
Declarative Compilation for Constraint Logic
Programming

Emilio Jesús Gallego Arias1, James Lipton2, and Julio Mariño3

1 University of Pennsylvania and Mines ParisTech, PSL Research University
gallego@cri.ensmp.fr

2 Wesleyan University jlipton@wesleyan.edu
3 Universidad Politécnica de Madrid jmarino@fi.upm.es

Abstract. We present a new declarative compilation of logic programs
with constraints into variable-free relational theories which are then exe-
cuted by rewriting. This translation provides an algebraic formulation
of the abstract syntax of logic programs. Management of logic variables,
unification, and renaming apart is completely elided in favor of alge-
braic manipulation of variable-free relation expressions. We prove the
translation is sound, and the rewriting system complete with respect to
traditional SLD semantics.

Keywords: logic programming, constraint programming, relation alge-
bra, rewriting, semantics

1 Introduction

Logic programming is a paradigm based on proof search and directly programming
with logical theories. This is done to achieve declarative transparency : guaranteeing
that execution respects the mathematical meaning of the program. The power
that such a paradigm offers comes at a cost for formal language research and
implementation. Management of logic variables, unification, renaming variables
apart and proof search are cumbersome to handle formally. Consequently, it
is often the case that the formal definition of these aspects is left outside the
semantics of programs, complicating reasoning about them and the introduction
of new declarative features.

We address this problem here by proposing a new compilation framework –
based on ideas of Tarski [22] and Freyd [9] – that encodes logic programming
syntax into a variable-free algebraic formalism: relation algebra. Relation algebras
are pure equational theories of structures containing the operations of composition,
intersection and convolution. An important class of relation algebras is the so-
called distributive relation algebras with quasi-projections, which also incorporate
union and projections.

We present the translation of constraint logic programs to such algebras in
3 steps. First, for a CLP program P with signature Σ, we define its associated
relation algebra QRAΣ , which provides both the target object language for
program translation and formal axiomatization of constraints and logic variables.

Second, we introduce a constraint compilation procedure that maps constraints
to variable-free relation terms in QRAΣ . Third, a program translation procedure
compiles constraint logic programs to an equational theory over QRAΣ .

The key feature of the semantics and translation is its variable-free nature.
Programs that contain logical variables are represented as ground terms in our
setting, thus all reasoning and execution is reduced to algebraic equality, allowing
the use of rewriting. The resulting system is sound and complete with respect to
SLD resolution. Our compilation provides a solution to the following problems:
– Underspecification of abstract syntax and logic variable management in logic

programs: solved by the the inclusion of metalogical operations directly into
the compilation process.

– Interdependence of compilation and execution strategies: solved by making
target code completely orthogonal to execution.

– Lack of transparency in compilation (for subsequent optimization and abstract
interpretation): solved by making target code a low-level yet fully declarative
translation of the original program.

Variable Elimination and Relation Composition. We illustrate the spirit of
translation, and in particular the variable elimination procedure, by considering
a simple case, namely the transitive closure of a graph:

edge(a,b). connected(X,X).
edge(b,c). connected(X,Y) :- edge(X,Z), connected(Z,Y).
edge(a,e).
edge(e,f).

In this carefully chosen example, the elimination of variables and the translation
to binary relation symbols is immediate:

edge = (a, b) ∪ (b, c) ∪ (a, e) ∪ (a, e) ∪ (e, f)

connected = id ∪ edge; connected

The key feature of the resulting term is the composition edge; connected. The
logical variable Z is eliminated by the composition of relations allowing the
use of variable free object code. A query connected(a,X) is then modeled by
the relation connected ∩ (a, a)1 where 1 is the (maximal) universal relation.
Computation can proceed by rewriting the query using a suitable orientation of
the relation algebra equations and unfolding pertinent recursive definitions.

Handling actual arbitrary constraint logic programs is more involved. First, we
use sequences and projection relations to handle predicates involving an arbitrary
number of arguments and an unbounded number of logic variables; second, we
formalize constraints in a relational way.

Projections and permutations algebraically encode all the operations of logical
variables – disjunctive and conjunctive clauses are handled with the help of the
standard relational operators ∩, ∪.

Constraint Logic Programming Conventions We refer the reader to [16] for basic
definitions of logic programming over Horn clauses, and [12] for background on
the syntax and semantics of constraint logic programming. In this paper we fix a
signature Σ, a set of terms TΣ(X), and a subset C of all first-order formulas over Σ
closed under conjunction and existential quantification to be the set of constraint
formulas as well as a Σ-structure D, called the constraint domain. Constraint
logic programs are sets of Horn clauses. We use vector notation extensively in the
paper, to abbreviate Horn clauses with constraints p← q1, . . . , qn, where p is an
atomic formula and qi may be an atomic formula or a constraint. For instance, in
our vector notation, a clause is written p(t[x])← q(u[x,y]), where the boldface
symbols indicate vectors of variables x,y, terms t,u (depending on variables x,
etc. . .) and predicates q (depending on terms u).

2 Relation Algebras and Signatures

In this section, we define QRAΣ , a relation algebra in the style of [22,9] formal-
izing a CLP signature Σ and a constraint domain D. We define its language, its
equational theory and semantics.

2.1 Relational Language and Theory

The relation language RΣ is built from a set RC of relation constants for constant
symbols a set RF of relation constants for function symbols from Σ, and a set of
relation constants for primitive predicates RCP , as well as a fixed set of relation
constants and operators detailed below. Let us begin with RC . Each constant
symbol a ∈ CΣ defines a constant symbol (a, a) ∈ RC , each function symbol
f ∈ FΣ defines a constant symbol Rf in RF . Each predicate symbol r ∈ CPΣ
defines a constant symbol r in RCP . We write RΣ for the full relation language:

RC = {(a, a) | a ∈ CΣ} RF = {Rf | f ∈ FΣ , } RCP = {r | r ∈ CPΣ}
Ratom ::= RC | RF | RCP | id | di | 1 | 0 | hd | tl
RΣ ::= Ratom | RΣ◦ | RΣ ∪ RΣ | RΣ ∩ RΣ | RΣRΣ

The constants 1,0, id , di respectively denote the universal relation (whose stan-
dard semantics is the set of all ordered pairs on a certain set), the empty relation,
the identity (diagonal) relation, and identity’s complement. Juxtaposition RR
represents relation composition (often written R;R) and R◦ is the inverse of R. We
write hd and tl for the head and tail relations. The projection of an n-tuple onto its
i-th element is written Pi and defined as P1 = hd, P2 = tl;hd, . . . , Pn = tln−1;hd.

QRAΣ (Fig. 1) is the standard theory of distributive relation algebras, plus
Tarski’s quasiprojections [22], and equations axiomatizing the new relations of
RΣ . Note that products and their projections are axiomatized in a relational,
variable-free manner.

R ∩R = R R ∩ S = S ∩R R ∩ (S ∩ T) = (R ∩ S) ∩ T
R ∪R = R R ∪ S = S ∪R R ∪ (S ∪ T) = (R ∪ S) ∪ T

R id = R R0 = 0 0 ⊆ R ⊆ 1
R ∪ (S ∩R) = R = (R ∪ S) ∩R

R(S ∪ T) = RS ∪RT (S ∪ T)R = SR ∪ TR
R ∩ (S ∪ T) = (R ∩ S) ∪ (R ∩ T)

(R ∪ S)◦ = R◦ ∪ S◦ (R ∩ S)◦ = S◦ ∩R◦
R◦◦ = R (RS)◦ = S◦R◦

R(S ∩ T) ⊆ RS ∩RT RS ∩ T ⊆ (R ∩ TS◦)S
id ∪ di = 1 id ∩ di = 0

hd(hd)◦ ∩ tl(tl)◦ ⊆ id (hd)◦hd ⊆ id, (tl)◦tl ⊆ id (hd)◦tl = 1
1(c, c)1 = 1 (c, c) ⊆ id

Fig. 1. QRAΣ

2.2 Semantics

Let Σ be a constraint signature and D a Σ-structure. Write tD for the interpre-
tation of a term t ∈ TΣ . We define D† to be the union of D0 = {〈〉} (the empty
sequence), D and D-finite products, for example: D2,D2 × D,D × D2, . . . We
write 〈a1, . . . , an〉 for members of the n-fold product associating to the right, that
is to say, 〈a1, 〈a2, . . . , 〈an−1, an〉 · · ·〉〉. Furthermore, we assume right-association
of products when parentheses are absent. Note that the 1 element sequence does
not exist in the domain, so we write 〈a〉 for a as a convenience.

Let RD = D†×D†. We make the power set of RD into a model of the relation
calculus by interpreting atomic relation terms in a certain canonical way, and
the operators in their standard set-theoretic interpretation. We interpret hd and
tl as projections in the model.

Definition 1. Given a structure D a relational D-interpretation is a mapping
J_KD

†
of relational terms into RD satisfying the identities in Fig. 2. The function

α used in this table and elsewhere in this paper refers to the arity of its argument,
whether a relation or function symbol from the underlying signature.

Theorem 1. Equational reasoning in QRAΣ is sound for any interpretation:

QRAΣ ` R = S =⇒ JRKD
†

= JSKD
†

3 Program Translation

We define constraint and program translation to relation terms. To this end,
we define a function K̇ from constraint formulas with – possibly free – logic

J1KD
†

= RA

J0KD
†

= ∅
JidKD

†
= {(u, u) | u ∈ D†}

JdiKD
†

= {(u, v) | u 6= v}
JhdKD

†
= {(〈a, b〉, a) | a, b ∈ D†}

JtlKD
†

= {(〈a, b〉, b) | a, b ∈ D†}
JR◦KD

†
= (JRKD

†
)◦

JR ∪ SKD
†

= JRKD
†
∪ JSKD

†

JR ∩ SKD
†

= JRKD
†
∩ JSKD

†

J(c, c)KD
†

= {(cD, cD)}
JRSKD

†
= JRKD

†
; JSKD

†

JRf KD
†

= {(x,yu) | x = fD(a1, . . . , an) ∧ y = 〈a1, . . . , an〉, ai ∈ D,u ∈ D†, n = α(f)}
JrKD

†
= {(xu,xu) | x = 〈a1, . . . , an〉 ∧ rD(a1, . . . , an), ai ∈ D,u ∈ D†, n = α(r)}

Fig. 2. Standard interpretation of binary relations.

variables to a variable-free relational term. K̇ is the core of the variable elimination
mechanism and will appear throughout the rest of the paper.

The reader should keep in mind that there are two kinds of predicate symbols
in a constraint logic program: constraint predicates r which are translated by the
function K̇ above to relation terms r, and defined or program predicates.

We translate defined predicates – and CLP programs – to equations p $ R,
where p will be drawn from a set of definitional variables standing for program
predicate names p, and R is a relation term. The set of definitional equations
can be both seen as an executable specification, by understanding it in terms of
the rewriting rules given in this paper; or as a declarative one, by unfolding the
definitions and using the standard set-theoretic interpretation of binary relations.

3.1 Constraint Translation

We fix a canonical list x1, . . . , xn of variables occurring in all terms, so as to
translate them to variable-free relations in a systematic way. There is no loss of
generality as later, we transform programs into this canonical form.

Definition 2 (Term Translation). Define a translation function K : TΣ(X)→
RΣ from first-order terms to relation expressions as follows:

K(c) = (c, c)1
K(xi) = P ◦i
K(f(t1, . . . , tn)) = Rf ;

⋂
i≤n Pi;K(ti)

This translation is extended to vectors of terms as follows K(〈t1, . . . , tn〉) =⋂
i≤n Pi;K(ti).

The semantics of the relational translation of a term is the set of all of the instances
of that term, paired with the corresponding instances of its variables. For instance,
the term x1 + s(s(x2)) is translated to the relation +; (P1;P ◦1 ∩ P2; s; s;P ◦2).

Lemma 1. Let t[x] be a term of TΣ(X) whose free variables are among those in
the sequence x = x1, . . . , xm. Then, for any sequences a = a1, . . . , am ∈ D†,u ∈
D† and any b ∈ D we have

(b,au) ∈ JK(t[x])KD
†
⇐⇒ b = tD[a/x]

We will translate constraints over m variables to partially coreflexive relations
over the elements that satisfy them. A binary relation R is coreflexive if it is
contained in the identity relation, and it is i-coreflexive if its i-th projection is
contained in the identity relation: P ◦i ;R;Pi ⊆ id . Thus, for a variable xi free in
a constraint, the translation will be i-coreflexive.

We now formally define two partial identity relation expressions Im, Qi for the
translation of existentially quantified formulas, in such a way that if a constraint
ϕ[x] over m variables is translated to an m-coreflexive relation, the formula
∃xi. ϕ[x] corresponds to a coreflexive relation in all the positions but the i-th
one, as xi is no longer free. In this sense Qi may be seen as a hiding relation.

Definition 3. The partial identity relation expressions Im, Qi for m, i > 0 are
defined as:

Im :=
⋂

1≤i≤m

Pi(Pi)
◦ Qi = Ii−1 ∩ Ji+1 Ji = tli; (tl◦)i

Im is the identity on sequences up to the first m elements. Qi is the identity on
all but the i-th element, with the i-th position relating arbitrary pairs of elements.

Definition 4 (Constraint Translation). The K̇ : LD → RΣ translation func-
tion for constraint formulas is:

K̇(p(t1, . . . , tn)) = (
⋂
i≤n K(ti)

◦;P ◦i); p; (
⋂
i≤n Pi;K(ti))

K̇(ϕ ∧ θ) = K̇(ϕ) ∩ K̇(θ)

K̇(∃xi. ϕ) = Qi; K̇(ϕ);Qi

As an example, the translation of the constraint ∃x1, x2.s(x1) ≤ x2 is

Q1;Q2; (P ◦1 ; s◦;P1 ∩ P ◦2 ;P2);≤; (P1; s;P ◦1 ∩ P2;P ◦2);Q1;Q2

Lemma 2. Let ϕ[x] be a constraint formula with free variables among x =
x1, . . . , xm. Then, for any sequences a = a1, . . . , am, u and u′ of members of D

(au,au′) ∈ JK̇(ϕ[x])KD
†
⇐⇒ D |= ϕ[a/x]

3.2 Translation of Constraint Logic Programs

To motivate the technical definitions below, we illustrate the program translation
procedure with an example. Assume a language with constant 0, a unary function
symbol s, constraint predicate = and program predicate add . We can write the
traditional Horn clause definition of Peano addition:

add(0,X,X).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

This program is first purified: the variables in the head of the clauses defining
each predicate are chosen to be a sequence of fresh variables x1, x2, x3, with all
bindings stated as equations in the tail.

add(x1, x2, x3)←− x1 = 0, x2 = x3.

add(x1, x2, x3)←− ∃x4x5. x1 = s(x4), x3 = s(x5), add(x4, x2, x5))

The clauses are combined into a single definition similar to the Clark completion
of a program. We also use the variable permutation π sending x1, x2, x3, x4, x5 7→
x4, x2, x5, x1, x3 to rewrite the occurrence of the predicate add in the tail so that
its arguments coincide with those in the head:

add(x1, x2, x3)↔ (x1 = 0, x2 = x3)

∨ ∃x4x5. x1 = s(x4), x3 = s(x5), wπ add(x1, x2, x3).

Now we apply relational translation K̇ defined above to all relation equations,
and eliminate the existential quantifier using the partial identity operator I3
defined above. We represent the permutation π using the relation expression Wπ

that simulates its behavior in a variable-free manner and replace the predicate
add with a corresponding relation variable add. (A formal definition of Wπ and
its connection with function wπ is given below, see Def. 7 and Lemma 4.)

add $ K̇(x1 = o ∧ x2 = x3) ∪ I3((K̇(x1 = s(x4) ∧ x3 = s(x5)) ∩Wπ addW
o
π)))

Now we give a description of the general translation procedure. We first
process programs to their complete database form as defined in [6], which given
the executable nature of our semantics reflects the choice to work within the
minimal semantics. The main difference in our processing of a program P to its
completed form P ′ is that a strict policy on variable naming is enforced, so that
the resulting completed form is suitable for translation to relational terms.

Definition 5 (General Purified Form for Clauses). For a clause p(t[y])←
q(v[y]), let h = α(p), y = |y|, v = |v|, and m = h+ y + v. Assume vectors:

x = xhxt = xhxyxv = x1, . . . , xh,xh+1, . . . , xh+y,xh+y+1, . . . , xm
xh = x1, . . . , xh
xt = xyxv = xh+1, . . . , xh+y,xh+y+1, . . . , xm
xy = xh+1, . . . , xh+y
xv = xh+y+1, . . . , xm

the clause’s GPF form is:

p(xh)← ∃h↑.((xh = t[xy] ∧ xv = v[xy]), q(xv))

∃n↑ denotes existential closure with respect to all variables whose index is greater
than n. xh and xt stand for head and tail variables. A program is in GPF form
iff every one of its clauses is. After the GPF step, we perform Clark’s completion.

Definition 6 (Completion of a Predicate). We define Clark’s completed
form for a predicate p with clauses cl1, . . . , cln in GPF form:

p(xh)←cl1 tl1
. . .
p(xh)←cln tlk

}
Clark’s comp.
========⇒ p(xh)↔ tl1 ∨ · · · ∨ tlk

The above definition easily extends to programs. Completed forms are translated
to relations by using K̇ for the constraints, mapping conjunction to ∩ and ∨
to ∪. Existential quantification, recursive definitions and parameter passing are
handled in a special way which we proceed to detail next.

Existential Quantification: Binding Local Variables Variables local to the
tail of a clause are existentially quantified. For technical reasons — simpler rewrite
rules — we use the partial identity relation In, rather than the Qn relation defined
in the previous sections. In acts as an existential quantifier for all variables of
index greater than a given number.

Lemma 3. Let a = a1, . . . , an ∈ D, x = x1, . . . , xn, let ϕ be a constraint over
m free variables, with m > n, y a vector of length k such that n+ k = m, and
u,v ∈ D†, then:

(au,av) ∈ JIn; K̇(ϕ[xy]); InKD
†
⇐⇒ D |= (∃n↑.ϕ[xy])[a/x]

Recursive Predicate Definitions We shall handle recursive predicate defi-
nitions by extending the relational language with a set of definitional symbols
p, q, r, . . . for predicates. Then, a recursive predicate p is translated to a defi-
nitional equation p $ R(p1, . . . , pn), spelled out in Def. 8 where the notation
R(p1, . . . , pn) indicates that relation R resulting from the translation may de-
pend on predicate symbols p1, . . . , pn. Note that R is monotone in p1, . . . , pn.
Consequently, using a straightforward fixed point construction we can extend
the interpretation J_KD

†
to satisfy JpKD

†
= JR(p1, . . . , pn)KD

†
, thus preserving

soundness when we adjoin the definitional equations to QRAΣ . The details are
given in Subsection 3.3, below.

Parameter Passing The information about the order of parameters in each
pure atomic formula p(xi1 , . . . , xir) is captured using permutations. Given a
permutation π : {1..n} → {1..n}, the function wπ on formulas and terms is
defined in the standard way by its action over variables. We write Wπ for the
corresponding relation:

Definition 7 (Switching Relations). Let π : {1..n} → {1..n} be a permuta-
tion. The switching relation expression Wπ, associated to π is:

Wπ =

n⋂
j=1

Pπ(j)(Pj)
◦.

Lemma 4. Fix a permutation π and its corresponding wπ and Wπ. Then:

JK̇(wπ(p(x1, . . . , xn)))K = JWπK̇(p)W ◦π K

The Translation Function Now we may define the translation for defined
predicates.

Definition 8 (Relational Translation of Predicates). Let h, p(xh) be as
in Def. 5. The translation function Tr from completed predicates to relational
equations is defined by:

Tr(p(xh)↔ cl1 ∨ · · · ∨ clk) = (p $ Tr cl(cl1) ∪ · · · ∪ Tr cl(clk))
Tr cl(∃h↑.p) = Ih; (Tr l(p1) ∩ · · · ∩ Tr l(pn)); Ih
Tr l(ϕ) = K̇(ϕ) ϕ a constraint
Tr l(pi(xi)) = Wπ; pi;W

◦
π such that π(x1, . . . , xα(pi)) = xi

where xi is the original sequence of variables in pi in the Clark completion of
the program, and π a permutation that transforms the ordered sequence of length
α(p) starting at x1 to xi.

We wil sometimes write In(R) for InRIn and Wπ(R) for WπRW
◦
i .

Example 1. Figure 3 shows a fragment of a constraint logic program to represent a
family relations database [21]. Consider the translation of the program predicates
mother, parent, sibling and brother. We write the program in general purified form:

mother(x1, x2) ⇐⇒ (x1 = sarah) ∧ (x2 = isaac)

parent(x1, x2) ⇐⇒ father(x1, x2) ∨mother(x1, x2)

sibling(x1, x2) ⇐⇒ ∃x3. x1 6= x2 ∧ parent(x3, x1) ∧ parent(x3, x2)

brother(x1, x2) ⇐⇒ male(x1) ∧ sibling(x1, x2)

Letting σ1 and σ2 be the permutations 〈1, 2, 3〉 −→ 〈2, 3, 1〉 and 〈1, 2, 3〉 −→
〈3, 2, 1〉 respectively we obtain

mother = K̇(x1 = sarah) ∩ K̇(x2 = isaac)

parent = father ∪mother

sibling = K̇(x1 6= x2) ∩ I2[Wσ1
parentW o

σ1
∩Wσ2

parentW o
σ2

]I2

brother = male ∩ sibling

The query brother(X,milcah) leads to the rewriting of the term K̇(x2 = milcah)∩
brother to K̇(x2 = milcah) ∩ K̇(x1 = lot).

male(terach). male(haran). male(isaac). male(lot).

female(sarah). female(milcah). female(yiscah).

father(terach ,haran). father(haran ,lot). ←↩
father(haran ,milcah).

mother(sarah ,isaac).

parent(X,Y) ← father(X,Y).
parent(X,Y) ← mother(X,Y).

sibling(S1,S2) ← S1 6=S2 , parent(Par ,S1), parent(Par ,S2).

brother(Brother ,Sib) ← male(Brother), sibling(Brother ,Sib).

Fig. 3. Biblical family relations in Prolog.

3.3 The Least Relational Interpretation Satisfying Definitional
Equations

Let P be a program and p1, . . . , pn be a sequence of relation variables, one for
each predicate symbol pi in the language of P . We define the extended relation
calculus RΣ(p1, . . . , pn) to be the set of terms generated by p1, . . . , pn and the
terms of RΣ . More formally

Ratom ::= p1 | · · · | pn | RC | RF | RCP | id | di | 1 | 0 | hd | tl
RΣ(p1, . . . , pn) ::= Ratom | RΣ◦ | RΣ ∪ RΣ | RΣ ∩ RΣ | RΣRΣ

Observe that the relational translation of Def. 8 maps programs to sets of
definitional equations pi $ Ri(p1, . . . , pn) over RΣ(p1, . . . , pn). Let F be the set
of all n such definitional equations.

Given a structure D we now lift the definition of D-interpretation given
in Def. 1 to the extended relation calculus. An extended interpretation JK :
RΣ(p1, . . . , pn) −→ RD is a function satisfying the identities in Fig. 2 as well as
mapping each relation variable pi to an arbitrary member JpiK of RD. Given a
structure D for the language of a program, its action is completely determined
by its values at the pi. Note that the set I of all such interpretations forms a
CPO, a complete partial order with a least element, under pointwise operations.
That is to say, any directed set {J Kd : d ∈ Λ} of interpretations has a supremum∨
d∈ΛJ Kd given by T 7→

⋃
d∈ΛJT Kd. The directedness assumption is necessary. For

example, to show that a pointwise supremum of interpretations
∨
d∈ΛJ Kd preserves

composition (one of the 13 identities of Fig. 2), we must show that for any relation
terms R and S we have

⋃
d∈ΛJRSKd =

⋃
d∈ΛJRKd;

⋃
d∈ΛJSKd. However the right

hand side of this identity is equal to
⋃
d,e∈Λ×ΛJRKd; JSKe. But since the family of

interpretations is directed, for every pair d, e of indices in Λ there is an m ∈ Λ
with J Kd, J Ke ≤ J Km, hence

⋃
d,e∈Λ×ΛJRKd; JSKe ≤

⋃
m∈ΛJRKmJSKm. The reverse

inequality is immediate and we obtain
⋃
d∈ΛJRKd;

⋃
d∈ΛJSKd =

⋃
d∈ΛJRSKd.

The least element of the collection I is the interpretation J K0 given by
JpiK0 = ∅ for all i (0 ≤ i ≤ n).

In the remainder of this section, the word interpretation will refer to an
extended D-interpretation.

Lemma 5. Let J K and J K′ be interpretations. If for all i JpiK ⊆ JpiK′ then
J K ≤ J K′.

Proof. By induction on the structure of extended relations. For all relational
constants c we have JcK = JcK′ We will consider one of the inductive cases, namely
that of composition. Suppose JRK ⊆ JRK′ and JSK ⊆ JSK′. Then we must show that
JRSK ⊆ JRSK′. But this follows immediately by a set-theoretic argument, since
(x, u) ∈ JRK and (u, y) ∈ JSK imply, by inductive hypothesis, that (x, u) ∈ JRK′
and (u, y) ∈ JSK′. It can also be proved using the axioms of QRAΣ by showing
that A ∪ A′ = A′ and B ∪ B′ = B′ imply AB ∪ A′B′ = A′B′. We leave the
remaining cases to the reader.

We will now define a operator ΦF from interpretations to interpretations,
show it continuous and define the interpretation generated by F as its least
fixed point. This interpretation will be the least extension of a given relational
D-interpretation satisfying the equations in F .

Definition 9. Let P be a program, with predicate symbols {p1, . . . , pn}. Fix a
structure D for the language of P . Let F be the set of definitional equations
{pi $ Ri(p1, . . . , pn) : i ∈ N} produced by the translation Tr of P of Def. 8. Let
I be the set of extended D-interpretations, with poset structure induced pointwise.
Then we define the operator ΦF : I −→ I as follows

ΦF (J K)(pi) = JRi(p1, . . . , pn)K.

Theorem 2. ΦF is a continuous operator, that is to say it preserves suprema
of directed sets.

Proof. Let {J Kd : d ∈ Λ} be a directed set of interpretations. By Lem. 5 it suffices
to show that for all pi

ΦF (
∨
d∈Λ

J Kd)(pi) = (
∨
d∈Λ

ΦF (J Kd))(pi).

Let J K∗ =
∨
d∈Λ J Kd. Then ΦF (

∨
d∈Λ J Kd)(pi) = JRi(p1, . . . , pn)K∗, which in

turn is the union
⋃
d∈ΛJRi(p1, . . . , pn)Kd. But this is equal to

⋃
d∈Λ ΦF (J Kd)(pi).

Therefore ΦF (
∨
d∈Λ J Kd) =

∨
d∈Λ ΦF (J Kd).

By Kleene’s fixed point theorem ΦF has a least fixed point J K† in I. This fixed
point is, in fact, the union of all Φ(n)

F (J K0), (n ∈ N). By virtue of its being fixed by
ΦF we have JpiK

†
= JRi(p1, . . . , pn)K†. That is to say, all equations in F are true

in J K†, which is the least interpretation with this property under the pointwise
order.

m1 : Im(K̇(ψ)) P7−→ K̇(∃m↑.ψ) Hiding meta-reduction
m1∗ : Im(0) P7−→ 0

m2 : Wπ(K̇(ψ)) P7−→ K̇(wπ(ψ)) Permutation meta-reduction
m2∗ : Wπ(0) P7−→ 0

m3 : K̇(ψ1) ∩ K̇(ψ2) P7−→ K̇(ψ1 ∧ ψ2) D |= ψ1 ∧ ψ2

m3 : K̇(ψ1) ∩ K̇(ψ2) P7−→ 0 D 6|= ψ1 ∧ ψ2

m4 : K̇(ψ) ∩ q P7−→ K̇(ψ) ∩ (Θ) where q $ Θ ∈ Tr(P)

Fig. 4. Constraint meta-reductions

4 A Rewriting System for Resolution

In this section, we develop a rewriting system for proof search based on the
equational theory QRAΣ , which will be proven equivalent to the traditional
operational semantics for CLP. In Sec. 5 we will show that answers obtained by
resolution correspond to answers yielded by our rewriting system and conversely.

The use of ground terms permits the use of rewriting, overcoming the practical
and theoretical difficulties that the existence of logic variables causes in equational
reasoning. Additionally, we may speak of executable semantics: we use the same
function to compile and interpret CLP programs in the relational denotation.

For practical reasons, we don’t rewrite over the full relational language, but
we will use a more compact representation of the relations resulting from the
translation.4

Formally, the signature of our rewriting system is given by the following
term-forming operations over the sort TR: I : (N×TR)→ TR, W : (Perm×TR)→
TR, K : LD → TR, ∪ : (TR × TR) → TR and ∩ : (TR × TR) → TR. Thus, for
instance, the relation In;R; In is formally represented in the rewriting system
as I(n,R), provided R can be represented in it. In practice we make use of the
conventional relational notation In,Wπ when no confusion can arise.

4.1 Meta-reductions

We formalize the interface between the rewrite system and the constraint solver
as meta-reductions (Fig. 4). Every meta-reduction uses the constraint solver in a
black-box manner to perform constraint manipulation and satisfiability checking.

Lemma 6. All meta-reductions are sound: if mi : l P7−→ r then JlKD
†

= JrKD
†
.

4 There is no problem in defining the rewriting system using the general relational
signature, but we would need considerably more rules for no gain.

p1 : 0 ∪R P7−→ R

p2 : 0 ∩R P7−→ 0

p3 : Wπ(R ∪ S) P7−→ Wπ(R) ∪Wπ(S)

p4 : In(R ∪ S) P7−→ In(R) ∪ In(S)

p5 : (R ∪ S) ∩ T P7−→ (R ∩ T) ∪ (S ∩ T)

p6 : K̇(ψ) ∩ (R ∪ S) P7−→ (K̇(ψ) ∩R) ∪ (K̇(ψ) ∩ S)

p7 : K̇(ψ) ∩ (R ∩Wπ(qi))
P7−→ (K̇(ψ) ∩R) ∩Wπ(qi)

p8 : K̇(ψ) ∩Wπ(q) P7−→ W ◦π (Wπ(K̇(ψ)) ∩ q)
p9 : K̇(ψ) ∩ Im(R) P7−→ Im(Im(K̇(ψ)) ∩R) ∩ K̇(ψ)

Fig. 5. Rewriting system for SLD.

4.2 A Rewriting System for SLD Resolution

We present a rewriting system for proof search in Fig. 5. We prove local confluence.
Later we will prove that a query rewrites to a term in the canonical form K̇(ψ)∪R
iff the leftmost branch of the associated SLD-tree of the program is finite.

Lemma 7. P7−→ is sound: if pi : l P7−→ r then JlKD
†

= JrKD
†
.

Lemma 8. If we give higher priority to p7 over p8,
P7−→ is locally confluent.

A left outermost strategy gives priority to p7 over p8.

5 Operational Equivalence

We prove that our rewriting system over relational terms simulates “traditional”
SLD proof search specified as a transition-based operational semantics (i.e. [12,7]).
For reasons of space, we give a high-level overview of the proof. The full details
can be found in the online technical report.

Recall a resolvent is a sequence of atoms or constraints p. We write 2 for the
empty resolvent. We assume given a constraint domain D and its satisfaction
relation D |= ϕ. A program state is an ordered pair 〈p |ϕ〉 where p is a resolvent
and ϕ is a constraint (called the constraint store). The notation cl : p(u[y])←
q(v[z]) indicates that p(u[y])← q(v[z]) is a program clause with label cl. Then,
the standard operational semantics for SLD resolution can be defined as the
following transition system over program states:

Definition 10 (Standard SLD Semantics).

〈ϕ,p |ψ〉 cs−→l 〈p |ψ ∧ ϕ〉 iff D |= ψ ∧ ϕ
〈p(t[x]),p |ϕ〉 rescl−−−→l 〈q(v[σ(z)]),p |ϕ ∧ (u[σ(y)] = t[x])〉

where: cl : p(u[y])← q(v[z])
D |= ϕ ∧ (u[σ(y)] = t[x])
σ a renaming apart for y, z,x

Taking the previous system as a reference, the proof proceeds in two steps: we
first define a new transition system that internalizes renaming apart and proof
search, and we prove it equivalent to the standard one.

Second, we show a simulation relation between the fully internalized transition
system and a transition system defined over relations, which is implemented by
the rewriting system of Sec. 4.

With these two equivalences in place, the main theorem is:

Theorem 3. The rewriting system of Fig. 5 implements the transition system
of Def. 10. Formally, for every transition (r1, r2) ∈ (−→l)

∗,

∃n.(Tr(r1), T r(r2)) ∈ (P7−→)n

and
∀r3.(Tr(r1), r3) ∈ (P7−→)n ⇒ Tr(r2) = r3

Thus, given a program P , relational rewriting of translation will return an
answer constraintK(ϕ) iff SLD resolution from P reaches a program state 〈2 |ϕ′〉,
with ϕ ⇐⇒ ϕ′.

In the next section, we briefly describe the main intermediate system used in
the proof.

5.1 The Resolution Transition System

The crucial part of the SLD-simulation proof is the definition of a new extended
transition system over program states that will internalize both renaming apart
and the proof-search tree. It is an intermediate system between relation rewriting
and traditional proof search.

The first step towards the new system is the definition of an extended notion
of state. In the standard system of Def. 10, a state is a resolvent plus a constraint
store. Our extended notion of state includes:

– A notion of scope, which is captured by a natural number which can be
understood as the number of global variables of the state.

– A notion of substate, which includes information about parameter passing in
the form of a permutation.

– A notion of clause selection, and
– a notion of failure and parallel state, which represents failures in the search

tree and alternatives.

Such states are enough to capture all the meta-theory of constraint logic pro-
gramming except recursion, which operates meta-logically by replacing predicate
symbols by their definitions. Formally:

Definition 11. The set PS of resolution states is inductively defined as:
– 〈fail〉.
– 〈p |ϕ〉n, where pi ≡ Pi(xi) is an atom, or a constraint pi ≡ ψ, xi a vector
of variables, ϕ a constraint store and n a natural number.

〈ψ,p |ϕ〉n
constraint−−−−−−−→p 〈p |ϕ ∧ ψ〉n

〈ψ,p |ϕ〉n
fail−−→p 〈fail〉

if ϕ ∧ ψ is not satisfiable

〈p(x),p |ϕ〉n
call−−→p

〈π� (〈q1 | >〉h . . . 〈qk | >〉h),p |ϕ
〉
n

if p(xh)← ∃h↑.(q1 ∨ . . . ∨ qk) ∈ P ′, π(x) = xh〈π� (
〈q |ψ〉h PS

)
,p |ϕ

〉
n

select−−−−→p

(〈π〈q |ψ ∧∆π
h(ϕ)〉h,p |ϕ

〉
n

〈π� PS ,p |ϕ
〉
n

)〈π〈2 |ψ〉h,p |ϕ〉n return−−−−→p 〈p |∇πh(ψ,ϕ)〉n〈π〈fail〉,p |ϕ〉
n

return−−−−→p 〈fail〉〈π
PS ,p |ϕ

〉
n

sub−−→p

〈π
PS ′,p |ϕ

〉
n

if PS 6= 〈2 |ψ〉n, PS 6= 〈fail〉, and PS −→p PS ′(
〈fail〉 PS

) backtrack−−−−−−→p PS(
PS1 PS2

) seq−−→p

(
PS′1 PS2

)
if PS 6= 〈fail〉, and PS1 −→p PS ′1

(We omit the case in select where the left side has no PS component which happens
when the number of clauses for a given predicate is one (k = 1)).

Fig. 6. Resolution Transition System.

–
〈π

PS ,p |ϕ
〉
n
, where PS is a resolution state, and π a permutation.

–
〈π
� PS ,p |ϕ

〉
n
, the “select state”. It represents the state just before selecting

a clause to proceed with proof search.
–
(
PS 1 PS 2

)
. The bar is parallel composition, capturing choice in the proof

search tree.

The resolution transition system →P⊆ (PS × PS) is shown in Fig. 6. The two
first transitions deal with the case where a constraint is first in the resolvent,
failing or adding it to the constraint store in case it is satisfiable.

When the head of the resolvent is a defined predicate, the call transition will
replace it by its definition, properly encapsulated by a select state equipped with
the permutation capturing argument order.

The select transition performs two tasks: first, it modifies the current constraint
store adding the appropriate permutation and scoping (n, π); second, it selects
the first clause for proof search.

The return transitions will either propagate failure or undo the permutation
and scoping performed at call time.

sub, backtrack, and seq are structural transitions with a straightforward
interpretation from a proof search perspective.

Then, we have the following lemma:

Lemma 9. For all queries 〈p |ϕ〉n, the first successful −→l derivation using a
SLD strategy uniquely corresponds to a −→p derivation:

〈p |ϕ〉n −→l . . . −→l 〈2 |ϕ′〉n ⇐⇒ 〈p |ϕ〉n −→p . . . −→p

(
〈2 |ϕ′〉n PS

)

for some resolution state PS.

Corollary 1. The transition systems of Def. 10 and Fig. 6 are answer-equivalent:
for any query they return the same answer constraint.

With this lemma in place, the proof of Thm. 3 is completed by showing a
simulation between the resolution system and a transition system induced by
relation rewriting.

6 Related and Future Work

Previous Work: The paper is the continuation of previous work in [4,15,11]
considerably extended to include constraint logic programming, which requires a
different translation procedure and a different rewriting system.

In particular, the presence of constraints in this paper permits a different
translation of the Clark completion of a program and plays a crucial role in
the proof of completeness, which was missing in earlier work. The operational
semantics is also new.

Related Work: A number of solutions have been proposed to the syntactic
specification problem. There is an extensive literature treating abstract syntax
of logic programming (and other programming paradigms) using encodings in
higher-order logic and the lambda calculus [19], which has been very successful in
formalizing the treatment of substitution, unification and renaming of variables,
although it provides no special framework for the management and progressive
instantiation of logic variables, and no treatment of constraints. Our approach
is essentially orthogonal to this, since it relies on the complete elimination
of variables, substitution, renaming and, in particular, existentially quantified
variables. Our reduction of management of logic variables to variable free rewriting
is new, and provides a complete solution to their formal treatment.

An interesting approach to syntax specification is the use of nominal logic
[23,5] in logic programming, another, the formalization of logic programming in
categorical logic [2,20,13,1,8] which provides a mathematical framework for the
treatment of variables, as well as for derivations [14]. None of the cited work gives
a solution that simultaneously includes logic variables, constraints and proof
search strategies however.

Bellia and Occhiuto [3] have defined a new calculus, the C-expression cal-
culus, to eliminate variables in logic programming. We believe our translation
into the well-understood and scalable formalism of relations is more applicable
to extensions of logic programming. Furthermore the authors do not consider
constraints.

Future Work: A complementary approach to this work is the use of category
theory, in particular the Freyd’s theory of tabular allegories [9] which extends the
relation calculus to an abstract category of relations providing native facilities
for generation of fresh variables and a categorical treatment of monads. A first

attempt in this direction has been published by the authors in [10]. It would
be interesting to extend the translation to hereditarily Harrop or higher order
logic [18] by using a stronger relational formalism, such as Division and Power
Allegories. Also, the framework would yield important benefits if it was extended
to include relation and set constraints explicitly.

7 Conclusion

We have developed a declarative relational framework for the compilation of
Constraint Logic programming that eliminates logic variables and gives an
algebraic treatment of program syntax. We have proved operational equivalence
to the classical approach. Our framework has several significant advantages.

Programs can be analyzed, transformed and optimized entirely within this
framework. Execution is carried out by rewriting over relational terms. In these
two ways, specification and implementation are brought much closer together
than in the traditional logic programming formalism.

References

1. Amato, G., Lipton, J., McGrail, R.: On the algebraic structure of declarative
programming languages. Theoretical Computer Science 410(46), 4626 – 4671
(2009), http://www.sciencedirect.com/science/article/B6V1G-4WV15VS-7/2/
5475111b9a9642244a208e9bd1fcd46a, abstract Interpretation and Logic Program-
ming: In honor of professor Giorgio Levi

2. Asperti, A., Martini, S.: Projections instead of variables: A category theoretic
interpretation of logic programs. In: ICLP. pp. 337–352 (1989)

3. Bellia, M., Occhiuto, M.E.: C-expressions: A variable-free calculus for equational
logic programming. Theor. Comput. Sci. 107(2), 209–252 (1993)

4. Broome, P., Lipton, J.: Combinatory logic programming: computing in relation
calculi. In: ILPS ’94: Proceedings of the 1994 International Symposium on Logic
programming. pp. 269–285. MIT Press, Cambridge, MA, USA (1994)

5. Cheney, J., Urban, C.: Alpha-prolog: A logic programming language with names,
binding, and alpha-equivalence (2004)

6. Clark, K.L.: Negation as failure. In: Gallaire, Minker (eds.) Logic and Data Bases.
pp. 293–322. Plenum Press (1977)

7. Comini, M., Levi, G., Meo, M.C.: A theory of observables for logic programs. Inf.
Comput. 169(1), 23–80 (2001)

8. Finkelstein, S.E., Freyd, P.J., Lipton, J.: A new framework for declarative program-
ming. Theor. Comput. Sci. 300(1-3), 91–160 (2003)

9. Freyd, P., Scedrov, A.: Categories, Allegories. North Holland Publishing Company
(1991)

10. Gallego Arias, E.J., Lipton, J.: Logic programming in tabular allegories. In: Dovier,
A., Costa, V.S. (eds.) Technical Communications of the 28th International Confer-
ence on Logic Programming, ICLP 2012, September 4-8, 2012, Budapest, Hungary.
LIPIcs, vol. 17, pp. 334–347. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2012)

http://www.sciencedirect.com/science/article/B6V1G-4WV15VS-7/2/5475111b9a9642244a208e9bd1fcd46a
http://www.sciencedirect.com/science/article/B6V1G-4WV15VS-7/2/5475111b9a9642244a208e9bd1fcd46a

11. Gallego Arias, E.J., Lipton, J., Mariño, J., Nogueira, P.: First-order unification
using variable-free relational algebra. Logic Journal of IGPL 19(6), 790–820 (2011),
http://jigpal.oxfordjournals.org/content/19/6/790.abstract

12. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. Journal
of Logic Programming 19/20, 503–581 (1994), http://citeseer.ist.psu.edu/
jaffar94constraint.html

13. Kinoshita, Y., Power, A.J.: A fibrational semantics for logic programs. In: Dyckhoff,
R., Herre, H., Schroeder-Heister, P. (eds.) ELP. Lecture Notes in Computer Science,
vol. 1050, pp. 177–191. Springer (1996)

14. Komendantskaya, E., Power, J.: Coalgebraic derivations in logic programming. In:
Bezem, M. (ed.) CSL. LIPIcs, vol. 12, pp. 352–366. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2011)

15. Lipton, J., Chapman, E.: Some notes on logic programming with a relational
machine. In: Jaoua, A., Kempf, P., Schmidt, G. (eds.) Using Relational Methods in
Computer Science. pp. 1–34. Technical Report Nr. 1998-03, Fakultät für Informatik,
Universität der Bundeswehr München (Jul 1998)

16. Lloyd, J.W.: Foundations of logic programming. Springer-Verlag New York, Inc.,
New York, NY, USA (1984)

17. Mal’tsev, A.I.: On the elementary theories of locally free universal algebras. Soviet
Math pp. 768–771 (1961)

18. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation
for logic programming. Annals of Pure and Applied Logic 51(1-2), 125–157 (1991)

19. Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: PLDI ’88: Proceedings
of the ACM SIGPLAN 1988 conference on Programming Language design and
Implementation. pp. 199–208. ACM, New York, NY, USA (1988)

20. Rydeheard, D.E., Burstall, R.M.: A categorical unification algorithm. In: Proceed-
ings of a tutorial and workshop on Category theory and computer programming.
pp. 493–505. Springer-Verlag New York, Inc., New York, NY, USA (1986)

21. Sterling, L., Shapiro, E.: The Art of Prolog. The MIT Press (1986)
22. Tarski, A., Givant, S.: A Formalization of Set Theory Without Variables, Colloquium

Publications, vol. 41. American Mathematical Society, Providence, Rhode Island
(1987)

23. Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theoretical Computer
Science 323(1–3), 473–497 (2004)

http://jigpal.oxfordjournals.org/content/19/6/790.abstract
http://citeseer.ist.psu.edu/jaffar94constraint.html
http://citeseer.ist.psu.edu/jaffar94constraint.html

A Proofs

Proof (Thm: 1). The proof is straightforward. The rules of equational reasoning
obviously preserve equality in a set-theoretic interpretation, so all one has to
check is soundness of the axioms of QRAΣ . He we illustrate by showing that the
modular law (in its “left-factored” form) holds in any interpretation and leave
the remaining cases to the reader.

Suppose (u, v) ∈ JR ∩ ST KD
†

= JRKD
† ∩ JSKD

†
JT KD

†
. Then for some w ∈ D†,

we have (u,w) ∈ JSKD
†
and (w, v) ∈ JT KD

†
. But then (w, u) ∈ (JSKD

†
)o hence

(w, v) is in both (JSKD
†
)oJRKD

†
and JT KD

†
, so (u, v) ∈ JS(SoR ∩ T)KD

†
as was

to be shown.
The equational theory of QRAH is sound for J·KD† if D is a term algebra (or

a locally free algebra in the terminology of [17]).

Proof (Lem 1). By induction on term structure. The first base case is t ≡ c

where c is a constant in Σ. Then (b,au) ∈ JK(c)KD
†
holds if and only if (b,au)

is in J(c, c);1KD
†
, or equivalently, if b = cD. But this is equivalent to saying

b = cD[a/x].
The second base case is t ≡ xi. Then, the pair (b,au) is in JK(xi)KD

†
, i.e. in

JP oi KD
†
if and only if ai = b, or, equivalently, b = xDi [a/x] as we wanted to show.

For the inductive case, observe that (b,au) ∈ JK(f(t1, . . . , fn))KD
†
if and

only if (b,au) ∈ JRf ;∩i≤nPi;K(ti)KD
†

= JRf KD
†
;∩i≤nJPiKD

†
; JK(ti)KD

†
. This is

equivalent to saying that there are elements b = b1, . . . , bn with (b, b) ∈ JRf KD
†

and for all i ≤ n we have (b,au) ∈ JPiKD
†
; JK(ti)KD

†
, Equivalently, b =

fD(b1, . . . , bn) and for all i we have (bi,au) ∈ JK(ti)KD
†
. By the induction hypoth-

esis, this is equivalent to bi = tDi [a/x], so by definition b = (f(t1, . . . , tn))D[a/x]
as we wanted to show.

Proof (Lem. 2). By induction on the structure of the formulas:

– We consider the case of a unary constraint predicate p, where our atomic
formula is just p(t[x]) (the argument extends easily to higher arities). Observe
that (au,au′) ∈ JK̇(p(t))KD

†
, i.e. (au,au′) ∈ JK(t)◦P ◦1 ; p;P1;K(t)KD

†
is

equivalent to the assertion that for some b ∈ D, b,v,v′ ∈ D†

(au, b) ∈ JK(t)◦KD
†
and (b, b) ∈ JP ◦1 KD

†
and (b1v, b1v

′) ∈ JpKD
†
.

Equivalently, we have

b = b1, (bv, bv′) ∈ JpKD
†
and b = tD[a/x]

the latter equation by Lem. 1. By definition of JpKD
†
this implies that

pD(tD[a/x]), that is to say, that D |= p(t)[a/x].
Conversely, if pD(tD[a/x]) then for some v,v′ ∈ D† we have

(tD[a/x]v, tD[a/x]v′) ∈ JpKD
†
.

By the equivalences stated above, we obtain (au,au′) ∈ JK(t)◦P ◦1 ; p;P1;K(t)KD
†

for any u,u′ ∈ D†.
– For the case ϕ[x] ∧ θ[x],

(au,au′) ∈ JK̇(ϕ[x]) ∩ K̇(θ[x])K ⇐⇒ (au,au′) ∈ JK̇(ϕ[x])K and (au,au′) ∈ JK̇(θ[x])K

By the induction hypothesis this is equivalent to D |= ϕ[a/x] and D |= θ[a/x],
i.e. D |= ϕ[a/x] ∧ θ[a/x].

– For the case ∃xi.ϕ[x], let a be an arbitrary sequence in D† of the same
length m as x, ai−1 ≡ a1, . . . , ai−1 and ai+1 ≡ ai+1, . . . , am. For arbitrary
sequences u,v we have that

(au,av) ∈ QiJϕ[x]KQi ⇐⇒ ∃bqr (au, b) ∈ Qi∧(q, r) ∈ Jϕ[x]K∧(r,av) ∈ Qi.

Equivalently, by the definition of Qi

(au,av) ∈ QiJϕ[x]KQi ⇐⇒ ∃bi (ai−1biai+1u,ai−1biai+1v) ∈ Jϕ[x]KD
†

and by the induction hypothesis for ϕ

(au,av) ∈ QiJϕ[x]KQi ⇐⇒ ∃bi D |= ϕ[ai−1biai+1/x]

Equivalently, we have
D |= (∃xiϕ)[a/x].

as we wanted to show.

Lemma 10.

JInKD
†

= {(zu, zv)| |z| = n, z,u,v ∈ D†}

Proof (Lem. 10). Immediate: just observe that for each i JPi(Pi)◦KD
†

= {(uav,u′av′)||u| =
|u′| = i− 1 and u,u′,v,v′, a ∈ D†} that is to say, that Pi(Pi)◦ relates arbitrary
sequences except for the position i, where it is the identity.

Proof (Lem. 4). Straightforward, This is just a restatement of the claim:

(a′u,a′u) ∈ JRK ⇐⇒ (au,au) ∈ JWRW ◦K

where a = a1, . . . , an and a′ = aπ(1), . . . , aπ(n).

Proof (Lem. 3). (au,av) ∈ JIn; K̇(ϕ[xy]); InKD
† ⇐⇒ for some bn+1, . . . , bm,u

′,v′ ∈
D†
(abu′,abv′) ∈ JK̇(ϕ[xy])KD

†
.

By Lem. 2, we know that (abu′,abv′) ∈ JK̇(ϕ[xy])KD
† ⇐⇒ D |= ϕ[ab/xy].

So (au,av) ∈ JIn; K̇(ϕ[xy]); InKD
†
is equivalent to D |= (∃n↑.ϕ[xy])[a/x].

Proof (Lem. 6). This is a straightforward consequence of the constraint transla-
tion lemma, Lem. 2. Let us consider rule m1, whose left hand side abbreviates
the term ImK̇(ψ))Im and whose right hand side is K̇(∃m↑. ψ). Suppose the free
variables of ψ are among x, where x is chosen to be of length greater then m.

Given a,u,u′ ∈ D† with | a | equal tom, we have (au,au′) ∈ JImK̇(ψ))ImKD
†

if there are v,w,w′ ∈ D† with | av |=| x | such that (avw,avw′) ∈ JK̇(ψ)KD
†
.

By Lem. 2, this is the case if and only if there is a v such that D |= ψ[av/x],
i.e. iff D |= ∃m↑ ψ[a1, . . . , am/x1, . . . , xm], which in turn, implies (au,au′) ∈
JK̇(∃m↑ ψ[x])KD

†
. The argument for the converse is symmetric.

The soundness of rule m2 follows immediately from Lem. 4.
The soundness of rule m3 follows from the fact that by definition K̇(ϕ∧ψ) =

K̇(ϕ)∩ K̇(ψ) and the fact that J·KD† commutes with ∩. By Lem. 2 JK̇(ϕ ∧ ψ)KD
†

is empty if and only if ϕ ∧ ψ is not satisfiable in D.

Lemma 11. In QRAΣ, SS◦ ⊂ id implies A ∩ SR = S(S◦A ∩ R). S◦S ⊂ id
implies A ∩RS = (AS◦ ∩R)S.

Proof (Lem. 11). By the modular law we have, in the first case, A ∩ SR =
S(S◦A ∩ R) ∩ A. But S(S◦A ∩ R) ⊆ SS◦A ∩ SR ⊆ idA ∩ SR = A ∩ SR. Thus
S(S◦A ∩R) ∩A reduces to S(S◦A ∩R). The argument for the second claim is
symmetric.

Proof (Lem. 7). All of the rules are easy consequences of relation algebra, except
for p9. For p9, we apply the equational version of the modular law to obtain the
derivation:

K̇ ∩ IRI =[IK̇I ⊇ K̇]
K̇ ∩ IK̇I ∩ IRI ⊆[RS ∩ T ⊆ (R ∩ TS◦)S]
K̇ ∩ (IR ∩ IK̇II◦)I ⊆[RS ∩ T ⊆ R(R◦T ∩ S)]
K̇ ∩ I(R ∩ I◦IK̇II◦)I =[I◦I = I]
K̇ ∩ I(R ∩ IK̇I)I

The opposite direction K̇ ∩ IRI ⊇ K̇ ∩ I(IK̇I ∩R)I is immediate.

Proof (Lem.8). We study critical pairs and prove that all the existing ones join.
Our systems have three critical pairs:

– m1 overlaps with p8, so using p8: K̇(ψ1) ∩ Im(K̇(ψ2)) P7−→ Im(Im(K̇(ψ1)) ∩
K̇(ψ2)) ∩ K̇(ψ1) P7−→ Im(K̇(∃m↑.ψ1) ∩ K̇(ψ2)) ∩ K̇(ψ1) P7−→ Im(K̇(∃m↑.ψ1 ∧
ψ2))∩K̇(ψ1) P7−→ K̇(∃m↑.(∃m↑.ψ1∧ψ2))∩K̇(ψ1) P7−→ K̇(∃m↑.(∃m↑.ψ1∧ψ2)∧
ψ1) which is logically equivalent to K̇(ψ1 ∧ ∃m↑.ψ2), that we obtain reducing
with m1.

– p1 overlaps with p5, so using p5: K̇(ψ)∩(0∪R) P7−→ (K̇(ψ)∩0)∪(K̇(ψ)∩R) P7−→
0 ∪ (K̇(ψ) ∩R) P7−→ K̇(ψ) ∩R, which is what we get using p1 directly.

– p7 overlaps with p8, and indeed this overlapping is not solvable without
assigning a priority to some of the rules. The overlapping term is of the
form K̇(ψ1) ∩ (K̇(ψ2) ∩W (q)), and as p7 has higher priority than p8 this is
rewritten to (K̇(ψ1)∩ K̇(ψ2))∩W (q) which leads to a non-problematic term
K̇(ψ1 ∧ ψ2) ∩W (q).

B Operational Equivalence

We prove that rewriting relational terms simulates “traditional” SLD proof search
specified as a transition-based operational semantics (i.e. [12,7]).

We proceed in two steps: we first define two intermediate transition systems
— internalizing renaming apart and the search tree — proving them equivalent.
Second, we show a simulation relation between the fully internalized transition
system and a transition system between relations, implemented by the rewriting
system of Sec. 4.

B.1 Operational Semantics in Logic Style for SLD-resolution

Before defining the Call-Return and Resolution transition systems, we define
the standard SLD semantics and extend the notion of General Purified Form
to program states. A program state is an ordered pair 〈A1, . . . , An| ϕ〉 where
A1, . . . , An is a sequence of atomic formulas or constraints known as the resolvent,
and ϕ is a constraint formula known as the constraint store. We write 2 for the
null resolvent, i.e. the empty sequence of formulas. We assume free variables in
the constraint store to be existentially quantified.

Definition 12. The standard transition system capturing SLD resolution is:

〈ϕ,p |ψ〉 cs−→l 〈p |ψ ∧ ϕ〉 iff D |= ψ ∧ ϕ
〈p(t[x]),p |ϕ〉 rescl−−−→l 〈q(v[σ(z)]),p |ϕ ∧ (u[σ(y)] = t[x])〉

where: cl : p(u[y])← q(v[z])
D |= ϕ ∧ (u[σ(y)] = t[x])
σ a renaming apart for y, z,x

We write GPF for general purified form. For a state Q, we write Q′ for its GPF
form, and for a program P , we write P ′ for its GPF form as defined in Sec. 3.

Definition 13. The GPF form of state 〈p(u[x]) |ϕ[x]〉 is 〈p(x′) |ϕ[x] ∧ x′ = u[x]〉,
with x = x1, . . . , xm, k = |u|, and x′ = xm+1, . . . , xm+k.

Lemma 12. Let ϕ be the constraint store of a state Q, and ϕ′ the constraint
store of Q′. Then, D |= ϕ iff D |= ϕ′.

Proof (Lem. 12). A consequence of soundness. Take a formula ∃x.ϕ, then, for x′
fresh, and any sequence of terms t from TΣ(X), ∃x.ϕ ⇐⇒ ∃x.ϕ ∧ t = t ⇐⇒
(∃x.ϕ ∧ x′ = t)[x′/t] ⇐⇒ ∃xx′.ϕ ∧ x′ = t.

Definition 14. We define an equivalence relation ≈D on states:

〈p(t[x1]) |ψ1[x1]〉 ≈D 〈p(t[x2]) |ψ2[x2]〉

iff D |= ∃x1 ψ1[x1] ⇐⇒ D |= ∃x2 ψ2[x2].

Lemma 13. Let Q1 ≈D R1. Q1 −→l Q2 iff for some state R2, R1 −→l R2 and
Q2 ≈D R2.

Proof (Lem. 13). Immediate consequence of the soundness of the constraint
solver. The same resolvent guarantees that the choice of every step is identical.
Then, for every step, either a resolution or a constraint one, we have ψ1 ⇐⇒ ψ2,
thus for a newly added constraint ϕ arising from either a resolution or a constraint
step, it is the case that ψ1 ∧ ϕ ⇐⇒ ψ2 ∧ ϕ.

Lemma 14 (GPF Equivalence). For a state Q1 and its GPF form Q′1:

– A derivation Q1
cs−→l Q2 exists iff Q′1

cs−→l C2 does and C2 ≈D Q′2.
– A derivation Q1

res−−→l Q2 exists iff Q′1
res−−→l C1

cs−→l C2 does and C2 ≈D Q′2.

Proof (Lem. 14). We annotate the number of variables in use in each constraint
store in order to help the reader to follow the proof. Let |x| = m, |u| = |x′| = k.
Recall that x′ = xm+1, . . . , xm+k then

Q1 = 〈p(u[x]) |ϕ[x]〉 [m]

Q′1 = 〈p(x′) |ϕ[x] ∧ x′ = u[x]〉 [m+k]

We know that Q1 ≈D Q′1, so a derivation will always exist for Q1 iff it exists for
Q′1. Now we check that Q′2 ≈ C2.

– If p1 ≡ ψ, then we have Q1
cs−→l Q2 and Q′1

cs−→l C2. The new states are:

Q2 = 〈p|2(u|2[x]) |ϕ[x] ∧ ψ〉 [m]

Q′2 = 〈p|2(x′) |ϕ[x] ∧ ψ ∧ x′ = u|2[x]〉 [m+k]

C2 = 〈p|2(x′) |ϕ[x] ∧ ψ ∧ x′ = u|2[x]〉 [m+k]

They are the same identical state given that we don’t purify constraints.
– If p1 is a defined predicate with clause:

cl : p1(t[y])← q(v[y])

cl′ : p1(xh) ← ∃m′h+1.((xh = t[xy] ∧ xv = v[xy]), q(xv))

Let j = |y|, xσ = xm+1, . . . , xm+j , j′ = j′1 + j′2, j′1 = |v| j′2 = |u|2|, x′q =
xm+j+1, . . . , xm+j+j′1

, x′p = xm+j+j′1+1, . . . , xm+j+j′ . The states Q2 and Q′2
arising from the derivation rules are:

Q2 = 〈q(v[xσ]),p|2(u|2[x]) |ϕ[x] ∧ u1[x] = t[xσ]〉 [m+j]

Q′2 = 〈q(x′q)),p|2(x′p) |ϕ[x] ∧ u1[x] = t[xσ] ∧ x′q = v[xσ] ∧ x′p = u|2[x]〉 [m+j+j’]

Let xhσ, etc. . . , the m+ k shifted vectors of variables arising from renaming
them apart from variables in Q′1. The states C1, C2 are:

C1 = 〈(xhσ = t[xyσ] ∧ xvσ = v[xyσ]), q(xvσ),p|2(x′|2)

| ϕ[x] ∧ x′ = u[x] ∧ xhσ = x′1〉 [m+k+m’]

C2 = 〈q(xvσ),p|2(x′|2)

| ϕ[x] ∧ x′ = u[x] ∧ xhσ = x′1 ∧ xhσ = t[xyσ] ∧ xvσ = v[xyσ]〉 [m+k+m’]

we will apply vector splitting and variable renaming to go from the constraint
store of C2 to the one belonging to Q′2. We omit the number of variables
used but the reader can easily check that the elimination preserves it.

ϕ[x] ∧ x′ = u[x] ∧ xhσ = x′1 ∧ xhσ = t[xyσ] ∧ xvσ = v[xyσ] ⇔
{x′ = x′1x

′
|2,u[x] = u1[x]u|2[x]}

ϕ[x] ∧ x′1 = u1[x] ∧ x′|2 = u|2[x] ∧ xhσ = x′1 ∧ xhσ = t[xyσ] ∧ xvσ = v[xyσ]⇔
{x′1,xhσ elimination}

ϕ[x] ∧ u1[x] = t[xyσ] ∧ xvσ = v[xyσ] ∧ x′|2 = u|2[x] ⇔
{renaming}

ϕ[x] ∧ u1[x] = t[xσ] ∧ x′q = v[xσ] ∧ x′p = u|2[x]

by soundness, C2 ≈D Q′2.

The derivation set of a state in GPF form is in direct correspondence to the
original one, and reachable answers coincide up to logical equivalence:

Theorem 4. Q −→l . . . −→l 〈2 |ϕ〉 iff Q′ −→l . . . −→l 〈2 |ϕ′〉 and 〈2 |ϕ〉 ≈D
〈2 |ϕ′〉.

Call-Return Transition System Prior to using a predicate definition in proof
search, renaming apart must be performed in order to avoid clashes. In resolution
we often have a constraint ∃x.ϕ[zx] that should be combined with ∃y.ψ[zy] to
obtain a new constraint ∃xyσ.(ϕ[zx] ∧ ψ[zyσ]) with yσ = σx(y) a renaming
apart of y for x. Note however that we can use the logically equivalent formula
(∃x.ϕ[x]) ∧ (∃y.ψ[y]). We will use the last form to capture renaming apart.
Doing so requires a carefully chosen canonical naming scheme and the use of the
variables z to propagate constraints outside the scope of the quantifiers.

We will keep track of “local” versus “global” variables using a cut-off index
n. Then, we will existentially quantify variables with index greater than n to
preserve local scope. To this end we define an extended notion of state that
reflects the index and is closed under sub-states.

Definition 15. The set CS of call-return states is defined inductively as:
– 〈p |ϕ[x]〉n, where pi ≡ Pi(xi) is an atom or pi ≡ ψ a constraint, xi a vector
of variables, n a natural number, and ϕ[x] a constraint store.

–
〈π
CS,p |ϕ[x]

〉
n
, where CS is a call-return state, π is a permutation, p a

vector of atoms similar to the previous case, n a natural number and ϕ[x] a
constraint store.

n captures the number of arguments involved in a predicate call and π captures
a permutation of variables local to the state that will undone upon return.
Thanks to the canonical naming scheme, the head of every clause is of the form
p(x1, . . . , xn). Then, the call transition will appropriately permute the current
constraint store so that the right constraints are placed on p’s variables. We
define constraint store operators ∆ and ∇ for the call and return manipulations.

∆π
n(ϕ) ≡ ∃n↑.π(ϕ) ∇πn(ϕ,ψ) ≡ ψ ∧ π-1(∃n↑. ϕ)

∆π
n(ϕ) may be read as “modify ϕ to be placed in a context with n open variables

and permutation π”. ∇πn(ϕ,ψ) may be read as “merge constraint ϕ with scope
(π, n) with ψ”. With these in place, we get a new transition system logically
formalizing predicate call, capturing in a logical way the notion of call-frame of
most Prolog implementations:

Definition 16. The Call-Return transition system is:

〈ψ,p |ϕ〉n
constraint−−−−−−−→cr 〈p |ϕ ∧ ψ〉n

if p1 ≡ ψ and ϕ ∧ ψ satisfiable

〈p(x1),p |ϕ〉n
call/cli−−−−−→cr

〈π〈q |∆π
h(ϕ)〉h,p |ϕ

〉
n

if cli : p(xh)← ∃h↑.q ∈ P ′ and π(x1) = xh〈π〈2 |ψ〉m,p |ϕ〉n return−−−−→cr 〈p | ∇πm(ψ,ϕ)〉n〈π
PS ,p |ϕ

〉
n

sub−−→cr

〈π
PS ′,p |ϕ

〉
n

if PS 6= 〈2 |ϕ′〉h, and PS −→p PS
′

The call-return transition system is equivalent to the standard one.

Lemma 15. Write p|2 for subsequence of p starting at the second element. Then,
given a GPF state Q1 = 〈p1(x1),p|2(x) |ϕ〉n and program P :

Q1 −→l . . . −→l 〈p|2(x) |ϕ′〉n ⇐⇒ Q1 −→cr . . . −→cr 〈p|2(x) |ϕ′′〉n
with 〈p|2(x) |ϕ′〉n ≈D 〈p|2(x) |ϕ′′〉n

It is easily seen that this implies:

Q1 −→l . . . −→l 〈2 |ϕ′〉n ⇐⇒ Q1 −→cr . . . −→cr 〈2 |ϕ′′〉n ϕ′ ⇐⇒ ϕ′′

Proof (Lem. 15). By induction over the length of the first derivation. They key
point of the proof is to research the behavior the new sub-state notion induces.

Base Case: The base case is a derivation of length 1, corresponding either to a
constraint step or a empty clause p1(xh)← .

– If p is a constraint, the proof is immediate as the constraint transition is the
same in both systems.

– If p is a defined predicate with empty clause, then the proof is also immediate
as the transition for the first system is:

〈p(xp),p(x) |ϕ〉n
res−−→l

〈p(x) |ϕ ∧ xhσ = xp〉n

and for the call-return one is:

〈p(xp),p(x) |ϕ〉n
call−−→cr〈π〈2 | ∃h↑.π(ϕ)〉h,p |ϕ

〉
n

return−−−−→cr

〈p |ϕ ∧ π-1(∃h↑.∃h↑.π(ϕ))〉n

(ϕ ∧ π-1(∃h↑.∃h↑.π(ϕ)))⇔ ϕ and (ϕ ∧ xhσ = xp)⇔ ϕ, completing the proof.

Inductive Case: The inductive case is when p1 is a defined predicate with a
non-empty clause:

p1(xh)← ∃nm.q(x′).

Note that the x occurring in the states and in the clause are different, we will
use x′ for the one coming from the clause, but it is also a sequence x1, . . . , xn. x
and x′ only differ in length. We have a derivation of length i+ 1. The derivations
for both transition systems are:

〈p(x) |ϕ[x]〉 →r 〈q(xσ),p|2(x) |ϕ[x] ∧ x1 = xhσ〉
i︷ ︸︸ ︷

→ · · · →〈p|2(x) |ϕ[x] ∧ x1 = xhσ ∧ ϕ′[xσ]〉

〈p(x) |ϕ[x]〉m
call−−→cr

〈π〈q(x′) | ∃h↑.π(ϕ[x])〉h,p|2 |ϕ[x]
〉
m

i′︷ ︸︸ ︷
→ · · · →〈π〈2 | ∃h↑.π(ϕ[x]) ∧ ϕ′[x′]〉h,p|2 |ϕ[x]

〉
m

return−−−−→cr

〈p|2(x) |ϕ[x] ∧ π-1(∃h↑.(∃h↑.π(ϕ[x]) ∧ ϕ′(x′)))〉m
with π(x1). We must be able to apply the induction hypothesis for the derivations
of length i and i′, which amounts to checking equivalence of the substate with a
restricted notion of the second one. Then, we must check logical equivalence of
the resulting constraint store after return.

We use the fact that derivations for the first atom or constraint of a resolvent
don’t depend on the rest of it:

〈p(x) |ϕ[x]〉 −→l . . . −→l 〈2,p|2(x) |ϕ[x] ∧ ϕ′[x1]〉 iff
〈p1(x1) |ϕ[x]〉 −→l . . . −→l 〈2 |ϕ[x] ∧ ϕ′[x1]〉

Then, we check the equivalence of the two states:

〈q(x′) | ∃h↑.π(ϕ[x])〉 ≈D 〈q(xσ) |ϕ[x] ∧ x1 = xhσ〉

Thus, the precise statement needed to prove state equivalence is:

∃x′.∃h↑.π(ϕ[x]) ⇐⇒ ∃xxσ.(ϕ[x] ∧ x1 = xhσ)

Let m = |x| and k = |x′|. Thus x = x1, . . . , xm, x′ = x1, . . . , xk and xσ =
xm+1, . . . , xm+k. The captured variables inside the ∃h↑ quantifier are xh+1, . . . , xm.
Let xr = x/x1. Then, π(x) = x1, . . . , xh, π(xr). Renaming apart π(xr) to
xr′ = xk+1, . . . , xk+m we can eliminate the inner quantifier:

∃x′xr′ .ϕ[xhxr′] ⇐⇒ ∃xxσ.(ϕ[x] ∧ x1 = xhσ)

This will match x′ to xσ, but xr′ is missing h variables. If we add h new variables
xh′ and add the equation xh′ = xh we get the desired equivalence:

∃x′xr′xh′ .(ϕ[xhxr′] ∧ xh′ = xh) ⇐⇒ ∃xxσ.(ϕ[x] ∧ x1 = xhσ)

We apply the induction hypothesis. Actually, we are applying induction as
many times as elements or constraints q has. We could recast this lemma to
make this fact more explicit:

〈p(x) |ϕ〉
i︷ ︸︸ ︷

→ · · · →〈2,p|2(x) |ϕ′〉
j︷ ︸︸ ︷

→ · · · →〈2 |ϕ′′〉

but we think the current presentation is clearer.
After applying the induction hypothesis, the following equivalence remains to

be proven:

∃xxσ.(ϕ[x]∧x1 = xhσ∧ϕ′[xσ]) ⇐⇒ ∃x.(ϕ[x]∧π-1(∃h↑.(∃h↑.π(ϕ[x])∧ϕ′(x′))))

We focus on the formula on the right. Similarly to the previous case, we apply
the permutation using the knowledge of the variables involved:

∃x.(ϕ[x] ∧ ∃x′/x1.(ϕ
′(π-1(x′)) ∧ ∃x′/x1(ϕ[x]))))

Renaming apart x′ and adding the new variables needed with their corresponding
equations, we get:

∃xxσ.(ϕ[x] ∧ x1 = xhσ ∧ ϕ′[xσ] ∧ ∃x′/x1(ϕ[x]))

which is clearly equivalent to:

∃xxσ.(ϕ[x] ∧ x1 = xhσ ∧ ϕ′[xσ])

This concludes the proof.

Folding of SLD derivations We extend call-return states to internalize the
proof-search tree. The set of possible derivations from a CS state is folded into
a single one between resolution states, an extension of our previous states with
a parallel constructor (PS1 PS2). Making failure explicit is necessary, so we
introduce a new 〈fail〉 state. A resolution state captures all the meta-theory of
constraint logic programming except recursion, which operates meta-logically by
grafting predicate symbols onto their definitions.

Definition 17. The set PS of resolution states is inductively defined as:
– 〈fail〉.
– 〈p |ϕ〉n, where pi ≡ Pi(xi) is an atom, or a constraint pi ≡ ψ, xi a vector
of variables, ϕ a constraint store and n a natural number.

–
〈π

PS ,p |ϕ
〉
n
, where PS is a resolution state, and π a permutation.

–
〈π
� PS ,p |ϕ

〉
n
, the “select state”. It represents the state just before selecting

a clause to proceed with proof search.
–
(
PS 1 PS 2

)
. Parallel composition: captures choice in the proof search tree.

The key point of the resolution transition system is to split a resolution step into
two tasks: clause selection and parameter passing.

Definition 18. The resolution transition system →P⊆ (PS × PS) is shown in
Fig. 7.

The main property of this system is the internalization of the SLD search strategy.

〈ψ,p |ϕ〉n
constraint−−−−−−−→p 〈p |ϕ ∧ ψ〉n

〈ψ,p |ϕ〉n
fail−−→p 〈fail〉

if ϕ ∧ ψ is not satisfiable

〈p(x),p |ϕ〉n
call−−→p

〈π� (〈q1 | >〉h . . . 〈qk | >〉h),p |ϕ
〉
n

if p(xh)← ∃h↑.(q1 ∨ . . . ∨ qk) ∈ P ′, π(x) = xh〈π� (
〈q |ψ〉h PS

)
,p |ϕ

〉
n

select−−−−→p

(〈π〈q |ψ ∧∆π
h(ϕ)〉h,p |ϕ

〉
n

〈π� PS ,p |ϕ
〉
n

)〈π〈2 |ψ〉h,p |ϕ〉n return−−−−→p 〈p |∇πh(ψ,ϕ)〉n〈π〈fail〉,p |ϕ〉
n

return−−−−→p 〈fail〉〈π
PS ,p |ϕ

〉
n

sub−−→p

〈π
PS ′,p |ϕ

〉
n

if PS 6= 〈2 |ψ〉n, PS 6= 〈fail〉, and PS −→p PS ′(
〈fail〉 PS

) backtrack−−−−−−→p PS(
PS1 PS2

) seq−−→p

(
PS′1 PS2

)
if PS 6= 〈fail〉, and PS1 −→p PS ′1

(We omit the case in select where the left side has no PS component which happens
when the number of clauses for a given predicate is one (k = 1))

Fig. 7. Resolution Transition System

Lemma 16 (Clause Selection). Suppose we are given a set of clauses:

cl1 : p(xh)← ∃h↑.q cl2 : p(xh)← ∃h↑.r

and a state 〈p(x),p |ϕ〉. The derivation set using the call-return system is: 〈p(x),p |ϕ〉n
call/cl1−−−−−→cr

〈π〈q |∆π
h(ϕ)〉h,p |ϕ

〉
n
−→cr/

〈p(x),p |ϕ〉n
call/cl2−−−−−→cr

〈π〈r |∆π
h(ϕ)〉h,p |ϕ

〉
n

constraint−−−−−−−→cr

〈π〈r|2 | r1 ∧∆π
h(ϕ)〉h,p |ϕ

〉
n


iff the derivation in the resolution system is:

〈p(x),p |ϕ〉n −→p . . . −→p

〈π〈r|2 | r1 ∧∆π
h(ϕ)〉h,p |ϕ

〉
n

Proof (Lem. 16). The derivation set is only possible if q1∧∆π
h(ϕ) is not satisfiable.

We check the transitions using −→p (we label sub and seq transitions with the
actual atomic ones):

〈p(x) |ϕ〉n
call−−→p

〈π
� (〈q | >〉h 〈r | >〉h),p |ϕ

〉
n

select−−−−→p(〈π〈q |∆π
h(ϕ)〉h,p |ϕ

〉
n

〈π
� 〈r | >〉h,p |ϕ

〉
n

) fail−−→p(〈π〈fail〉,p |ϕ〉 〈π� 〈r | >〉,p |ϕ〉) return−−−−→p

(
〈fail〉

〈π
� 〈r | >〉,p |ϕ

〉) backtrack−−−−−−→p〈π
� 〈r | >〉,p |ϕ

〉 select−−−−→p

〈π〈r |∆π
h(ϕ)〉h,p |ϕ

〉
n

constraint−−−−−−−→cr

〈π〈r|2 | r1 ∧∆π
h(ϕ)〉h,p |ϕ

〉
n

Clearly, if −→p could carry out any other transition the derivation set would be
different.

Lemma 17 (Backtracking). For a set of clauses:

cl1 : p(xh)← ∃h↑.q(x1), q cl3 : q(xi)← ∃i↑.s
cl2 : p(xh)← ∃h↑.r(x2), r cl4 : r(xj)← ∃j↑.t

and a state 〈p(x),p |ϕ〉, the derivation set using the call-return system is:

〈p(x),p |ϕ〉n
call/cl1−−−−−→cr

〈π〈q(x1), q |∆π
h(ϕ)〉h,p |ϕ

〉
n

call/cl3−−−−−→cr〈π〈π1〈s |∆π1
i (∆π

h(ϕ))〉h, q |∆π
h(ϕ)

〉
,p |ϕ

〉
n
−→cr/

〈p(x),p |ϕ〉n
call/cl2−−−−−→cr

〈π〈r(x2), r |∆π
h(ϕ)〉h,p |ϕ

〉
n

call/cl4−−−−−→cr〈π〈π2〈t |∆π2
j (∆π

h(ϕ))〉h, r |∆π
h(ϕ)

〉
,p |ϕ

〉
n

constraint−−−−−−−→cr〈π〈π2〈t|2 | t1 ∧∆π2
j (∆π

h(ϕ))〉h, r |∆π
h(ϕ)

〉
,p |ϕ

〉
n


iff the derivation using the resolution system is:

〈p(x),p |ϕ〉n −→p . . . −→p

〈π〈π2〈t|2 | t1 ∧∆π2
j (∆π

h(ϕ))〉h, r |∆π
h(ϕ)

〉
,p |ϕ

〉
n

Proof (Lem. 17). We check the transitions as in the previous lemma.

〈p(x),p |ϕ〉n
call−−→p

〈π
� (〈q(x1), q | >〉h 〈r(x2), r | >〉h),p |ϕ

〉
n

select−−−−→p(〈π〈q(x1), q |∆π
h(ϕ)〉h,p |ϕ

〉
n

〈π
� 〈r(x2), r | >〉h,p |ϕ

〉
n

) call−−→p(〈π〈π1〈s |∆π1
i (∆π

h(ϕ))〉h, q |∆π
h(ϕ)

〉
,p |ϕ

〉
n

〈π
� 〈r(x2), r | >〉h,p |ϕ

〉
n

) fail−−→p(〈π〈π1〈fail〉, q |∆π
h(ϕ)

〉
,p |ϕ

〉
n

〈π
� 〈r(x2), r | >〉h,p |ϕ

〉
n

) return−−−−→p(〈π〈fail〉,p |ϕ〉
n

〈π
� 〈r(x2), r | >〉h,p |ϕ

〉
n

) return−−−−→p

(
〈fail〉

〈π
� 〈r(x2), r | >〉h,p |ϕ

〉
n

)
backtrack−−−−−−→p

〈π
� 〈r(x2), r | >〉h,p |ϕ

〉
n

select−−−−→p

〈π〈r(x2), r |∆π
h(ϕ)〉h,p |ϕ

〉
n

call−−→p〈π〈π2〈t |∆π2
j (∆π

h(ϕ))〉h, r |∆π
h(ϕ)

〉
,p |ϕ

〉
n

constraint−−−−−−−→p〈π〈π2〈t|2 | t1 ∧∆π2
j (∆π

h(ϕ))〉h, r |∆π
h(ϕ)

〉
,p |ϕ

〉
n

Lemma 18. For all queries 〈p |ϕ〉n, the first −→cr successful derivation using a
SLD strategy uniquely corresponds to a −→p derivation:

〈p |ϕ〉n −→cr . . . −→cr 〈2 |ϕ′〉n ⇐⇒ 〈p |ϕ〉n −→p . . . −→p

(
〈2 |ϕ′〉n PS

)
Proof. By induction over the length of the successful derivation, repeatedly
applying Lem. 16 and Lem. 17.

Theorem 5. The transition systems of Def. 12 and Fig. 7 are answer-equivalent:
for any query they return the same answer constraint.

Proof (Thm. 5). The standard transition system is equivalent to the call-return
system by Lem. 14 and Lem. 15. The call-return system is equivalent to the
resolution transition system by Cor. 18.

B.2 Relational Operational Semantics for SLD-resolution

The rewriting system of Sec. 4.2 is too fine-grained to be directly related to the
resolution operational semantics. We use a set RS of relational states and a
transition system over them that simulates the resolution system. We use the
helper notation

−−−−→
W (p)∩ ≡ R1 ∩ . . . ∩Rn, where Ri ≡ K̇(ϕi) or Ri ≡Wπi(pi).

Definition 19. The set RS of relational states is inductively defined as:

– 0, failure.
– In(K̇(ϕ) ∩

−−−−→
W (p̄)∩), base query, n, ϕ, p parameters.

– In(W ◦π (K̇(ϕ) ∩ RS) ∩
−−−−→
W (p̄)∩), selection, n, π, ϕ, p, RS parameters.

– In(W ◦π (RS ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩), subquery, n, π, ϕ, p, RS parameters.

– (RS 1 ∪ RS 2), parallel, RS 1, RS 2 parameters.

Recall that a predicate p is translated to a relational term such that we have the
equation p $ Θ1 ∪ · · · ∪Θk, and Θi = Iα(p)(K̇(ϕi) ∩

−−−−→
W (q)∩).

Definition 20. The transition system for relational states is defined by the rules
of Fig. 8.

In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩)

constraint−−−−−−−→r In(K̇(ϕ ∧ ψ) ∩
−−−−→
W (p̄)∩)

if ϕ ∧ ψ satisfiable

In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩)

fail−−→r 0

if ϕ ∧ ψ not satisfiable

In((K̇(ϕ) ∩Wπ(p)) ∩
−−−−→
W (p)∩)

call−−→r In(W ◦π (K̇(π(ϕ)) ∩Θ) ∩
−−−−→
W (p)∩)

with p $ Θ

In(W ◦π (K̇(ϕ) ∩ (Θ1 ∪Θ)) ∩
−−−−→
W (p̄)∩)

select−−−−→r In(W ◦π (Θ′1 ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩) ∪

In(W ◦π (K̇(ϕ) ∩Θ) ∩
−−−−→
W (p̄)∩)

Θ1 ≡ Im(
−−−−→
W (q)∩)

Θ′1 ≡ Im(K̇(∃m↑.ϕ) ∩
−−−−→
W (q)∩)

In(W ◦π (Im(K̇(ϕ1)) ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩)

return−−−−→r In(K̇(π-1(ϕ ∧ (∃m↑. ϕ1))) ∩
−−−−→
W (p̄)∩)

In(W ◦π (0 ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩)

return−−−−→r 0

In(W ◦π (RS ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩)

sub−−→r In(W ◦π (RS ′ ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩)

if RS −→r RS
′

(0 ∪ RS)
backtrack−−−−−−→r RS

(RS1 ∪ RS2)
seq−−→r (RS ′1 ∪ RS2)

if RS1 −→r RS
′
1

Fig. 8. Relational Transition Rules

B.3 The Equivalence

We define an isomorphism between logical and relational states. It is straight-
forward to check that both transition systems are equivalent, that is to say, the
isomorphism is a simulation between them. The last step is to check that the
rewriting system of Sec. 4.2 implements the relational transition system, which
gives a proof of completeness.

Definition 21. We define functions R : PS → RS and R-1 : RS → PS by
induction over the structure of the states:

R(〈fail〉) = 0

R(〈p |ϕ〉n) = In(K̇(ϕ) ∩
−−−−→
W (p̄)∩)

R(
〈π
� PS ,p |ϕ

〉
n
) = In(W ◦π (K̇(π(ϕ)) ∩ R(PS)) ∩

−−−−→
W (p̄)∩)

R(
〈π

PS ,p |ϕ
〉
n
) = In(W ◦π (R(PS) ∩ K̇(π(ϕ))) ∩

−−−−→
W (p̄)∩)

R(
(
PS 1 PS 2

)
) = (R(PS 1) ∪ R(PS 2))

p is in purified form, so each element pi of p corresponds to a relational term
K̇(ϕi) or Wπi(Pi). R-1 is defined as:

R-1(0) = 〈fail〉
R-1(In(K̇(ϕ) ∩

−−−−→
W (p̄)∩)) = 〈p |ϕ〉n

R-1(In(W ◦π (K̇(ϕ) ∩ RS) ∩
−−−−→
W (p̄)∩)) =

〈π
� R-1(RS),p |π-1(ϕ)

〉
n

R-1(In(W ◦π (RS ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩)) =

〈π
R-1(RS),p |π-1(ϕ)

〉
n

R-1((RS 1 ∪ RS 2)) =
(
R-1(RS 1) R-1(RS 2)

)
Note that R is an extension of the translation function of Sec. 4.2, and an
isomorphism.

Lemma 19. R is an isomorphism.

Proof (Lem. 19). By induction over the structure of the states. For the failure,
base and parallel states the proof is immediate. We check the subquery case:

R-1(R(
〈π

PS ,p |ϕ
〉
n
)) = R-1(In(W ◦π (R(PS) ∩ K̇(π(ϕ))) ∩

−−−−→
W (p̄)∩)) =〈π

R-1(R(PS)),p |π-1(π(ϕ))
〉
n

={IH}
〈π

PS ,p |ϕ
〉
n

and the select case:

R-1(R(
〈π
� PS ,p |ϕ

〉
n
)) = R-1(In(W ◦π (K̇(π(ϕ)) ∩ R(PS)) ∩

−−−−→
W (p̄)∩)) =〈π

� R-1(R(PS)),p |π-1(π(ϕ))
〉
n

={IH}
〈π
� PS ,p |ϕ

〉
n

Lemma 20. R is a simulation between the resolution transition system of Fig. 7
and the relational transition system of Fig. 8.

Proof (Lem. 20). We check that the relation R ⊆ (PS × RS) induced by the
isomorphism R is a simulation relation, that is to say:

∀RS ,PS . (PS ,RS) ∈ R⇒ ((PS −→p PS
′ ⇐⇒ RS −→r RS

′) ∧ (PS ′,RS ′) ∈ R)

Given the one to one nature of our relation and the fact that the transition
systems are deterministic, the truth of the above statement can be reduced to
checking that any of the following properties:

PS −→p PS
′ ⇒ R(PS) −→r R(PS ′)

RS −→r RS
′ ⇒ R-1(PS) −→p R

-1(PS ′)

holds for every transition of the system. Note that one case implies the other. We
check the non-obvious transitions constraint, fail, call, select, and return. In order
to help the reader, we show both transitions, then perform the check outlined
above.
• constraint:

〈ψ,p |ϕ〉n
constraint−−−−−−−→p 〈p |ϕ ∧ ψ〉n

In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩)

constraint−−−−−−−→r In(K̇(ϕ ∧ ψ) ∩
−−−−→
W (p̄)∩)

and the corresponding check:

R(〈ψ,p |ϕ〉n) = In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩)

constraint−−−−−−−→r

In(K̇(ϕ ∧ ψ) ∩
−−−−→
W (p̄)∩) = R(〈p |ϕ ∧ ψ〉n)

• fail:

〈ψ,p |ϕ〉n
fail−−→p 〈fail〉

if ϕ ∧ ψ is not satisfiable

In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩)

fail−−→r 0

the simulation check is:

R(〈ψ,p |ϕ〉n) = In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩)

fail−−→r

0 = R(〈fail〉)

• call:

〈p(x),p |ϕ〉n
call−−→p

〈π
� (〈q1 | >〉h . . . 〈qk | >〉h),p |ϕ

〉
n

if p(xh)← ∃h↑.(q1 ∨ . . . ∨ qk) ∈ P ′, π(x) = xh

In((K̇(ϕ) ∩Wπ(p)) ∩
−−−−→
W (p)∩)

call−−→r In(W ◦π (K̇(π(ϕ)) ∩Θ) ∩
−−−−→
W (p)∩)

with p = Θ

R(〈qi | >〉h) = Ih(
−−−−−→
W (qi)∩) ≡ Θi, thus R((〈q1 | >〉h . . . 〈qk | >〉h)) = Θ1 ∪ · · · ∪

Θk ≡ Θ. The check is:

R(〈p |ϕ〉n) = In(K̇(ϕ) ∩
−−−−→
W (p̄)∩)

call−−→r

In(W ◦π (K̇(π(ϕ)) ∩Θ) ∩
−−−−→
W (p)∩) = R(

〈π
� (〈q1 | >〉h . . . 〈qk | >〉h),p |ϕ

〉
n
)

• select:〈π
� (〈q | >〉h PS),p |ϕ

〉
n

select−−−−→p

(〈π〈q |∆π
h(ϕ)〉h,p |ϕ

〉
n

〈π
� PS ,p |ϕ

〉
n

)
In(W ◦π (K̇(ϕ) ∩ (Θ1 ∪Θ)) ∩

−−−−→
W (p̄)∩)

select−−−−→r In(W ◦π (Θ′1 ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩) ∪

In(W ◦π (K̇(ϕ) ∩Θ) ∩
−−−−→
W (p̄)∩)

Θ1 ≡ Im(
−−−−→
W (q)∩)

Θ′1 ≡ Im(K̇(∃m↑.ϕ) ∩
−−−−→
W (q)∩)

The check is:

R(
〈π
� (〈q | >〉h PS),p |ϕ

〉
n
) = In(W ◦π (K̇(ϕ) ∩ (Ih(

−−−−→
W (q)∩) ∪ R(PS))) ∩

−−−−→
W (p̄)∩)

select−−−−→p

In(W ◦π (Ih(K̇(∃m↑.ϕ) ∩
−−−−→
W (q)∩) ∩ K̇(π(ϕ))) ∩

−−−−→
W (p̄)∩) ∪

In(W ◦π (K̇(π(ϕ)) ∩ R(PS)) ∩
−−−−→
W (p̄)∩) = R(

(〈π〈q |∆π
h(ϕ)〉h,p |ϕ

〉
n

〈π
� PS ,p |ϕ

〉
n

)
)

• return:〈π〈2 |ψ〉h,p |ϕ〉n return−−−−→p 〈p | ∇πh(ψ,ϕ)〉n
In(W ◦π (Im(K̇(ψ)) ∩ K̇(ϕ)) ∩

−−−−→
W (p̄)∩)

return−−−−→r In(K̇(π-1(ϕ ∧ (∃m↑. ψ))) ∩
−−−−→
W (p̄)∩)

the check:

R(
〈π〈2 |ψ〉h,p |ϕ〉n) = In(W ◦π (Im(K̇(ψ)) ∩ K̇(π(ϕ))) ∩

−−−−→
W (p̄)∩)

return−−−−→p

In(K̇(π-1(π(ϕ) ∧ (∃m↑. ψ))) ∩
−−−−→
W (p̄)∩) = In(K̇(ϕ ∧ π-1(∃m↑. ψ)) ∩

−−−−→
W (p̄)∩) =

R(〈p | ∇πn(ϕ,ψ)〉)

• return second case:〈π〈fail〉,p |ϕ〉
n

return−−−−→p 〈fail〉
In(W ◦π (0 ∩ K̇(ϕ)) ∩

−−−−→
W (p̄)∩)

return−−−−→r 0

is immediate.

The last step of the proof is checking that the transition relation is properly
embedded into the rewriting relation.

Lemma 21. The relational transition system of Fig. 8 is implemented by the
rewriting system of Fig. 5 That is to say, for every transition (r1, r2) ∈ (−→r),

∃n.(r1, r2) ∈ (P7−→)n ∧ ∀r3.(r1, r3) ∈ (P7−→)n ⇒ r2 = r3

Proof (Lem. 21). Given that our rewriting system is locally confluent, we can
easily check that the transition system is just a collapsing of a particular rewriting
chain, omitting uninteresting states. We check the most relevant transitions
constraint, fail, call, select and return.
• constraint:

In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩)

constraint−−−−−−−→r In(K̇(ϕ ∧ ψ) ∩
−−−−→
W (p̄)∩)

This transition is implemented by the rewriting rule m3.
• fail:

In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩)

fail−−→r 0

This transition is implemented by the rewriting chain:

In((K̇(ϕ) ∩ K̇(ψ)) ∩
−−−−→
W (p)∩) P7−→ (m3∗)

In(0 ∩
−−−−→
W (p)∩) P7−→ (p2)

In(0) P7−→ (m1∗)
0

• call:

In((K̇(ϕ) ∩Wπ(p)) ∩
−−−−→
W (p)∩)

call−−→r In(W ◦π (K̇(π(ϕ)) ∩Θ) ∩
−−−−→
W (p)∩)

with p = Θ

the transition is implemented by the rewriting chain:

In((K̇(ϕ) ∩Wπ(p)) ∩
−−−−→
W (p)∩) P7−→ (p8)

In(Wπ(W ◦π (K̇(ϕ)) ∩ p) ∩
−−−−→
W (p)∩) P7−→ (m2)

In(Wπ(K̇(π(ϕ)) ∩ p) ∩
−−−−→
W (p)∩) P7−→ (m4)

In(W ◦π (K̇(π(ϕ)) ∩Θ) ∩
−−−−→
W (p)∩)

• select:

In(W ◦π (K̇(ϕ) ∩ (Θ1 ∪Θ)) ∩
−−−−→
W (p̄)∩)

select−−−−→r In(W ◦π (Θ′1 ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩) ∪

In(W ◦π (K̇(ϕ) ∩Θ) ∩
−−−−→
W (p̄)∩)

Θ1 ≡ Im(
−−−−→
W (q)∩)

Θ′1 ≡ Im(K̇(∃m↑.ϕ) ∩
−−−−→
W (q)∩)

This transition is implemented by the rewriting chain:

In(W ◦π (K̇(ϕ) ∩ (Θ1 ∪Θ)) ∩
−−−−→
W (p)∩) P7−→ (p6)

In(W ◦π ((K̇(ϕ) ∩Θ1) ∪ (K̇(ϕ) ∩Θ)) ∩
−−−−→
W (p)∩) P7−→ (p3)

In((W ◦π (K̇(ϕ) ∩Θ1) ∪W ◦π (K̇(ϕ) ∩Θ)) ∩
−−−−→
W (p)∩) P7−→ (p5)

In((W ◦π (K̇(ϕ) ∩Θ1) ∩
−−−−→
W (p)∩) ∪ (W ◦π (K̇(ϕ) ∩Θ) ∩

−−−−→
W (p)∩)) P7−→ (p4)

In(W ◦π (K̇(ϕ) ∩Θ1) ∩
−−−−→
W (p)∩) ∪ In(W ◦π (K̇(ϕ) ∩Θ) ∩

−−−−→
W (p)∩) P7−→ (p9)

In(W ◦π (Im(Im(K̇(ϕ)) ∩
−−−−→
W (q)∩) ∩ K̇(ϕ)) ∩

−−−−→
W (p)∩) ∪ In(W ◦π (K̇(ϕ) ∩Θ) ∩

−−−−→
W (p)∩) P7−→ (m1)

In(W ◦π (Im(K̇(∃m↑. ϕ) ∩
−−−−→
W (q)∩) ∩ K̇(ϕ)) ∩

−−−−→
W (p)∩) ∪ In(W ◦π (K̇(ϕ) ∩Θ) ∩

−−−−→
W (p)∩)

• return:

In(W ◦π (Im(K̇(ψ)) ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩)

return−−−−→r In(K̇(π-1(ϕ ∧ (∃m↑. ψ))) ∩
−−−−→
W (p̄)∩)

the transition is implemented by the rewriting chain:

In(W ◦π (Im(K̇(ψ)) ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩) P7−→ (m1)

In(W ◦π (K̇(∃m↑. ψ) ∩ K̇(ϕ)) ∩
−−−−→
W (p)∩

P7−→ (m3)

In(W ◦π (K̇(∃m↑. ψ ∧ ϕ)) ∩
−−−−→
W (p)∩

P7−→ (m2)

In(K̇(π-1(∃m↑. ψ ∧ ϕ)) ∩
−−−−→
W (p)∩

• return second case:

In(W ◦π (0 ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩)

return−−−−→r 0

the transition is implemented by the rewriting chain:

In(W ◦π (0 ∩ K̇(ϕ)) ∩
−−−−→
W (p̄)∩) P7−→ (p2)

In(W ◦π (0) ∩
−−−−→
W (p)∩) P7−→ (m2∗)

In(0 ∩
−−−−→
W (p)∩) P7−→ (p2)

In(0) P7−→ (m1∗)
0

The sub and seq rules are a consequence of the rewriting strategy used.

Thus, relation rewriting will return an answer constraint K(ϕ) iff SLD resolu-
tion reaches a state 〈2 |ϕ′〉 and ϕ ⇐⇒ ϕ′.

Theorem 6. The rewriting system simulates SLD-resolution.

Proof (Thm. 3). By Lem. 21 and Theorem 5. Indeed, when SLD-resolution
diverges, the relational rewriting system does so in the same way.

	Declarative Compilation for Constraint Logic Programming

