresses, l will become smaller
and r will become bigger. For the very last matrix, l should be 1 and the execution will
be essentially sequential.

18

Algorithm 2: Parallel Vector-matrix multiplication
1 V ← X
2 L ←

∏N
p=1 np

3 r ← 1
4 p ← num_threads
5 for s← N to 1 do
6 l ← L/ns

7 #pragma omp parallel for
8 for k ← 1 to l do
9 for i← 1 to r do

10 for t← 1 to ns do
11 U [t]← V [((k − 1) ∗ ns + t− 1) ∗ r + i]
12 end
13 for j ← 1 to ns do
14 for t← 1 to ns do
15 scal ← scal + A(s)(t,j) ∗ U [t]
16 end
17 V [((k − 1) ∗ ns + j − 1) ∗ r + i] ← scal
18 end
19 end
20 end
21 r ← r ∗ ns

22 end
23 Z ← V

1.4 The Sparse VKP Algorithm

A matrix is considered sparse if many of its elements are zero or in a more general
definition, we can consider any matrix to be sparse if its zero elements can be exploited
to save computational power[14].

While the algorithm in 1.3 is capable of performing the Sparse Kronecker product-
vector multiplication (SpVKP) for any type of matrix, it is not designed to take sparsity
in consideration. This means that a large number of trivial multiplications might be
performed unnecessarily when the matrix is sparse. In [10], Tadonki and Philippe also
proposed an implementation that takes matrix sparsity into account, minimizing the
amount of multiplications performed.

The SpVKP algorithm has some differences to the original VKP, the most important
one being its possibility of only performing non-zero multiplications. This is done by
adding an IF statement that allows the algorithm to avoid all zero elements in the ma-
trices. In order to perform an IF statement before accessing the matrix elements, some
modifications were necessary on the algorithm. The VKP algorithm builds U with conti-
guous parts of V , and performs a dot product of U with A. When the matrix is sparse,
this operation should be performed differently to avoid the waste of memory space and
unnecessary computation with zero elements. In SpVKP, the auxiliary vector U has to
have the same size as V since the elements to be computed are not contiguous. For this
reason, the dot product of U and A is not performed anymore. The algorithm performs
the multiplication of each non-zero element. In addition, SpVKP needs to define the

19

indexes of the non-zero elements A that will be computed, and the correspondent indexes
in V and U for these elements.

The sequential version of this algorithm is shown in Algorithm 3. The inputs are: N
matrices A(p) of size np × np and a vector X of size

∏N
p=1 np. The first for loop, that

iterates over s in line 3, chooses which matrix is currently being used to perform the
multiplication. Both the main vector and the auxiliary vector are initialized in lines 4
and 5. In line 1 r is initialized and m is initialized with the size of the main vector. m and
r are the control variables for the innermost loops and limit the data access pattern, they
are updated in lines 6 and 19, respectively. In line 12, we define the index that maps all
of the vectors’ positions that can be updated by every element of the matrix A(p) which
is iterated by the loops in line 7 and 8. In line 12, we define the expression for that index
of all vectors’ positions that can be updated for each element of the matrix.
Algorithm 3: Sparse Vector-kronecker product multiplication
1 r ← 1
2 m ←

∏N
p=1 np

3 for s← N to 1 do
4 U ← X
5 V ← 0
6 m ← m/ns

7 for t← 1 to ns do
8 for j ← 1 to ns do
9 if A(s)(i,j) 6= 0 then

10 for k ← 1 to m do
11 for l← 1 to r do
12 i ← l + (j − 1)× r + (k − 1)× r × ns

13 V [i] ← V [i] + A(s)(t,j)× U [i+ (t− j)× r

14 end
15 end
16 end
17 end
18 U ← V
19 r ← r ∗ ns

20 end
21 Z ← V

20

2 RELATED WORKS

The vector-kronecker product multiplication has been widely used and studied in se-
veral different applications within different areas. This chapter presents previous research
related to the kronecker product.

2.1 The Kronecker product and formalism

The rudiments of classical tensor algebra first appearance dates from the middle of the
XIX century [15]. However, only recently it has gained its popularity among researchers
and has been brought to the spotlight. Most recently, it has received a more general
formulation, in the Generalized Tensor Algebra, which extends the definition of elements
to include functional elements. These can be understood as function evaluated in R
according to a set of parameters composed of the rows of one or more matrices [16]. The
work by Van Loan [17] offers a diverse variety of models and well-known problems related
to the kronecker product in different fields of research. Their work confirms a clear growth
in the number of applications for the kronecker product.

The work by Brenner et al. [3] focuses on mathematical formalism and presents a
concise comparison between Generalized Tensor Algebra(GTA) and classical Kronecker
modeling of Stochastic Automata Networks. This comparison is justified by a considerable
gain in both memory efficiency and lower CPU usage when using GTA formalism.

Dayar and Orhan [12] work is primarly based into optimizing the execution of the
shuffle algorithm used in vector-kronecker product multiplication, which was proposed in
order to improve the data locality of the algorithm. This optimization is done by proposing
a modified version of the algorithm to reduce the number of FLOPS performed, this is
accomplished by focusing the computation on the nonzero structure of the matrices and
thus trying to avoid FLOPS that use zero rows and columns of these matrices.

2.2 Memory Optimization for the Kronecker product

An important application of the tensor algebra is its use in modeling Continuous Time
Markov Chains(CTMC). In CTMC, the kronecker product takes the role of the generator
matrix of the markov chain and thus holding all information regarding the system.

Buchholz et al [18] work presents a number of different algorithms for solving vector-
kronecker multiplication problems. The algorithms are focused on reducing the amount
of operations performed and the memory usage, by exploiting the sparsity of the matrices
in the Kronecker products. Whenever this sparsity is not present, the algorithm will not
perform as well as the original shuffle algorithm, most because the extra steps taken will
not return any relevant results.

The work by Benoit et al [11] proposes a new algorithm that tries to reduce the memory
cost of operating large kronecker product. The algorithm focuses on refining the size of
the main vector by removing elements of value equal to zero. This approach allows to

21

handle even larger systems and models. It’s important to mention that, due to its refining
and necessary reordering, the algorithm has a higher computational cost when compared
to the original shuffle algorithm, when the amount of unnecessary computations is small.

The latest work by Buchholz et al [1] introduces a new technique for storing solution
vectors by using a modern tensor representation called Hierarchical Tucker Decomposi-
tion (HTD), which paired with some truncation methods is capable of reducing memory
requirements of a vector-kronecker product modelled system and also increasing its time
efficiency.

2.3 Parallelization of the vector-Kronecker product multiplication

For large models, the processing time of the vector-Kronecker product multiplication
can become considerably high. In this situation, parallel processing can be useful to
reduce the computational time and exploit the large availability of parallel machines.

Dolev and Rosen [2] work presents a fully working system for calculating the kronecker
product using optical apparatus, where a set of lasers, filters and sensors replace the
common silicon processor. This work shows an important step into the diversification of
solutions to well known mathematical problems, while still in early stages of development.
This appears as exciting news for future of computers. It’s interesting to mention that
the presence of parallel architecture in such a recent technique confirms the importance
of utilizing parallel models and formalism on our current studies.

Tadonki and Philippe [10] work shows shows the fundamental mathematical reasoning
and groundwork on which the majority of our work is based on. The main difficulty while
solving kronecker product problems is handling the large dimensions of the result matrix.
They presented a recurrent algorithm that is capable of performing the vector-kronecker
product multiplication by only calculating simple inner products of much smaller porti-
ons than the massive result vector. The most important aspect of his work is the parallel
algorithms, with two different different approaches. The first one uses the shared-memory
model and avoids the communication overhead, but limits itself to a smaller amount of
processors. The second approach uses the message passing model and includes commu-
nication among processors, this allows the use of a larger amount of processors. The
tradeoff in this approach is that the communication overhead can hinder the scalability
of the method.

Tadonki latest work [19] proposes an algorithm to allow the vector-kronecker product
multiplication to be calculated in large hybrid supercomputers with several nodes, avoi-
ding redundant work to be performed. The focus of this work is the optimization of
the communication among processors. The work presents an heuristic algorithm to cons-
truct an optimal topology for processors communication, that increases the scalability
of the computation of his previous paper. It’s important to mention that in this paper,
this implementation uses a hybrid parallelization with the shared memory model on the
computation nodes, allowing further improvement in the scalability.

Our work is based on these two last papers [10, 19] and extend them. Since the shared
memory algorithm plays an important role in reducing the execution time, our goal here
is to properly understand the cache usage and employ different optimization techniques
to further reduce the computational cost of the problem.

22

3 ANALYSING THE PERFORMANCE OF THE VKP ALGORITHM

This chapter presents the performance analysis of the VKP algorithm and the opti-
mizations proposed based on this performance analysis. For each optimizaton, we show
the performance gains obtained.

3.1 Execution Environment

The experiments were performed on a Intel Core i7 930 with 8Gb of RAMmemory run-
ning Ubuntu 16.04 LTS linux distribution. They consist of operating a vector-kronecker
product multiplication with two square matrices of different order ni. The implementation
of the algorithm proposed in [10] was done in C. We compiled it with gcc version 5.4 using
the optimization flag -O3, but we compare the use of -O3 and -O0 flags in section 3.2.3.
We collected the L1 Data Cache accesses and hit rate using the Performance Application
Programming Interface (PAPI) library [20] that accesses hardware performance informa-
tion through a set of Performance Monitoring Counters. For the parallel environment,
the Intel Core i7 930 has 4 physical cores.

3.2 Memory behavior of the VKP algorithm

In this section, we present a set of preliminary experiments on the cache behavior of
Tadonki and Philippe [10].

3.2.1 L1 Cache Hit Ratio

Figure 1 shows the values of L1 hit ratio for different matrix sizes, N varies in N =
{2, 4,6,...1000}. We can observe in this figure a considerable drop in the cache hit ratio
when the matrices sizes are roughly bigger than 330×330. The detailed explanation of
this drop is related to the inner loop of the algorithm and the hardware prefetching
mechanisms.

Figure 1 – L1 Hit ratio for increasing matrix sizes

23

The L1 data cache of the Intel Core i7 930 is a 8-way set associative with 32KB size,
dividing this number by size of a float element, 4 bytes, the maximum amount of floats
that can be stored in the cache is 8192. The cache line size is 64 bytes thus can store 16
float elements. Intel processors have two types hardware prefetchers for the L1 cache [21].
The L1 hardware prefetchers are called Data Cache Unit (DCU). The first prefecther,
called DCU, fetches the next cache line into the L1 data cache. The second prefetcher,
called DCU IP, recognizes the load history (based on the Instruction Pointer of previous
loads), and this way it can determine whenever to prefetch additional lines with a stride.

The two innermost loops of the Kronecker product are shown in Figure 2. They
comprise the multiplication of the vector U of size n with the matrix A of size n × n.
From these two loops, the innermost one comprises a inner product between V and Aj,
where Aj is the column j of matrix A. The majority of the cache accesses are concentrated
on this innermost loop. In this way, the analysis of the L1 cache behavior focuses on the
accesses of the three variables U , A and scal inside this loop. The values of U and scal
always fit in L1 for any n ≤ 4000. For values of n ≤ 90, the whole matrix A also fits in the
L1 cache. For values of n > 90, the cache performance depends heavily on the hardware
prefetching mechanisms, because A would not fit completely into the L1 data cache.

In the innermost loop of the Kronecker product, A is accessed by columns. The
problem is that A is stored by rows in the main memory. So, for each element A[i,j]
that generates a cache miss, the miss brings sixteen elements of a row of A in the cache
line A[i,j], A[i,j + 1], A[i,j + 2], ..., A[i,j + 15]. In addition the DCU prefetcher brings
the next cache line, which comprises A[i,j + 16], A[i,j + 17], A[i,j + 18], ..., A[i,j + 31].
If the DCU IP prefetcher can detect the access pattern of columns of A, it will bring
in advance the cache line that contains A[i + 1,j], this cache line will bring to L1 the
values of A[i + 1,j], A[i + 1,j + 1], A[i + 1,j + 2], ..., A[i + 1,j + 15]. When N is smaller
than 330, what happens is that the values brought in advance will stay on the cache, and
when the column j + 1 is accessed it won’t generate misses, since they were brought in
advance in the cache lines already prefetched. For N = 330, when column j is accessed,
the DCU prefetcher brings two cache lines for each access, which will bring a total of
330 × 32 = 10560 elements for the whole column, and this would exceed the cache size.
So, the access of element A[i,j+1] will generate a miss, since it is not stored in L1 anymore.
This explain the drop in the curve after N reaches 330. For values greater than 330, for
each access to A[i,j] that generates a miss, the DCU IP prefetcher will bring A[i + 1,j].
After that, A[i + 2,j] will generate a miss and bring A[i + 3,j], and so on. In this way,
half of the column accesses will generate misses. Since the column accesses represent 1

3
of

the L1 accesses inside the innermost loop, the algorithm will generate around 1
6
of faults,

which gives a hit rate around 80%, as shown in the graph.

3.2.2 Cache Hit Ratio and Execution Time

In order to evaluate how the execution time of the vector-kronecker product is affected
by the L1 cache hit ratio, we performed a set of experiments varying the matrices sizes
and also varying the number of matrices. The idea is to vary the size of the problem,
but maintaining roughly the same the number of memory accesses, this is done by using
different input data that has a similar flops complexity. Table 2 shows the flops complexity
for this set of input data, where N is the number of matrices and n the size of each matrix.

Table 3 shows for each matrix size and number of matrices, the L1 cache hit ratio, the
execution time (in seconds), and the number of cache accesses. This set of experiments

24

Figure 2 – The two innermost loops of the kronecker product proposed in []

n N flops complexity (1010)
4 14 1.5
7 10 2.0
11 8 1.9
23 6 2.0
290 3 2.1
2000 2 1.6

Table 2 – FLOPs complexity comparison

had the objective of showing that for a similarly complex experiment, the fact that using
matrices larger than 330 has a low hit ratio when compared to several matrices of the same
size, thus results in a higher execution time. For this set of experiments, the matrices
used for the same execution are of the same size, this means that the number of memory
accesses for these experiments is roughly given by 3×N × nN+1, where N is the number
of matrices and n is the size of each matrix.

ni N hit ratio time(s) Memory accesses (109)
4 14 0.995508 25.031210 52
7 10 0.997272 26.661678 65
11 8 0.998218 23.418367 61
23 6 0.999068 23.707775 64
290 3 0.949813 28.200697 64
2000 2 0.642100 131.148971 64

Table 3 – L1 hit ratio, execution time and number of accesses for different matrix sizes
and number of matrices that provide similar amount of computation

3.2.3 Impact of the Optimization Flags

We also evaluate the impact of the optimization flags in the cache behavior. We made
the same experiments as the ones in Section 3.2.2 but using also the optimization flag

25

-O0. Table 4 shows the hit ratio, execution time and number of accesses for the same
matrices as Table 3 for both the optimization flags -O0 and -O3.

Input Size -O0 -O3
ni N hit ratio time(s) # accesses(109) hit rate time(s) # accesses(109)
4 14 0.998923 104.06 220 0.995508 25.03 52
7 10 0.999253 115.72 240 0.997264 26.66 65
11 8 0.999468 101.51 208 0.998218 23.41 61
23 6 0.999702 101.07 203 0.999068 23.70 64
290 3 0.982493 102.64 194 0.949813 28.20 64
2000 2 0.856761 166.02 160 0.642100 131.14 64

Table 4 – Results using -O0 and -O3 flags

It’s interesting to point out that while the -O3 brought a decrease in the execution
time, it also caused a drop in the hit ratio for bigger matrix sizes. This behavior could
be explained by the -O3 changes to the code generated when compared to -O0. The
number of cache accesses reduced drastically from the -O0 implementation to the -O3
implementation, this can be explained by the loop unrolling technique used in the -03
optimization. With loop unrolling, there is no need for indexes access inside the loop.
Since the core of the algorithm consists of a nest of loops to compute the kronecker
product, if we avoid the accesses to the loop indexes we will reduce number of accesses
by roughly 35%. In other hand, by reducing index accesses, we reduce the number of hit
without reducing the number of misses and thus reducing our hit ratio. While the -O3
flag enabled auto-vectorization, according to the gcc report generated by our code, no
vectorization was done by the compiler.

Figure 3 shows two graphs, with different comparisons between both optimization
flags, where blue dots are for -O0 data and red dots are for -O3. Figure 3a shows the
hit ratio for different matrix sizes, similar to Figure 1. Figure 3b shows the number of
accesses to the data cache for different matrix sizes. In these graphs the experiments were
once again done with two square matrices of increasing size, N = 2,4,6,..., 1600 so we can
keep the loop structure constant.

(a) Hit Ratio (b) Number of Accesses

Figure 3 – Hit ratio and number of cache accesses for -O0 and -O3 flags

Figure 3a shows the hit ratio drop for both the -03 optimization and -O0 for values of
N > 330, as it was explained in Section 3.2.1. Figure 3b shows the increase in number of
accesses as the matrices size also increase.

26

3.2.4 Parallelization and Cache

In this section, we assess the impact of parallelization into the cache behavior. The
parallel implementation is based on the shared memory Algorithm 2 proposed by Tadonki
[10]. This implementation was executed with 4 threads in a 4-core processor.

Table 5 shows the L1 hit rate, time, number of accesses and the speedup for the
executions. In this experiment, the same input from the previous section was used.

The hit ratios in table 5 are roughly the same as in the the sequential version, this is
due the fact that each thread is pretty much independent from the others. As mentioned
in Section 1.3.1 this implementation has a load imbalance, caused by the outermost loops
from our Algorithm 2. The reason for this unbalancement is that the controlling variables
for these loops are dependant to the matrix being operated, causing the parallel loop to
decrease in size as the execution progresses.

ni N L1 hit ratio time(s) # accesses (109) Speedup
4 14 0.991617 7.693613 56 3.25
7 10 0.994701 9.093688 68 2.93
11 8 0.996490 8.149652 62 2.87
23 6 0.998020 8.793972 64 2.71
290 3 0.951355 15.478279 64 1.82
2000 2 0.568291 93.319208 64 1.4

Table 5 – Parallel experiment data

3.3 Optimizing the VKP algorithm

Based on the previous analysis of the memory behavior of the Kronecker product,
we performed some optimizations to the code in order to increase its performance. This
chapter presents these optimizations.

3.3.1 Optimizing the data access

As explained in Section 3.2.1, the innermost loop of the Kronecker product accesses a
matrix A by columns. The problem of accessing A by columns is that for N > 330, there
is a considerable drop in L1 hit ratio. Therefore, the first optimization made to the code
is to transpose A and perform the inner loop of the Kronecker product by row, instead
by column.

Figure 4 shows the L1 hit ratio of the optimized code as the matrices sizes increase.
We can observe in this graph an almost constant high L1 hit ratio, regardless of the
matrices sizes. The spike in the beginning of the graph, occurs because for N < 90, the
whole matrices and vectors fit in L1 (as explained in Section 3.2.1). The comparison of
this graph with the graph of Figure 1 shows that transposing A before computing the
Kronecker product produces a better L1 performance.

Table 6 shows the hit ratio, number of memory accesses and execution times for
the implementations accessing A by rows and by columns. We can observe that our
optimization was able to reduce the execution time of the Kronecker product, for all
matrices sizes. This reduction is more prominent for bigger matrices.

27

Figure 4 – L1 hit ratio for increasing matrices sizes

One interesting aspect of these results is that the implementation by rows could greatly
reduce the number of memory accesses of the algorithm. For N > 290, the memory acces-
ses of the implementation by row are half of the memory accesses of the implementation
by column. This was an unexpected result.

To explain this behavior, we went through the assembly code of both implementations.
We performed two small experiments and analyzed the assembly generated by gcc using
-O3 optimization flag. In the first experiment, we used N = 2 and ni = 16. Figures 5 and
6 shows the assembly code of the innermost loops of the Kronecker product when n = 16
for the implementation by column and by row, respectively.

Figure 5 shows that for N = 16, the compiler unrolls the innermost loop. In the code
we can observe 16 repetitions of the operation in (3.1).

scal = scal + A[i][j]× U [i] (3.1)

These operations are performed by 16 movss instructions to bring the matrix value
from memory to a xmm register, 16 mulss instructions to multiply the value of the matrix
(in xmm) to the vector element that is in a memory position, and 16 addss results to
accumulate the results. The compiler, however, put the instructions in a non-intuitive
order in order to take advantage of the pipelines. What we can observe in this code is
that, before the innermost loop, the compiler loads the matrix addresses into the registers
r8 to r15, rbx, rcx, rbp, rdi, rsi. So, inside the innermost loop, the addresses are not
computed. The problem is that, since there is not enough registers for all the addresses,
the compiler uses the stack pointer for some addresses as marked in the figure in the red
rectangles. So, for each execution of the innermost loop the implementation by column
requires 3 more accesses to the memory for accessing the stack.

On the other hand, we can observe in Figure 6 that the implementation by row does
not require the load of the matrix addresses to registers. Since the matrix is accessed by
row the compiler access it by increasing the offset to the matrix first element by 0, 4, 8,
16,...,60.

Memory accesses in the assembly code are the instructions where one of the operands
are registers between parenthesis. Counting the number of accesses of the two implemen-
tations, we obtain 16 accesses for the matrix, 16 accesses for the vector, 2 accesses for the
indexes summing up 34 accesses. The implementation by columns has 3 more accesses to
the stack, which produces roughly 10% more accesses. In this experiment, the number of
memory accesses for the implementation by row is 20922, while the number of accesses
for the implementation by column is 22891.

28

We also made a second experiment, where we used N = 2 and n = 32, in order to
investigate the memory accesses when there is not enough registers to hold the addresses
to the matrix. Surprisingly, the assembly code generated is completely different. Figures
7 and 8 show the assembly code for the innermost loops of the Kronecker product when
N = 32 for column and row implementations, respectively. These figures show that for N
= 32, the compiler uses less registers to build the loops. The innermost loop is no longer
unrolled. The loop is reduced to 3 instructions: one move, one multiplication and one
addition to perform the operation of (3.1), with two jne instructions defining the loop
limits.

Despite using less registers, the drawback for the column implementation is that it
requires one extra memory access for every loop repetition. The extra access is performed
in the movq instruction that brings the next matrix memory address to a register. So,
with one more memory access within the loop, the increase in the number of accesses in
the assembly code is roughly 50%. This experiment got 203693 memory accesses with the
column implementation and 140222 memory accesses with the row implementation.

Input Size Access per row Access per column
ni N hit ratio time(s) # accesses (109) hit ratio time(s) # accesses (109)
4 14 0.993969 23.33 40 0.995508 25.03 52
7 10 0.996295 25.38 48 0.997264 26.66 65
11 8 0.999468 21.75 44 0.998218 23.41 61
23 6 0.999702 22.19 44 0.999068 23.70 64
290 3 0.982493 21.51 43 0.949813 28.20 64
2000 2 0.856761 16.91 32 0.642100 131.14 64

Table 6 – L1 hit ratio, number of memory accesses and execution times for the original
and optimized code

3.3.2 Load imbalance

As explained in Section 1.3.1, our parallel algorithm contains a load imbalance caused
by lines 5 and 19 of Algorithm 1. As the outermost loop progresses, the loops from line 6
and 7 will change. We propose here a solution to the this thread imbalance problem and
show this optimization.

Algorithm 4 shows our optimization for Algorithm 2 in order to improve the load
balance among the threads. In this optimization, we have to define two different parallel
regions, by using an IF statement, comparing the value of l and p, where p is the number
of available processors. Whenever l > p, our optimized algorithm will perform exactly
like Algorithm 2. However, when l < p the parallel region will change to a inner loop
allowing all processors to be used until the end of the execution.

29

Figure 5 – Assembly code for the innermost loops when N=16, accessing the matrices by
column

Algorithm 4: Optimized parallel Vector-matrix multiplication
1 V ← X
2 L ←

∏N
p=1 np

3 r ← 1
4 p ← num_threads
5 for s← N to 1 do
6 l ← L/ns

7 if (l > p) then
8 #pragma omp parallel for
9 for k ← 1 to l do

10 for i← 1 to r do
11 for t← 1 to ns do
12 U [t]← V [((k − 1) ∗ ns + t− 1) ∗ r + i]
13 end
14 for j ← 1 to ns do
15 for t← 1 to ns do
16 scal ← scal + A(s)(t,j) ∗ U [t]
17 end
18 V [((k − 1) ∗ ns + j − 1) ∗ r + i] ← scal
19 end
20 end
21 end
22 else
23 for k ← 1 to l do
24 #pragma omp parallel for
25 for i← 1 to r do
26 for t← 1 to ns do
27 U [t]← V [((k − 1) ∗ ns + t− 1) ∗ r + i]
28 end
29 for j ← 1 to ns do
30 for t← 1 to ns do
31 scal ← scal + A(s)(t,j) ∗ U [t]
32 end
33 V [((k − 1) ∗ ns + j − 1) ∗ r + i] ← scal
34 end
35 end
36 end
37 end
38 r ← r ∗ ns

39 end
40 Z ← V

30

Figure 6 – Assembly code for the innermost loops when N=16, accessing the matrices by
row

Figure 7 – Assembly code for the innermost loops when N=32, accessing the matrices by
column

Figure 8 – Assembly code for the innermost loops when N=32, accessing the matrices by
row

31

Tables 7 and 8 show the number of memory accesses, execution time and speedup for
both the unbalanced version and the optimized version of the code. The optimization
has greatly reduced the imbalance in terms of memory access and increased the speedup,
especially for the larger matrices.

Input Size Parallel Implementation Optimized Parallel Implementation
ni N thread ID # access (109) # accesses (109)
4 14 0 17 14
4 14 1 13 14
4 14 2 13 14
4 14 3 13 14
2000 2 0 40 16
2000 2 1 8 16
2000 2 2 8 16
2000 2 3 8 16

Table 7 – Number of memory accesses of the unbalanced version and the optimized
version of the code.

Input Size Sequential Parallel Optimized Parallel
ni N time(s) time(s) speedup time(s) speedup
4 14 25.03 7.69 3.25 6.5 3.85
2000 2 131.14 93.32 1.4 38.49 3.4

Table 8 – Execution time and speedup of the unbalanced version and the optimized
version of the code.

3.3.3 Vectorization

Another optimization that we implemented in the vector-kronecker product multipli-
cation is to exploit a feature that is very common in modern processors: the ability to
perform arithmetic operations in parallel using the vector processing unit.

According to a report generated by gcc, the compiler was unable to vectorize the
innermost loop of the Kronecker product. So, we implemented the operation of (3.1)
using the Intel SSE intrinsics low-level instructions, which allows for operations of 128-
bits variables. Our implementation uses single precision floats, thus all our vectorization
uses vectors composed of 4 float elements.

The innermost loop of the Kronecker product is essentially a dot product between a
vector U and one of the matrix columns, Aj.

Figure 9 shows our version of the vectorized dot product. It starts by defining four
special SSE variables called _m128, which is a vector variable with four 32-bits float.
The mm_load_ps instructions are used to load the vector variables with elements from
the vectors Aj and U , denoted in the code as a and b. Which means that the variables
num1 and num2 are respectively, portions of a and b. The mm_mul_ps instruction is used
to multiply two mm_128 variables and store the result in another mm_128 variable, each
element i of num3 will be ai × bi. The mm_hadd_ps instruction adds adjacent pairs of
elements inside the vector variables and stores the results in a new _m128.

32

1 void ccoldot_SP (f l o a t ∗Z , f l o a t ∗a , f l o a t ∗b , i n t n)
2 {
3 f l o a t tempcoldot = 0 . 0 ;
4 // Def in ing the vec to r r e g i s t e r s
5 __m128 num1 , num2 , num3 , num4 ;
6 // I n i t i a l i z i n g the r e g i s t e r num4 with 0
7 num4 = _mm_setzero_ps () ;
8

9 f o r (i n t i =0; i<n ; i+=4)
10 {
11 // Loading the r e g i s t e r s num1 and num2 with data from Aj and U
12 num1=_mm_load_ps(a+i) ;
13 num2=_mm_load_ps(b+i) ;
14

15 // Mult ip ly ing num1 and num2 (the f i r s t s tep o f the dot product) .
16 num3=_mm_mul_ps(num1 , num2) ;
17

18 // Sum of sub t o t a l s from the prev ious mu l t i p l i c a t i o n
19

20 num3=_mm_hadd_ps(num3 , num3) ;
21 num3=_mm_hadd_ps(num3 , num3) ;
22

23 // Stor ing r e s u l t s i n to a
24

25 num4=_mm_add_ps(num4 , num3) ;
26 }
27 _mm_store_ss(&tempcoldot , num4) ;
28

29 ∗Z = tempcoldot ;
30 }

Figure 9 – The innermost loop of the Kronecker product implemented using SSE
instructions.

Table 9 shows the execution time results for both the sequential and the vectorized
implementations. The performance gains are noticeable for all matrix sizes, and more
pronounced for larger matrices. The vectorized implementation uses the optimized version
where the matrix is accessed by rows, so part of the gains are due to the gains in memory
and cache accesses.

Input Size Sequential Implementation Vectorized Implementation
ni N time(s) time(s) speedup
4 14 23.33 14.10 1.77
8 9 13.10 5.53 2.37
24 6 31.18 11.16 2.79
2000 2 16.91 7.00 2.41

Table 9 – Experimental results of vectorization

33

4 ANALYSING THE PERFORMANCE OF THE SpVKP ALGORITHM

In this chapter, we show the performance analysis of the SpVKP algorithm. We also
show the optimization techniques proposed and analyze their peformance impact.

4.1 Execution Environment

To keep our results consistent with the analysis of VKP, all experiments for SpVKP
were performed in the same environment as specified in Section 3.1.

4.2 Performance Analysis

In this section, we present the performance of SpVKP compared to VKP. Since they
are both memory bound algorithms, we analize the cache behavior of SpVKP and how
its memory access pattern changes with different input.

4.2.1 Execution Time

Table 10 shows the execution time (in seconds) of SpVKP compared to VKP for
different sizes of N matrices (we used the same matrices sizes as in 3.3.3) with different
values of sparsity r. We can observe in this table that for almost all input data, the
SpVKP is considerably faster than VKP. We explain this performance results with the
memory behavior analysis.

Input Size VKP SpVKP
ni N r time(s) Hit Ratio # (109) time(s) Hit Ratio # (109)
4 14 0.06 19.19 0.994 40 4.29 0.926 6.2
4 14 0.12 19.29 0.994 40 6.12 0.925 8.5
4 14 0.25 19.22 0.994 40 9.91 0.923 13.4
8 9 0.08 11.71 0.992 23 2.82 0.914 3.2
8 9 0.15 11.65 0.992 23 4.86 0.910 5.3
8 9 0.21 11.67 0.992 23 6.42 0.909 7.0
24 6 0.06 30.39 0.982 60 9.22 0.874 7.4
24 6 0.16 30.38 0.982 60 22.80 0.870 17.0
24 6 0.21 30.35 0.982 60 29.68 0.869 22.4

Table 10 – Execution time of SpVKP compared to VKP

4.2.2 L1 Cache behavior

Table 11 shows the L1 hit ratio and the number of accesses to L1 performed (#) for
SpVKP and VKP, for the same input matrices as in Table 10. We can observe in this
table that for almost all input data, SpVKP performs only a fraction of the accesses of
the original VKP. Although the performance is improved using the SpVKP, the hit ratio
has a drop in all tests, which is likely the cause for the lack of performance gain in the
case with matrices of size 24 and sparsity 0.21. The hit ratio drop in SpVKP is explained
by its intricate memory access pattern.

34

Input Size VKP SpVKP
ni N r time(s) Hit Ratio # (109) time(s) Hit Ratio # (109)
4 14 0.06 19.19 0.994 40 4.29 0.926 6.2
4 14 0.12 19.29 0.994 40 6.12 0.925 8.5
4 14 0.25 19.22 0.994 40 9.91 0.923 13.4
8 9 0.08 11.71 0.992 23 2.82 0.914 3.2
8 9 0.15 11.65 0.992 23 4.86 0.910 5.3
8 9 0.21 11.67 0.992 23 6.42 0.909 7.0
24 6 0.06 30.39 0.982 60 9.22 0.874 7.4
24 6 0.16 30.38 0.982 60 22.80 0.870 17.0
24 6 0.21 30.35 0.982 60 29.68 0.869 22.4

Table 11 – L1 hit ratio and number of accesses for SpVKP and VKP

4.2.3 Analysing the access pattern

The access pattern of the SpVKP algorithm, presented in section 1.4, is defined by the
for loops of lines 10 and 11. These loops change their limits as the execution progresses.
This means that for each matrix we expect these loops to be different and thus the access
pattern will also be different. Our algorithm contains two different memory access strides
and these strides affects the cache behavior results depending on the size of the matrix
being used.

To better understand the effect of the stride on the cache behavior, let us consider
an example with a input matrix A of size 4, with only two non-zero elements marked as
red and blue circles in the matrix. The resulting vector is an array of size 16. Figure 10
illustrates the matrix A and the vectors V and U used in the multiplication. The element
marked in red in A is multiplied it by each red element in the vector U and added to the
red elements in vector V. This shows that for each access of a A(i,j), we have 4 accesses
in V and U , with a stride of 4 (the size of a row). Whenever the size of the matrix row
exceeds the size of the cache line, all the accesses in V and U will generate cache misses.
In the processor used in our experiments the cache line can hold at most 16 float elements.

Figure 10 – Data access pattern for s=2

On the following loop iteration (controlled by s), the stride of accesses changes in V
and U . We show it in Figures 11 and 12, where two different pairs of A elements are
considered. The elements accessed in V and U are contiguous. However, there is a stride
between the accesses of elements with different colors in V (for the example of Figure

35

11) or in U (for the example of Figure 12). In this case, for the accesses of the elements
that are contiguous, the bigger the matrix row, the better, since the algorithm take more
advantage of the whole cache line for the U and V accesses.

Figure 11 – Data access pattern for s=1

Figure 12 – Data access pattern for s=1

In our tests with matrices of size 24, there’s a noticeable drop in the hit ratio and
consequently, in the overall performance. For these larger matrices, the stride in the
beginning of the execution is very significant. Similarly to what can be seen in Figure
10 most accesses that happen for the first matrix are likely to be a miss. The majority
of the accesses happen in the innermost loop, where the multiplication is performed. If
we consider that most memory accesses performed while the first, out of six, matrix is
being operated are misses due to the pattern stride, the hit ratio drop is explained by this
stride.

36

4.3 Optimizing the SpVKP algorithm

4.3.1 Data storage

The SpVKP algorithm expects that the sparse input matrices are stored in the tra-
ditional matrix representation, with all the zero elements. One possible optimization of
the SpVKP algorithm is to avoid the IF statement (of line 9) by using a different storage
scheme for the sparse matrix. We used a storage scheme known as coordinate format
(CF) scheme.

The CF scheme consists of three arrays, AA, JR and JC, of size Nz, where Nz is the
number of non-zero elements of the matrix. The arrays contains:

• AA is a real array that holds all of the non-zero elements of the matrix A.

• JR is an integer array that holds the column index of each non-zero element.

• JC is an integer array that holds the row index of each non-zero element.

Algorithm 5 is the SpVKP algorithm adapted to implement the CF storage scheme,
that we call CF-SpVKP. In this algorithm the for loops that iterate over the matrix
elements (lines 7 and 8 of Algorithm 3) are replaced by a single for loop that iterates over
the position of the new array AA(s) (line 7 of Algorithm 5). With these changes, we do
not need to test each element because AA(s) contains only non-zero elements.
Algorithm 5: CF-SpVKP
1 r ← 1
2 m ←

∏N
p=1 np

3 for s ← N to 1 do
4 U ← X
5 V ← 0
6 m ← m/ns

7 for j← 1 to Nz do
8 for k← 1 to m do
9 Jz← JR(s)(j)− JC(s)(j)

10 for l← 1 to r do
11 i ← l + (JC(s)(j)− 1)× r + (k − 1)× r × ns

12 V [i] ← V [i] + AA(s)(j)× U [i+ Jz × r]

13 end
14 end
15 end
16 U ← V r ← r ∗ ns

17 end
18 Z ← V

We compared the original SpVKP algorithm with CF-SpVKP. In our tests, we consi-
dered that the input matrices were already stored in a CF scheme.

Table 12 shows the execution time (in seconds), the L1 hit ratio and the number of
accesses to the L1 (#) for both the SpVKP and the CF-SpVKP for different sizes of N
matrices with different values of sparsity r. The CF storage scheme increased the number
of accesses. This occurs because, of the accesses of the index arrays JC(s) and JR(s).
Despite the removal of the IF statement, no performance gain was observed, probably the

37

Input Size SpVKP CF-SpVKP
ni N r time(s) Hit Ratio # accesses (109) time(s) Hit Ratio # accesses (109)
4 14 0.06 4.29 0.926 6.2 4.35 0.926 7
4 14 0.12 6.12 0.925 8.5 6.34 0.924 10
4 14 0.25 9.91 0.923 13.4 10.30 0.923 16
8 9 0.08 2.82 0.914 3.2 2.91 0.913 4
8 9 0.15 4.86 0.910 5.3 5.22 0.910 7
8 9 0.21 6.42 0.909 7.0 6.76 0.909 9
24 6 0.06 9.22 0.874 7.4 9.39 0.875 9
24 6 0.16 22.80 0.870 17.0 23.16 0.870 22
24 6 0.21 29.68 0.869 22.4 30.62 0.868 29

Table 12 – Execution time and cache behavior of CF-SpVKP compared to SpVKP

branch prediction of the Intel processor is working well for SpVKP and the cost of the IF
statement is not that pronounced.

4.3.2 Vectorization

Another optimization performed on the SpVKP algorithm to improve its performance
is to exploit vectorization.

4.3.2.1 SpVKP Vectorized

In order to exploit the SIMD instructions present in our processor, the elements of
vector V and U should be accessed continuously. As explained in 4.2.3, after the first
matrix is operated, the accesses are continuous in V and U for the multiplication of
each matrix element. Therefore, we can vectorize the innermost loops using the SSE
instructions:

• _mm_load_ps is used to load four packed single-precision float elements into a
128-bit xmm register

• _mm_load1_ps is used to load one packed single precision float into all 4 positions
of the 128-bit xmm register

• _mm_mul_ps is used to multiply the contents of two packed single-precision in a
xmm register

• _mm_add_ps is used to add the contents of two packed single-precision in a xmm
register

• _mm_store_ps is used to store four packed single-precision float elements into the
specified memory address

Figure 13 shows the innermost loops of our code, a set of xmm registers are used to
store 4 packed single-precision float elements from each array U and V and add their
contents together after the the matrix-array multiplication.

Explicar as variáveis.
The Vectorized SpVKP algorithm was compared to SpVKP and the results are shown

in Table 13. This table shows the execution time (in seconds), the L1 hit ratio and the
number of accesses to the L1 (#) for both the SpVKP and Vectorized SpVKP using
different sizes ni of matrices N and sparsity r. The vectorization of the innermost loop
gave performance gains and decreases in the number of memory accesses.

The drop in the accesses can be explained by the usage of the _mm_load_ps instruc-
tion, which instead of loading a single element for every access, it loads 4. As expected,

38

1 // Innermost Loops o f the Vector i zed SpVKP code
2 f o r (i n t k=0;k<m; k++)
3 {
4 i n t p = (j ∗ r)+(k∗ r ∗matr ix_size) ;
5

6 f o r (i n t l=p ; l<p+r ; l+=4)
7 {
8 // I n i t i a l i z i n g xmm r e g i s t e r v a r i a b l e s
9 __m128 a , b , num1 , tmp ;
10

11 //Load array contents in to the xmm r e g i s t e r v a r i a b l e s
12 a=_mm_load_ps(V+l) ;
13 b=_mm_load_ps(U+(l +(t−j) ∗ r)) ;
14

15 //Load the matrix A elements f o r mu l t i p l i c a t i o n
16

17 tmp=_mm_load1_ps(&A[t] [j]) ;
18

19 //Perform the mu l t i p l i c a t i o n and sum of the data .
20 //∗∗ Refer to the SpVKP Algorithm f o r d e t a i l s
21

22 b=_mm_mul_ps(b , tmp) ;
23 num1=_mm_add_ps(a , b) ;
24 a=num1 ;
25

26 // Store the r e s u l t s back in to array V
27 _mm_store_ps(V+l , a) ;
28 }
29 }
30

Figure 13 – The innermost loop of the Kronecker product implemented using SSE
instructions.

Input Size SpVKP Vectorized SpVKP
ni N r time(s) Hit Ratio # accesses (109) time(s) Hit Ratio # accesses (109)
4 14 0.06 4.07 0.926 6.2 3.70 0.915 5
4 14 0.12 5.93 0.925 8.5 5.16 0.909 6.7
4 14 0.25 9.79 0.923 13.4 8.09 0.902 10
8 9 0.08 2.68 0.914 3.2 2.28 0.894 2.5
8 9 0.15 4.62 0.910 5.3 3.86 0.884 4
8 9 0.21 6.20 0.909 7.0 5.08 0.881 5.1
24 6 0.06 8.70 0.874 7.4 7.75 0.797 4.4
24 6 0.16 21.51 0.870 17.0 19.06 0.776 9.8
24 6 0.21 28.07 0.869 22.4 24.85 0.771 12.5

Table 13 – Execution time and cache behavior of Vectorizes SpVKP compared to SpVKP

this caused a higher impact on larger matrices due the fact that they will better exploit
the cache line, when compared to smaller matrices.

We observed that the hit ratio for Vectorized SpVKP has decreased when compared
to SpVKP. This occurs because the number of accesses is reduced, but the accesses that
were avoided were hit accesses as shown in Table 14. This table shows the number of
accesses and the number of L1 misses for both SpVKP and Vectorized SpVKP. This is
the reason why the performance gains of Vectorized SpVKP against SpVKP are small.

39

Input Size SpVKP Vectorized SpVKP
ni N r # misses (108) # accesses (109) # misses (108) # accesses (109)
4 14 0.06 4.5 6.2 4.2 5
4 14 0.12 6.4 8.5 6.1 6.7
4 14 0.25 10.3 13.4 9.8 10
8 9 0.08 2.8 3.2 2.6 2.5
8 9 0.15 4.8 5.3 4.6 4
8 9 0.21 6.4 7.0 6.1 5.1
24 6 0.06 9.3 7.4 8.9 4.4
24 6 0.16 2.2 17.0 2.1 9.8
24 6 0.21 2.9 22.4 2.8 12.5

Table 14 – Number of misses for Vectorired SpVKP and SpVKP.

40

4.3.2.2 Exploiting Shuffle operations

Going further into vectorizing SpVKP, we implemented the first loop of VKP (line 3
of Algorithm 3) in a different way. The first iteration is the one with the biggest access
stride. So, in this iteration we exploited shuffle operations to reduce the stride in the
acccesses. The other iterations are vectorized as in 4.3.2.1.

Due to our processor being an older model, we only have access to SSE instructions,
which limits our SIMD operations to xmm 128 bit registers. For this, we only performed
shuffling operations for matrices of size 4.

By loading the first 16 elements of V and U into 8 xmm registers we can shuffle
the contents of the vectors. The idea is to store continuously the elements that will be
accessed to multiply one element of A. Figure 14 shows an example of using the shuffle
to maintain the data continuous. The elements with the same color will be accessed
consecutively to perform a multiplication of one element of A, but they are not stored
continuous in memory. After two shuffle operations are performed, the elements that are
accessed consecutively are store continuously in memory. After shuffling the data, we
implemented the same vectorization scheme of the one presented in Section 4.3.2.1.

Figure 14 – Shuffle operations in the vector V and U

Input Size SpVKP Vec-Shuffle SpVKP
ni N r time(s) Hit Ratio # accesses (109) time(s) Hit Ratio # accesses (109)
4 14 0.06 4.07 0.926 6.2 4.91 0.899 5.7
4 14 0.12 5.93 0.925 8.5 6.2 0.895 6.9
4 14 0.25 9.79 0.923 13.4 8.65 0.891 9.5

Table 15 – SpVKP vs Vec-Shuffle SpVKP

Table 15 shows the time (in seconds), Hit ratio and number of accesses (109) for
both the SpVKP and the Vectorized Shuffled SpVKP (called Vec-Shuffle SpVKP). The
shuffle only brought an increase to performance for the matrices with sparsity 0.25, This
is due the lack of elements to exploit the shuffling for inputs with a smaller value of
r. Considering only 1/4 of the array’s elements will actually be used, most of the data
shuffled will not used. It is also important to take note that we had to unshuffle the arrays
once the multiplication was performed, so the data was correctly stored back in memory.

41

CONCLUSIONS

This work proposed an in-depth investigation of the performance of the VKP mul-
tiplication in terms of memory behavior and computational power. This investigation
considered two different algorithms for full (VKP) and sparse matrices (SpVKP). The
performance analysis focused on identifying possible optimizations that could reduce com-
putational cost and memory usage.

From this investigation, we proposed three optimizations to the original VKP algo-
rithm and two for the SpVKP algorithm.

For the VKP, the first optimization focused on changing the data access pattern in
order to improved the cache usage of the code. The second focused on reducing a load
imbalance present in the parallel implementation. The last one was to manually vectorize
the innermost loop. It was observed during our experiments that the compiler was unable
to auto-vectorize this loop.

We found that the load imbalance and the vectorization brought a significant improve-
ment to the execution time. The load imbalance was mostly removed for our set of input
data. The vectorization brought a significant increase to the code efficiency for different
the input sizes. The changes to the data access had impact on the performance only for
larger matrices. Anyhow, the access by rows reduce the number of memory accesses for
all cases.

For the SpVKP, the first optimization was to implement the algorithm using a different
storage scheme, called Coordinate format (CF), in order to avoid an IF statement in the
code that could cause branch prediction misses. This change did not caused any beneficial
impact on the results, causing the number of accesses to increase and thus the performance
to decrease.

We conclude that VKP and SpVKP are memory bound algorithms that are very sen-
sitive to memory oriented optimizations. Changing the data access pattern and manually
vectorizing the code could provide significant performance improvements.

For future work, we intend to improve the performance of VKP by exploiting the fine
grain parallelism of GPUs and using the more advanced AVX instructions for manual
vectorization.

42

Bibliografia

[1] Peter Buchholz et al. “On compact solution vectors in Kronecker-based Markovian
analysis”. Em: Performance Evaluation 115 (2017), pp. 132–149.

[2] Shlomi Dolev, Nova Fandina e Joseph Rosen. “Holographic parallel processor for
calculating Kronecker product”. Em: Natural Computing 14.3 (2015), pp. 433–436.

[3] Leonardo Brenner, Paulo Fernandes e Afonso Sales. “The need for and the advan-
tages of generalized tensor algebra for Kronecker structured representations”. Em:
International Journal of Simulation: Systems, Science & Technology 6.3-4 (2005),
pp. 52–60.

[4] Marco Enrıquez e Oscar Rosas-Ortiz. “Some applications of the Kronecker product
in Hubbard representation”. Em: Journal of Physics: Conference Series 538 (out. de
2014), p. 012007. doi: <10.1088/1742-6596/538/1/012007>. url: <https://doi.
org/10.1088/1742-6596/538/1/012007>.

[5] Len J. Sciacca e Robin J. Evans. “Multidimensional Inverse Problems in Ultrasonic
Imaging”. Em: Multidimensional Systems: Signal Processing and Modeling Techni-
ques. Ed. por C.T. Leondes. Vol. 69. Control and Dynamic Systems. Academic Press,
1995, pp. 1–48. doi: <https://doi.org/10.1016/S0090-5267(05)80037-4>. url:
<https://www.sciencedirect.com/science/article/pii/S0090526705800374>.

[6] Huamin Zhang e Feng Ding. “On the Kronecker Products and Their Applications”.
Em: Journal of Applied Mathematics 2013 (jun. de 2013). doi: <10.1155/2013/
296185>.

[7] Brigitte Plateau. “On the Stochastic Structure of Parallelism and Synchronization
Models for Distributed Algorithms”. Em: SIGMETRICS Perform. Eval. Rev. 13.2
(ago. de 1985), pp. 147–154. issn: 0163-5999. doi: <10.1145/317786.317819>. url:
<https://doi.org/10.1145/317786.317819>.

[8] William J. Stewart. Introduction to the Numerical Solution of Markov Chains. Prin-
ceton University Press, 1994. isbn: 9780691036991. url: <http://www.jstor.org/
stable/j.ctv182jsw5>.

[9] Bernard Philippe, Youcef Saad e William J. Stewart. “Numerical Methods in Markov
Chain Modelling”. Em: Operations Research 40 (1996), pp. 1156–1179.

[10] Claude Tadonki e Bernard Philippe. “Parallel Multiplication of a Vector by a Kro-
necker Product of Matrices (part II)”. Em: Parallel and Distributed Computing Prac-
tices 3.3 (2000).

[11] Anne Benoit, Brigitte Plateau e William J Stewart. “Memory-efficient Kronecker
algorithms with applications to the modelling of parallel systems”. Em: Future Ge-
neration Computer Systems 22.7 (2006), pp. 838–847.

[12] Tugrul Dayar e M Can Orhan. “On vector-Kronecker product multiplication with
rectangular factors”. Em: SIAM Journal on Scientific Computing 37.5 (2015), S526–
S543.

[13] Roger A. Horn e Charles R. Johnson. Topics in Matrix Analysis. Cambridge Uni-
versity Press, 1991. doi: <10.1017/CBO9780511840371>.

43

[14] I.S. Duff, A.M. Erisman e J.K. Reid. Direct Methods for Sparse Matrices. Mono-
graphs on numerical analysis. Clarendon Press, 1989. isbn: 9780198534211. url:
<https://books.google.com.br/books?id=rlX7tbJstpIC>.

[15] Harold V. Jemderson, Friedrich Pukelsheim e Shayle R. Searle. “On the history of
the kronecker product”. Em: Linear and Multilinear Algebra 14.2 (1983), pp. 113–
120.

[16] Leonardo Brenner, Paulo Fernandes e Afonso Sales. “Why you should care about
Generalized Tensor Algebra”. Em: 2003.

[17] Charles F Van Loan. “The ubiquitous Kronecker product”. Em: Journal of compu-
tational and applied mathematics 123.1-2 (2000), pp. 85–100.

[18] Peter Buchholz et al. “Complexity of memory-efficient Kronecker operations with
applications to the solution of Markov models”. Em: INFORMS Journal on Com-
puting 12.3 (2000), pp. 203–222.

[19] Claude Tadonki. “Large scale kronecker product on supercomputers”. Em: 2011 Se-
cond Workshop on Architecture and Multi-Core Applications (wamca 2011). IEEE.
2011, pp. 1–4.

[20] Philip J Mucci et al. “PAPI: A portable interface to hardware performance coun-
ters”. Em: Proceedings of the department of defense HPCMP users group conference.
Vol. 710. 1999.

[21] Krishnaswamy Viswanathan. Disclosure of Hardware Prefetcher Control on Some
Intel Processors. <https : // software . intel . com/content/www/us/en/develop/
articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html>. 2014.

