
Validation of Autonomous Concepts using the ATHENA Environment 

Christophe Guettier(1), Bruno Patin(2), Jean-François Tilman(3) 

(1)Xerox Corporation 
Palo Alto Research Center 

3333 Coyote Hill Road 
Palo Alto CA 94022 

Email: guettier@xerox.parc.com 
 

(2)Dassault Aviation, 
78, quai Marcel Dassault 

92552 Saint-Cloud, France 
Email: bruno.patin@dassault-aviation.fr 

 
(3)Axlog Ingénierie 

19-21, rue du 8 mai 1945 
94110 Arcueil, France 

Email: jean-francois.tilman@axlog.fr 
1 INTRODUCTION  

ATHENA is a simulation framework f or supporting a prototyping design process of autonomous systems, such as 
unmanned aerial vehicles (UAV), unmanned undersea vehicles (UUV) or Autonomous Spacecraft Constellations 
(ASC). The use of several autonomous systems in the same command and control loops has become a challenge for 
both aeronautic and space industries through UAV (Fig. 1) and ASC. First, those systems must fulfil classical system 
engineering requirements such as timeliness, reliability, safety or survivability. Second, they must achieve difficult 
operations that are traditionally relying on human intelligence. The need for an in-situation tool supporting autonomous 
strategies verification and validation is fundamental for the design of these systems. The simulation framework 
ATHENA has been specifically designed for rapid prototyping and user-friendly assessment of automatic reasoning 
methods and multi-agent architectures relevant to the autonomy problems. Such a framework must be generic to a great 
number of domains and its own design modular enough in order to prototype both the assemblage of autonomous 
systems and their environments. 

The state of the art in multi -agent systems provides interesting concepts for combining leading-edge automatic 
reasoning (based on constraint programming, Boolean solving) and distributed systems. This field of investigation has 
been the subject of many promising experiences for management autonomous unmanned vehicles.  

To behave with limited human supervision, an autonomous agent must construct abstract representations of its own 
environment and situation. Based on this knowledge, the system can reason on its own behaviour in order to react 
efficiently and safely. Furthermore, the increasing complexity of those on-board systems gained an order of magnitude 
by considering complex coordination and collaboration schema for managing autonomously a set of vehicles. Then, an 
agent must also consider other agents situation and behaviour, leading to coordination and collaboration protocols 
involving knowledge maintenance and revision. Lastly, distributed algorithms must support the execution of those high-
level decisional protocols. 

This work was initiated and firstly funded by Dassault Aviation. A club was created in order to support the generic 
development. Three companies are involved in it, Axlog Ingénierie, Prolexia and Dassault Aviation. The goal of this 
club is to share the cost of this effort and give the tool the opportunity to be used in other domains than the one intended 
at its beginnings. 

 

Fig. 1. The Dassault Aviation  “Petit Duc” UAV 



2 AN OVERVIEW OF ATHEN A 

The main areas to be addressed by a designer in the prototyping, the modelling and the assessment of autonomous 
system are the on-board system capabilities, the agent environment within this on-board system and the agent abilities 
within its environment. The solution proposed in ATHENA is to separate the representation of all domain specific 
problems in three layers: the physical layer takes into account the representation of our physical world, the on-board 
system layer emulates processes execution by on-board computing devices, and the agent layer, integrated in these 
processing systems, takes into account specialised processes that model agent. Each domain relies on generic meta-
models that can be specialised by the end-user according to specific physical interactions, on-board system design 
choices and agent-based architectures. 

2.1 Environment Layer 

This layer defines the physical part of the simulated world, using continuous and discrete simulation models extracted 
from scientific theories (electromagnetic laws, fluid dynamics, flight dynamics, gravitation, etc). In order to elaborate a 
simulated state of the physical world at a given instant (Fig. 2), models of physical laws are applied to the previous 
states among the world history. Continuous laws can be abstracted by state-based finite automata in order to simplify 
the simulation or to model non -continuous phenomena and physical objects interactions. T he discrete time 
representation underlying the simulation involves necessary approximations that can be managed in several ways by the 
user, especially at the limits of physical models. For example, models interpolation or extrapolation functions can be 
provided for discrete and continuous models. Also, the user can adapt a sample period, characteristic of its physical 
model.  

2.2 On-board Processing System Layer 

In order to model the on-board processing system that deals with computing, memories and communication capabilities, 
we introduce process components. This provides computing capability when integrated to a physical object 
representation. A process is composed with real-time tasks encapsulating on-board hardware or software functionalities. 
The default execution model statically schedules tasks, however more complex models (including dynamic policies) can 
be provided by the designer, such as FIFO ordering, Highest Priority First heuristics (Deadline Monotonic, Rate 
Monotonic), Earliest Deadline First. Distributed execution models can also be easily integrated (real-time transactions, 
serializable distributed execution). In particular, this facilitates the prototyping of Integrated Modular Avionic.  

 

Fig. 2 Instant view of a tactical environment 
 Two flying formations perform a mission over the enemy territory, defended by surface-air systems. 



2.3 Agent Behaviour Layer 

The definition of decision and reasoning functions relies on a Prolog interface with the on-board processing system 
layer. This Logic Programming tool allows the designer to define knowledge-based algorithms, using the Solving Logic 
Demonstrator. By interpreting constraint predicates using mathematical algebra, the extensions of the language to 
Constraint Logic Programming can model efficiently combinatorial and discrete optimisation problems. In addition to 
the goal solving, basic agent functions have been developed such as knowledge revision and knowledge maintenance, 
using a dynamical management of Prolog facts.  

Other tools can be used to implement Agent behaviour such as PROCOSA [1], an ONERA implementation of Petri net, 
or specific agent language (JACK for example, see [2]). 

2.4 Specifying the Simulation 

The simulation of physical objects, on-board processing systems and reasoning agents can be specified using an 
Architecture Description Language (ADL). This language is intended for the end-users that are not necessarily software 
experts. Thus, this ADL is simpler than other ones, generally oriented toward software engineers.  

A simulated object is a composition of parameters, which contain data (either discrete and continuous types), states and 
transitions to represent an automaton, interactions between the parameters, and processes that represent the on-board 
processing system. The ADL gives a representation of all these elements. To allow creation and reusability of large and 
complex parts of simulation, the ADL provides prototypes. The concept of a prototype is near the concept of class in 
oriented object languages. A prototype can be instantiated and can be used as an ancestor to define another prototype. 
Fig. 3 gives an example of description of a prototype. Fig. 4 shows the instantiation of this prototype 

By parsing the description files, ATHENA composes automatically the simulation and distributes its execution over a 
Network of Workstation (NoW). ATHENA also provides a specification language for the easy composition and 
integration of heterogeneous data-flow graphs, based on functions relevant to the autonomy domain (such as sensing, 
data-fusion, reasoning activity and actuation control). Each function can use a specific programming paradigm among 
signal processing filters, logic and constraint programming or other mathematical tools. This specification will facilitate 
further high performance optimisations by using the state of the art in parallel computation and optimising compilers.  

INSTANCE Aircraft leader;  
INSTANCE Aircraft wingman1;  
INSTANCE Aircraft wingman2;  

PROTOTYPE Aircraft  
  PARAMETER double altitude  = 10;  
  TRIGGER crash : altit ude dequals 0;  
  STATESET state  {flying, crashed}=flying;  
  EVENT accident { crash = 1};  
  TRANSITION flying : accident - > crashed;  
END; 
 
PROTOTYPE UAV IS Aircraft  
  INTERACTION altitude Control :  
    IF flying,  
    changeAltitude(altitude) ;  
END; 

Fig. 4. Description of prototypes with ADL 
The Aircraft prototype contains an automaton to detect crashes when the altitude becomes null. The UAV prototype 

inherits from Aircraft and contains an interaction to control its altitude 

Fig. 3. Description of the simulation 
The simulation contains three instances of the previously described aircraft 



ORB 

synchronizer 

sequencer 

synchronizer 

sequencer 

automata 
parameters 
interactions 
processes 

automata 
parameters 
interactions 
processes 

server 1 server 2 

 

Fig. 5. Global view of the simulation engine 

3 SIMULATION ENGINE  

The simulation uses one or several simulation processes distributed over a NoW. As shown by Fig. 5, such a process is 
composed with a distributed synchroniser, a local sequencer, and a container for different kind of simulation elements 
(automata, parameters, interactions, processes, etc.). Each local sequencer schedules the activity of contained elements 
(methods activation’s, events propagation, …). 

Distributing the simulation over several processes is useful for several reasons. First, many users can interact 
simultaneously with various physical objects. Second, optimising the workload over several workstation can improve 
simulation response time, even at coarse grain. Lastly, dedicated architectures can be useful for executing specific 
functions (such as 3D visualisation, specific I/O devices, specific computation software…).  

3.1 Distributed Clock Synchronisation 

The main concept is to maintain a logical time for each physical, on-board system or agent component, in order to 
achieve a consistent simulation. A distributed synchronisation method, based on the asynchronous Welch algorithm [3] 
maintains a common logical date between all the simulation servers.  

The causal dependencies between read and write operations on parameters are guarantied by a non zero delay between a 
write operation and the following read operation on the same value: when the logical time is t, all reads must be done on 
values written at t-1 at the latest, and no writing can be done on values in the past. All the communications are 
supported by an Object Request Broker (ORB) which allows the engine to access parameters without worrying about 
their localisation.  

3.2 Modularity  

The end-user can introduce specific data types and functions into its simulation. Indeed, Athena provides a mechanism 
to plug new components at execution time. This facility aims at giving more flexibility to tackle problems specific to 
each industrial domains. For example the user can construct particular data types to handle a flight plan in an aeronautic 
simulation, or  the spherical coordinates implemented with quaternions in a satellite simulation. 

3.3 Visualisation Facilities  

In order to define a simulation, we have to work on files that, even with a simplified language, become difficult to 
manage by their sizes and their numbers (a typical simulation can include around one hundred prototype or more). To 
go through this preparation an interface has been developed that helps manage these files. Each file is linked to an icon 
and when you introduce a component by this icon, you include a prototype file in the simulation definition.  



 

Fig. 6 Configuration tool 

 

Fig. 7. 3D visualisation example 

In order to interact with the simulation, a generic 3D interactive interface has been developed, supported by a JAVA 
based 3D visualisation engine. It is possible to associate to any object a visual 3D representation as well as defining user 
updates on its own state. A generic method has been developed in order to map easily a graphical behaviour onto any 
simulated object. This method does not require any modification inside the visualisation engine. The designer must only 
provide a graphical module, loaded dynamically by the visualisation engine. 

The post-processing phase is covered by specific tools. Each ones use the recording of the data that has been also made 
during the preparation. As an example, we use TECPLOT© on the position record. 



 

Fig. 8. 2D visualisation example 

4 ON-BOARD AUTONOMY EX AMPLES 

This simulation-based approach is illustrated by two examples, relevant to the aeronautic and space domains. Instead of 
adapting different libraries of simulation components, the framework facilitates their generalisation, and leads to their 
progressive share over several applications.  

4.1 Aeronautic Mission 

A preliminary study of an air-surface raid is the framework for the aeronautic demonstration (Fig 2). We consider a first 
flying formation of one leader plane and two strike UAVs used as wingmen and following the leader. The formation 
must fly to a given target in the enemy territory and come back. The enemy territory is defended by ground surface-air 
systems composed with surveillance radars, tracking radars and missiles launchers. A second flying formation, 
composed by two planes, follows another flight plan over the enemy territory 

When the opponent activates a ground defence that was unknown at the mission preparation stage or when the 
coordinate of a ground defence was not sufficiently known, the existing plan is no longer feasible. At this point, with a 
minimum of communications (we want to keep the strike patrol undetected), a new plan must be delivered to take this 
new threat into account. The leader produces this plan. It reflects a new collaboration strategy between UAVs including 
the management of the attack. Each wingman receives this plan and deduces its own new one (fig. 9). 

1 

2 

3 
4 

4 

 

Fig. 9. Replanning in the aeronautic mission 
The threat is detected by the formation  (1), the leader computes a new flight plan (2) and transmits it to the 

wingmen (3). Each wingman computes a local flight plan from the given plan (4). 



Generic components simulated include the electro-magnetic environment and the geometric environment. Domain 
components simulated include sensors (electro-magnetic, position, …), actuators (flight, fire, communication, …) and 
controllers. The automatic planning methods are included thanks to the on board processing system layer discussed 
above. 

4.2 Mission for a Gamma Ray Burst Observations 

This experiment simulates the behaviour of a distributed observation system orbiting around earth, based on multiple 
spacecraft. The goal of the mission is to detect and observe gamma ray bursts in various bandwidths. The ASC is 
maintained in a steady position in spite of regular scanning manoeuvres. Each spacecraft is assimilated to an agent that 
scan different parts of the sky, according to a long-term plan (Fig. 10). When a burst occurs, short-term and mid-term 
collaboration schema must be immediately performed (Fig. 11) in order to maximise the benefit of distributed sensors. 
Both spacecraft manoeuvres and payload schedules have to be coordinated to execute multiple bands observation 
sequences in the right direction.  

To fulfil the required reactivity, the multi -agent architecture maintains possible collaboration and coordination plans 
while scanning, before the burst. The time horizon are very heterogeneous, some spacecraft must be pointed in few 
seconds to observe the gamma ray burst, while X-ray observations can be performed in a day and a week for the visible 
bandwidth. Therefore, the part of the plan to be maintained while scanning must be accurate for the few first seconds 
after the blast and eventually completed on-line for the remaining hours and days. Our approach combines constraint 
model based solving and multi-agent architectures [4][5]. The architecture relies on a constraint solver that consider 
altogether multiple models for solving the ASC planning. Generally NP-complete when tackled separately, models can 
be summarised as follow: 

• Payload to bandwidth allocation (payload configuration, bandwidth to observe: Gamma, X , visible with 
associated deadlines); 

• Manoeuvre duration (function of the difference between the current and target orientations); 
• Energy consumption, such that spacecraft that have more energy would be able to support more active control. 

A plan is solved for each possible section of the sky where a burst can occur. So doing, the planning workload can be 
parallelized over spacecraft, each of them being in charge of a sections set. An incremental search technique starts to 
give solutions from the shorter horizon (few seconds) to longer ones. Therefore, the burst can occur when the plan is not 
completed. 

Based on spacecraft reactivity, propulsion and instrument resources as well as manoeuvres timeline, plans are 
immediately executed when the burst occurs. Those plans can maximise the ASC reactivity or the amount of 
observations performed in a time period. Components simulated include on-board processing, distributed coordination 
and automatic planning methods. 

  

Fig. 10. Coordinated planning, each spacecraft sense a 
part of the sky and provide possible future plans 

Fig. 11. Immediate Plan Execution, no planning required 
for the first seconds of the burst observations 



5 CONCLUSION 

We conclude by giving some experimentation synthesis and a demonstration will be available during the Workshop. 
Further works will focus on extending the experimentation field to larger and heterogeneous multi-agent architectures, 
and will address UUV. Parallel computing techniques will also be introduced in order to achieve high performance onto 
Cluster of Workstation architectures or parallel computers. To increase the modelling power, the ADL will be extended 
using other specification languages (such as Esterel [6]) to prototype the applicative behaviour of Integrated Modular 
Architecture more easily. Furthermore, high level agent built-in predicates and interfaces will be investigated to provide 
generic collaboration (introduction of a collaboration language such as KQML) and coordination algorithms. Lastly, 
interfaces with the High Level Architecture (HLA) [7] and other constraint solvers will also be implemented. At the 
end, Athena allows prototyping of all the aspects of a whole mission, with autonomous systems, supervision by an 
external user. 

6 REFERENCES 

[1] http://www.cert.fr/fr/dcsd/CD/CDPUB/PROCOSA/ 

[2] N.Howden, R. Rönnquist, A. Hodgson and A. Lucas, “Jack intelligent ag ents: Summary of an agent 
infrastructure”, Fifth international conference on autonomous agents, Montreal, 2001. 

[3] Nancy A. Lynch, Distributed algorithms, Morgan Kaufmann Publishers, Inc., 1997. 

[4] Eric Bornschlegl, Christophe Guettier and Jean-Clair Poncet, “Automatic Planning for Autonomous Spacecraft 
Formations” in Proc. of the NASA International Workshop on Planning and Scheduling for Space, San-Francisco, 2000. 

[5] Christophe Guettier and Jean-Clair Poncet, “Multi -levels Planning for Spacecraft Autonomy” in Proc. of the 
International Symposium on Artificial Intelligence, Robotic and Automation for Space, Montreal, Canada, 2001. 

[6] Gérard Berry, “The Esterel v5 Language Primer”, 2000. 

[7] Frederick Kuhl, Richard Weatherly and Judith Dahmann , Creating Computer Simulation Systems: An 
Introduction to the High Level Architecture, Prentice Hall, 1999. 


