
Autotools for PIPS

Serge Guelton

September 2, 2024

Abstract

This document describes the new build infrastructure of PIPS, based
on the famous autotools suite and completes the PIPS developer guide.

It describes

• the meaning of each involved file 3;

• the installation process 4 for PIPS users and developers.

• the maintenance processes 5 for PIPS developers;

This new infrastructure allows better portability and quite faster (re)compiling
taking full advantage from some caching and multicore processors.

You can get a printable version of this document on
http://www.cri.ensmp.fr/pips/auto_pips.htdoc/auto_pips.pdf and a HTML
version on http://www.cri.ensmp.fr/pips/auto_pips.htdoc

1 Introduction

Building a large software like PIPS is quite complicated:

1. several source languages;

2. many tools involved;

3. unusual automatic header file generations.

If you want to ensure a good level of portability, you have to rely on portable
tools.

If you want to ensure a good level of maintainability, you have to rely on
external, asserted tools.

As PIPS targets *nix based systems and is written mainly in C, autotools
appear as a de facto standard. It is especially known for enforcing good portabil-
ity between MacOs, Linux and BSD. Through autoconf, it separate configuration
step from build step. Through gnulib, it ensures portability of non-standard C

functions.
As of now, PIPS compiles on Linux, BSD and MacOs Operating Systems. It

can be compiled using either gcc or icc.
You should notice that indeed PIPS has currently 2 different build process

that lives in parallel1, the GNU-make-based traditional infrastructure and this

1Of course it is logical for a parallelizer to have 2 build infrastructures that can be used
indifferently in parallel! , It is also useful for fault-tolerance.

1

http://www.cri.ensmp.fr/pips/auto_pips.htdoc/auto_pips.pdf
http://www.cri.ensmp.fr/pips/auto_pips.htdoc

new one based on autotools. In this way we can develop and improve the new
build infrastructure without hurting traditional users.

Besides better portability support, the autotools-based build infrastructure
is quite faster that the old one and can exploit available multiprocessors for
example on GNU-make when using the --jobs=... option to specify the number
of make process to use.

The nasty side effect of having 2 build methods is that, when adding new
stuff in PIPS, you should declare them in both build infrastructures to avoid
having different contents in PIPS according to the build infrastructure used. So
refer to the companion of this guide too, the PIPS Developer Guide http://

www.cri.ensmp.fr/pips/developer_guide.htdoc/developer_guide.pdf or
http://www.cri.ensmp.fr/pips/developer_guide.htdoc.

2 Prerequisites

In this section, we shortly list all packages needed to use auto-pips. Note that
those packages are only needed for developers, not for users:

• autoconf

• automake

• libtool

• pkg-config

3 Infrastructure Organization

In this section, we describe the configuration files used by the several tools
involved in PIPS build process.

3.1 autoconf

autoconf manages the configuration of the build process. Involved files are

configure.ac: central place for configuration. Running ‘autoreconf -vi‘ will
produce a configure script from it.

makes/m4: auxiliary directory where m4 configuration macros are stored. It is
read by ‘autoreconf‘.

Makefile.am: top-level Makefile.am contains a macro variable definition ACLOCAL AMFLAGS

where ‘autoreconf‘ will find its additional m4 sources. Running ‘autoreconf
-vi‘ will produce a Makefile.in for each Makefile.am

configure: is the portable configuration script generated by ‘autoreconf‘.
Running it will turn each Makefile.in into a regular Makefile.

config.status: is a script generated by configuration step, that memorizes
configuration parameters.

For in-depth documentation of autoconf, feel free to read http://www.gnu.

org/software/autoconf/manual.

2

http://www.cri.ensmp.fr/pips/developer_guide.htdoc/developer_guide.pdf
http://www.cri.ensmp.fr/pips/developer_guide.htdoc/developer_guide.pdf
http://www.cri.ensmp.fr/pips/developer_guide.htdoc
http://www.gnu.org/software/autoconf/manual
http://www.gnu.org/software/autoconf/manual

3.2 automake

automake manages the set of makefiles involved in the build process.
Each Makefile.am in source repository describes the build process for this

repository. It follows the ‘make‘ syntax, without needing GNU-make extensions
for the sake of portability.

For in-depth documentation of automake, feel free to read http://www.gnu.

org/software/automake/manual.

3.3 gnulib

gnulib manages portability of C functions across *nix flavors. Its whole con-
figuration is stored in src/Libs/gnulib and src/Libs/gnulib/m4. A few lines
have been added in configure.ac to manage gnulib configuration.

For in-depth documentation of gnulib, feel free to read http://www.gnu.

org/software/gnulib/manual.

4 Installation Processes

An automated script does all the nasty things for you if you want to install a
production version, that is to say copies of Linear, Newgen and Pips trunks.
Just begin by typing the following lines in the directory where you want your
production version to be installed (for instance ~/Pips4u/prod)

wget http://ridee.enstb.org/pips/get -pips4u.sh

chmod u+x get -pips4u.sh

./get -pips4u.sh --help

The last command displays all the options available for get-pips4u.sh. In partic-
ular, check the default value for the --prefix command (~/pips4u-0.1). This
is the directory where the libraries and executables are installed. If you also
want to work on development branches (strongly recommended), this may not
be convenient as you may want to have several versions available at the same
time. For that purpose, you can specify another installation directory with:

./get -pips4u.sh --devel --prefix ~/ Pips4u/prod/auto -root

or whatever location pleases you. Launching this script does (almost) everything
for you, from checking out PIPS sources to compiling and installing the libraries
and executables.

After installation, if you want to activate some extra PIPS modules such as
hpfc or pyps for instance, you can invoke:

cd ~/ Pips4u/prod/pips4u -0.1/ src/pips -0.1/ _build

./ config.status -V

The last commant gives you the options previously used for the configure. Then,
from the very same directory execute:

../ configure ... the same options ... --enable -hpfc --enable -

pyps

If you want to be able to run the validation, use the --enable-devel-mode option.
Beware that it also sets the compilation flags to -Wall -Werror -O0. After all
this you have to recompile and install by typing

3

http://www.gnu.org/software/automake/manual
http://www.gnu.org/software/automake/manual
http://www.gnu.org/software/gnulib/manual
http://www.gnu.org/software/gnulib/manual

make; make install

in the _build directory.
Now, you may also want a development branch. This is not automated, and

you have to do it by yourself. Here are some guidelines to achieve this.
First get your development area from svn (in ~/Pips4u/dev for instance), and

create a development branch:

svn co http://svn.cri.ensmp.fr/svn/pips/branches/luther dev

cd dev

svn cp http://svn.cri.ensmp.fr/svn/pips/trunk my -branch -name

svn commit my -branch -name

cd my-branch -name

Then you have to get the PATH, PKG_CONFIG_PATH and LD_LIBRARY_PATH values
used for the configure in your production building directory:

pushd ~/ Pips4u/prod/pips4u -0.1/ src/pips -0.1/ _build

./ config.status -V

popd

And perform the configure:

autoreconf -vi

mkdif _build

cd _build

../ configure --disable -static --prefix =~/ Pips4u/dev/my -

branch -name/auto -root PATH =... PKG_CONFIG_PATH =...

LD_LIBRAY_PATH =... --enable -devel -mode

where the ... stand for the values retrieved from the production environment,
and where you can add whatever –enable options you want.

At last, don’t forget to compile and then install in you development instal-
lation directory (here ~/Pips4u/dev/my-branch-name/auto-root).

In some cases, PIPS may be included in another distribution and you may
build PIPS differently. For example in Par4All, where only this autotools build
method is used, this is done by the Par4All installation process and you do not
need to care about the previous installation script.

5 Maintenance Processes

This section describes the process to follow when changing build infrastructure.

5.1 Adding a C source file in an existing PIPS library

Let us assume you want to add the file pips.c into library src/Libs/ri-util.
First make sure your source file includes pips configuration header, by adding

#ifdef HAVE_CONFIG_H

#include ” p i p s c o n f i g . h”
#endif

at the top of your source file, before any other include.
The only thing you have to do then is to add your file in the macro variable

suffixed SOURCES in src/Libs/ri-util/Makefile.am That is

4

libri_util_la_SOURCES=eval.c ... size.c

Becomes

libri_util_la_SOURCES=eval.c ... size.c pips.c

5.2 Adding a C header file in an existing PIPS library

Let us assume you want to add the file pips.h into library src/Libs/ri-util.
You will have to modify src/Libs/ri-util/Makefile.am Ask yourself the
question: Do I want to install the header file with the distribution ?

• If the answer is yes, add your file to the include HEADERS macro variable
in, or create it if it does not exist.

• If the answer is no, add your file to the dist noinst HEADERS macro
variable, or create it if it does not exist.

That is write something like this

include_HEADERS=pips.h

automake provides a fine grain control over what gets installed and dis-
tributed.

5.3 Adding a TEX file in an existing PIPS directory

Let us assume you want to add the file pips.tex into library src/Libs/ri-util.
You will have to modify src/Libs/ri-util/Makefile.am

First, beware that documentation is not built by default. It is only built
when user activates configure flags --enable-doc.

So everything you do in a makefile that is relevant to documentation must be
guarded by WITH DOC The automake variable for documentation is dist noinst DATA

for sources and doc DATA for output. That is

if WITH_DOC

dist_noinst_DATA=pips.tex

doc_DATA=pips.pdf

endif

In addition to this, you have to supply automake rules to build pdf from
TEX files, using the directive

include $(top_srcdir)/makes/latex.mk

if it is not already there.

5.4 Adding a library

This one is a bit more difficult. In the following, we assume you want to add
mylib into src/Libs.

There are many steps involved, follow them carefully:

1. create a directory mylib into src/Libs;

2. add mylib to the PIPS SUBDIRSmacro variable in src/Libs/Makefile.am;

5

3. add mylib/libmylib.la to the libpipslibs la LIBADD macro variable
in src/Libs/Makefile.am;

4. add following template in src/Libs/mylib/Makefile.am

TARGET = mylib

include_HEADERS = $(TARGET).h
BUILT_SOURCES=$(TARGET).h
include $(top_srcdir)/makes/cproto.mk
noinst_LTLIBRARIES=lib mylib.la

lib_ mylib _la_SOURCES= src0.c src1.c ... srcn.c

include $(srcdir)/../ pipslibs_includes.mk

Where

TARGET is used to avoid redundancy and to communicate with cproto.mk.

include HEADERS specifies that you want to distribute the header gener-
ated by ‘cproto‘.

BUILT SOURCES specifies that ‘cproto‘ generated header must be built
before anything else.

include $(top srcdir)/makes/cproto.mk specifies how to use ‘cproto‘.

noinst LTLIBRARIES specifies the name of local libraries.

lib mylib la SOURCES specifies the sources of your library.

include $(srcdir)/../pipslibs includes.mk sets preprocessor include
path correctly.

5. add src/Libs/mylib/Makefile to the AC CONFIG FILES(...) macro
function parameters in configure.ac;

5.5 Adding a program check

For uncommon build, one may need to depend on an extra program. Then
comes the distribution issue: how can we assert the program is installed on
user/developers machines ? First you have to ask yourself: Is the new feature
that depends on this program critical or not ? If not, you will add an optional
dependency. Otherwise it is a mandatory dependency.

You will basically add your check by filling a call to macro function AX CHECK PROG(prog name)

in configure.ac. This will perform the check for the program, trying to find
it in current $PATH or in env variable ${PROG NAME }.

The macro variable $(PROG NAME) will be available in your Makefile.am.
The last step is to attach the result of the check to a dependency. That way,

the configure will fail or not depending on the result of the check. To do so, you
will use the macro function AX DEPENDS(feature,list-of-dependencies).
If you have a mandatory dependency, add the name of the program to the
AX_DEPENDS([minimum],[...]) line. Otherwise, add it to the optional AX DEPENDS(...)

of your choice. To fully understand usage of AX DEPENDS(...), please read sec-
tion on passes5.6.

5.6 Adding a pass

2bedone

6

6 Additional Checks

automake generates a check rule for ‘make‘, but this rule is not used (yet).
Instead you can try one of the following, at the top of your build directory:

• ‘make check-includes‘: checks if a source file does not include useless
pips headers. It is based on the ‘pipslibsdeps.py‘ script which has some
extra features, try ‘pipslibsdeps.py --help‘ !

• ‘make check-properties‘: check if a property is defined in pipsmake-rc.tex
but never referenced;

• ‘make inspect-symbols‘: checks exported but unused symbols for each
pips library.

7

	Introduction
	Prerequisites
	Infrastructure Organization
	autoconf
	automake
	gnulib

	Installation Processes
	Maintenance Processes
	Adding a C source file in an existing PIPS library
	Adding a C header file in an existing PIPS library
	Adding a TeX file in an existing PIPS directory
	Adding a library
	Adding a program check
	Adding a pass

	Additional Checks

