
Multi-Levels Planning for Spaeraft AutonomyChristophe Guettier, Jean Clair PonetAxlog Ing�enierie19-21, rue du 8 mai 194594110 Arueil, Fhristophe.guettier�axlog.fr, jean-lair.ponet�axlog.frKeywords Spaeraft Formation, Planning &Sheduling, Multi-Agents System, Constraint Pro-gramming.1 IntrodutionUnmanned vehiles are a hallenging onept forfuture missions in spae, aeronauti and underwa-ter domains. By dereasing human in the loop,the omplexity has moved from interoperability re-quirements to autonomous ommand and ontrol.Moreover, evolving in an hostile environment, withpoor ommuniation failities, vehile managementis harder to perform remotely. Lastly, possible lossof equipments, ommuniation failities or a wholevehile may have dramati onsequenes. Relyingon distributed omputing nodes, a group of spae-raft is haraterized by its own ativities to beontrolled as well as ontingent ativities that gen-erates failures (ommuniation jamming, ompo-nents shut down. . . ).In addition to autonomous behaviors, the in-reasing amount of system omponents, ombinedwith the set of modes and servies lead to anunontrolled explosion of ombinatorial problems.Raised either at design time or operation time,their omplexity beomes untratable by humanexperts. A trade-o� an be formulated by statinginrementally both ost funtions and assumptionson the system solution. Using those formulationsdynamially to take the right deision in an un-expeted situation is the key problem for system'sadaptation to its environment. Consequently, itneessitates an intensive use of on board solvingapabilities as demonstrated in the Deep Spae 1Remote Agent Experiment [7℄. Widely investigatedin researh and industrial domains, Multi-AgentsSystems (MAS) an provide intelligent behaviors todistributed systems[4, 5℄. Several approahes existthat onsider di�erent levels of reativity, ogni-tion, soiability, deision apaity and ommunia-

tion expression. The main advantage of those pow-erful frameworks is to enable the modeling of au-tonomous funtions, suh as planning and shedul-ing, smart sensing and diagnosis together with o-operative and ollaborative poliies in distributedsystems.Considering spaeraft formations, multipleplanning levels are relevant to the eÆieny of theautonomous behavior. Within the sope of this pa-per, we onsider a high level that deals with long-term environment and mission updates and a lowlevel for managing short-term ommand and on-trol. At the high level, global planning has to beperformed for the whole onstellation during opera-tions. This requires to ompute a mission manage-ment plan and to broadast resulting mission goalsto the whole formation. However, due to fault-tolerane requirements, time and proessing powerlimits, all the planning details an not be onsid-ered entrally. Therefore, the global planning fun-tion remains on upper-approximations and/or suf-�ient statements of feasibility onditions. Spae-raft must loally ommand and ontrol their a-tions, ful�lling safely its assigned mission goals. Atthe low level, urrent integrated modular avioniapproahes make an intensive use of �nite-state de-terministi reative automata [1℄. However, thisneessitates a perfet knowledge of the environmentas well as rigid spei�ations of the system behav-ior.Our approah introdues the use of non-deterministi onstraint-based automata, so thateah system omponent (suh as amera, thruster,gyro wheels, platform) is represented by anautomaton model. Aording to environmenthanges, a dediated automata is synthesized au-tomatially from the model by the on-board on-straint solver. This approah provides a moreadaptive behavior, extending the domain of use ofthe spae system. Furthermore, the limited om-plexity of those automata enables the onstrutionof plans that satisfy other resoures and feasibility



onstraints at a �ne grain.These two planning levels involve di�erent ab-strations and assumptions over the spaeraft on-stellation. They raise spei� feasibility and syn-hronization problems that must be solved to guar-antee the overall mission exeution. Usual plan-ning methods have poor abilities to ombine the setof heterogeneous representations suh as non-linearfeasibility onditions, umulative resoures or dis-juntive synhronizations [8℄. In our approah,problems are spei�ally formalized in a multiplemodels approah, that an be solved jointly or on-urrently [4℄ using a Constraint Programming (CP)approah. This allows the designer to deal withnumerous resoures, feasibility, oordination, syn-hronization and other domain-spei� onstraints,while onsidering the whole spaeraft formation.Furthermore, this approah enables an easier spe-ialization of models toward dediated problems in-stead of using simple deterministi heuristis thatare reduing the operational sope of the formation.Deep spae probes and earth orbiting formationsare relevant examples of potential target domains.This paper fouses on planning problems thatour at di�erent levels of the multi-agents arhi-teture. We �rst desribe in x2 how we assoiate amulti-agent system to an autonomous ying forma-tions of spaeraft. Then, we expose in x3 solvingapproahes for loal and global planning funtions.2 A Multi-Agent Approahfor Autonomous FormationFlying DesignIntroduing autonomous funtions in a spae-raft arhiteture raises several problems for de-ision making, sensing and ommuniation. Thespae domain imposes hard onstraints on om-ponent safety, system provability, arhiteture se-urity and behavior preditability. The on-juntion of these requirements urges to globallyspeify autonomy-oriented arhitetures and de-ision funtions. This spei�ation must satisfyheterogeneous onstraints extrated from variousdomains (spaeraft engineering, on-board real-time distributed systems, sensing devies, physisand ight dynamis) as well as mission goals(earth observation, spae probes, planetary ob-servations). More partiularly, while designingthose distributed systems, ollaboration, ooper-ation and synhronization problems must also betaken into aount to insure a global eÆient andsafe behavior. In addition to autonomy problems,

these paradigms inrease system omplexity andmust be onsidered together with the individualbehavior of spaeraft in order to design globallyonsistent arhitetures [9℄.2.1 Multi-Agents System OverviewThe intelligent planning and ontrol of a wholeying formation leads to manage a representationof spaeraft interations within the formation aswell as between the environment and the formation.From this viewpoint, MAS is a good approah tomodel a spaeraft formation as a distributed au-tonomous arhiteture [2℄. The MAS used in ourapproah an be haraterized as follow:� Eah agent is assoiated to a unique spaeraftof the formation. At the loal agent level, thedesign relies on a sense-plan-reat ontrol loop(time sale is between the seond and a minutefor spaeraft and platform ontrol). Solvingdynamially loal ommand and ontrol prob-lems provides some degrees of autonomy to theagent to ahieve short term goals.� We assume ommuniation network failitiesare e�etive between spaeraft (thanks to In-ter Formation Links tehniques). We alsoassume that distributed fault-tolerant algo-rithms an be used for solving onsensus be-tween agents [5℄. More partiularly, on-sensus is mandatory for synhronizing plan-ning ativities and organizing the agent hier-arhy. The long-term global ommanding loop(saled from a minute up to several hours) in-volves planning problems extended with ol-laboration and ooperation models.Assoiating onstraint based planning tehniqueswith multiple models formulation, and advanedsearh tehniques like any-time solving, guaranteesdeision preditability. This partiular ombina-tion of arhiteture and deision method improvesthe system exibility, safety, survivability, perfor-mane and liveness. As a onsequene, the agentarhiteture integrates both reative and delibera-tive behaviors. The resulting system is an hybridarhiteture where agents follow long term plan tomeet the mission objetives but an also reat veryquikly to unpredited events.2.2 Global MAS ArhitetureTo perform the distribution of goals to spaeraft,a hierarhy is de�ned over the agents of the system.This simpli�es the design of agents interations by



only de�ning a set of strit ommuniation and a-tion rules, suh that eah agent behavior is spei�edaording to its relative position in the system. Atthe top of the hierarhy, a single agent is eleted byonsensus to be the leader of the whole formation.This leader is in harge of mission management andgoals assignment inside the formation, within thelong-term ommand loop. The agents whih arenot leader are onsidered as subordinates. Everysubordinate is at the same hierarhial level, underthe leader agent. They are not in harge of mis-sion management and mission planning. One theleader has established and ommuniated a missionplan, eah subordinate extrats its partial plan.It remains responsible for a loal ommand andontrol, by planning and exeuting a sequene ofations that mathes its assigned goals (see x3),within the short term loop.2.3 Loal Agent Arhiteture2.3.1 System ComponentsAt the loal level, eah agent is de�ned by meansof system omponents and behaviors. In additionto lassial spaeraft system (AOCS, FDIR, En-gine ontrol), the set of omponents enompassesfuntions dediated to its own behavior as well asativities related to the global formation.� A ontrol-ommand exeutive whih is inharge of ation exeution aording to theomputed plan. This exeutive an trigger re-planning ations when the drift between a-tion prevision and real exeution beomes toomuh important;� A knowledge base to store fats and beliefs rel-ative to urrent environment and other agents.� One or more planning omponents to generatemission or loal plan;� A ommuniation appliative in order to en-sure the message ommuniation with otherspaeraft and thus other agents.Eah arhitetural omponent is made of sev-eral sub-parts. For instane, the knowledge baseontains an updatable database that store fatsand beliefs, a onsisteny veri�ation system thatheks the information validity, and a user interfaefor update and onsultation.In the following, we assume that this arhitetureis ommon to leader and subordinates spaeraft.The di�erenes are relying only on the behaviorwithin the MAS hierarhy.
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Figure 2: Leader behaviorThe leader agent is in harge of the mission planelaboration that it broadasts to other agents. Itreeives goal realization requests from ground op-erators and shall insert them into a mission plan.For this purpose, the leader ollets data from otheragents to be permanently aware of the onstellationstate in terms of resoure usage and operational sit-uation (Attitude, Position, Time, Veloity). It de-ides when a new mission plan shall be omputedaording to the urrent formation situation: faultyspaeraft, goal realization requests, validity of theurrent plan, warning events raised by subordinate,et.2.3.3 Subordinate Agent Behavior
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Toward higher level agentsFigure 3: Loal arhiteturetion. Before a mission plan omputing, subordi-nates send to the leader their own status and avail-ability. This ation is also made periodially dur-ing the system operation. One a mission plan hasbeen omputed and ommuniated by the leader,eah subordinate extrats the partial plan orre-sponding to the set of loal goals it has to ahieve,with assoiated timeline along the global mission.Eah subordinate agent is in harge of ahievingthose goals by loaly ommanding and ontrolingthe spaeraft, taking into aount environment pa-rameters. This involves the dynami replanning ofon-board ativities, satisfying loal feasibility andsafety onstraints (see �gure 3).2.4 Agent CoordinationModeling the ations of agents group needs a spe-i�ation for the ollaboration, ooperation and syn-hronization proesses [6℄. Those proesses de-�ne the overall formation behavior as a onsistentgroup of autonomous entities.2.4.1 Collaboration & CooperationThe ollaboration onsiders the way several agentsan jointly realize a same goal. On the ontrary,the oordination onsiders the ways several agentsor groups of agents an ahieve di�erents goals si-multaneously, sharing the same global resoures.These two onepts globally bring into play thesame things: goals, resoures, distributed entities.They are ensured using the same approah in theplan generation, by introduing spei� goal allo-ation and resoure onsumption models. These

models enable the possible sharing of a global re-soure and the distributed realization of a goal.In our approah, the ollaboration and oopera-tion rely on the mission plan omputing. This planinludes onstraint-based models that de�ne theplanning and sheduling of inter-spaeraft opera-tions, shared resoure utilization as well as ommonativities [2℄. Additionally, ooperation and ollab-oration are reinfored by distributed mehanismsrelying on message ommuniation and knowledgeexhange (for instane, the leader eletion meha-nism or the distributed plan heking).2.4.2 SynhronisationInside the MAS, the synhronization is neessaryto shedule orretly the sets of distributed a-tions, involving several spaeraft simultaneously.If we onsider two platforms embedding a samedistributed observation instrument (a distributedinterferometer), their moves and relative position-ing must be perfetly synhronized in order to re-alize an observation. Thus, some synhronizationations shall be inluded in the plan of eah spae-raft.First, onstraint-based timing models are intro-dued at the mission plan level. Those are usualya ombination of disjuntive and preedene on-straints between operations. Seond, a synhro-nization phase is introdued in the loal plan, rely-ing on message exhange and/or other mehanismlike an aurate spaeraft relative positioning sys-tem.



3 Layered PlanningIn order to behave autonomously, the spaeraftformation shall be able to antiipate its evolutionfor short, medium term and long term with a di�er-ent auray. On a planning point of view, meetingall these requirements is equivalent to generate along term plan with a very �ne detail level. Eahspaeraft ation shall be detailed (thruster igni-tion, mode swithing. . . ) on a long time interval,while the dynamial aspet of spaeraft formationrequires a good planning and replanning reativityto answer rapidly to new requests or unpreditedevents. This requires to take into aount a lot ofparameters and onstraints (power level, memory,attitudes, instrument distribution. . . ) while qual-ity plans shall be generated in short time to ensurethe safety and liveness of the formation. Gener-ating a plan with suh riteria involves omplexmodels resolution and is time and power onsum-ing. Beause of the indued omplexity, obtaininga great planning reativity level for this kind ofproblems is out of the sope of urrent planners.Another way to broah this problem is to de-ompose the planning ativity and to distribute itonto the available proessing resoures of all thespaeraft of the formation: the layered planningonept onsists in separating the mission manage-ment aspets from the ontrol ommand of spae-raft. Two planning levels are so distinguished, the�rst one is entralized onto the leader and a�etsthe whole formation; the seond is distributed ontoagents and onerns eah spaeraft individually.Aording to this deomposition, the planning re-lies on:� Long term ativities, that orrespond to themission management loop. It relies on missionplanning and onsiders the evolution of spae-raft formation at a oarse grain, determin-ing formation trajetory and sheduling mis-sion goal;� Short term prevision, that relies on spaeraftation sheduling and ontrol ommand rea-tivity. This results from loal planning ativ-ity, de�ning from time to time the ations tobe led by eah spaeraft to meet the �nal mis-sion goals;� Medium term antiipation, whih is dis-pathed on both mission and loal planningas a tuning of eah one aording to plan-ning parameterization (planning horizon, timegrain. . . ).

Nevertheless, distributing a part of the planningativity onto spaeraft of the formation raises sev-eral problems for the entralized mission plan gen-eration as for loal plans generation. As the loalspaeraft ativity is no more diretly taken into a-ount in mission planning, it is neessary to upperapproximate or to make use of suÆient onditionsto model loal behaviors.Thus, when a spaeraft omputes its loal a-tion plan, the solving is performed aording tothe mission plan that has been ommuniated byits leader. This loal plan shall follow the guide-lines spei�ed by the mission plan, inluding goalsdeadlines and synhronizations with other agents.3.1 Mission PlanningThe global planning is interested in building a mis-sion plan that satis�es as well as possible the ur-rent mission objetives. This leads to onsider sev-eral problems simultaneously, for spaeraft traje-tory determination, mission goals sheduling, ne-essary ations for standard spaeraft operation,and on-board resoure management.3.1.1 Trajetory Determination
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Figure 5: Trajetory graph interpolation proessThe trajetory determination is based on thesearh of a path in a graph [3℄. A graph G(X;U) isbuilt using several possible trajetories determinedby an orbitography omputing that an be realizedon-board as on ground (see �gure 5). This graphinterpollation results in a set of verties linked to-gether by trajetory edges. Eah vertex is asso-iated to a navigation point or to a possible or-bit (periodial trajetory). Suh orbit verties areuseful to model spaeraft yli trajetories forearth orbiting formations as for spae probes, whenthey exeute in-orbit manoeuvres around a eles-tial body. Edges represent transition trajetoriesbetween navigation points and orbit verties.



A path model ensures the orretness of spae-raft moves along trajetories by stating ow andtransition onstraints over the verties of the as-soiated graph. Then, a vertex an be reahed atmost one in a path, and when it is reahed, theformation must leave it (Kirshho� law):8x 2 X; Xe2Æ+x v(e) = Xe2Æ�x v(e) � 1Where x is a vertex of G, Æ+x the set of edgesinoming to x, Æ�x is the set of edges outgoing fromx, and v(e) 2 f0; 1g is the valuation of edge e.A timing model is used for the expression of en-try date de and exit date ds over eah vertex of thegraph. If navigation points are overed in a nulltime (de = ds), orbit verties orrespond to peri-odi moves of formation and the expression of timespent over a vertex is slightly di�erent:8x 2 Xo; ds(x) = de(x) +�!s M(x)�!e + kT (x)Where �!s and �!e are entry and exit vetors ofx, M(x) is the swithhing oeÆient matrix of xaording to inoming and outgoing edges, and Txis the period of orbit onto x.Thus, the trajetory model preisely determinesthe position and time of spaeraft in the missionplan.3.1.2 Goal SatisfationThe spaeraft formation mission inludes the sat-isfation of a list of goals for observation or nav-igation. Moreover, the standard spaeraft oper-ation at a high level implies several other goalsthat shall also be inluded in the mission plan. Agoal requires the use of a set of resoures, avail-able among the formation (instruments, power. . . ),and an be realized aording to spei� time inter-vals and spaeraft positions and attitudes. Thus,a goal an be realized aording to spei� opor-tunities determined before the plan generation inaordane with the trajetory graph. Eah goaloportunity is attahed to a vertex of the graph.Let Og be the set of oportunities for goal g, thenan oportunity o 2 O is used to realize g if the pred-iate fixed(o) is true. Of ourse, this means thatthe time and resoure onstraints are veri�ed forthis oportunity. Thus, the goal g is realized when:8g; realized(g) = _o2Ogfixed(o)Some spei� spaeraft ativities require a pe-riodi ativation. For instane, earth-spaeraft

ommuniation that are made in ground stationvisibility intervals. Thus, a goal an be realizedperiodially aording to its oportunities. In thesame way, goals that model a spaeraft ativitylike thrust or attitude orretion shall be realizedaording to spaeraft position and attitude. Aonditional goal notion C is introdued that en-fore a goal realization only if the trajetory andattitude of spaeraft require it:8g; 9v; C(g) ^ Vog 2 P , realized(g)Where P is the path and Vog is a vertex of P onwhih an oportunity for g is satis�ed.Due to goal omplexity and formation distribu-tion, the realization of several goals in the sametime interval introdues a large omplexity that isnot tratable with atual models. A goal exlusionis so stated to ensure that several goals an't berealized in the same time interval:8g1; g2;[d(g1); d(g1) +D(g1)℄ \ [d(g2); d(g2) +D(g2)℄ = ;Where d is the realization date funtion and D isthe duration funtion. The realization date is �xedpreisely by global plan, duration is determined byupper bounds aording to loal models.3.1.3 Resoures ConsumptionAt the mission planning level, both exlusive andumulative resoures are taken into aount. Eahgoal requires a set of exlusive resoures (instru-ments, spaeraft. . . ) and a set of umulative re-soures (power, memory, ergol. . . ) for its real-ization. These amounts are upper approximatedaording to loal models and domain knowledge.Both umulative and exlusive resoures are allo-ated to goals aording to their needs:8g;8�; realized(g),Xs2F��(s; g) = N (�; g)Where � is an exlusive resoure, � is the af-fetation funtion of spaeraft resoure to goalsand N is the need funtion of goals for resoure.For umulative resoures, a onsumption shall ad-ditionaly be stated in order to ensure goal feasibil-ity. As goals an only be realized onto verties ofthe graph, this onsumption is stated only for timethat orresponds to a vertex loation in the graph:�v(t) = �v(de(v))�Xg �N (�; g)�R(g; v; t)�



Where �v(t) is the value of resoure � at time ton vertex v and R(g; v; t) is true if goal g is realizedon vertex v before time t. Introduing the boundvalues of resoure �, it is possible to state the re-soure onsumption at any time and then beforeand after eah goal exeution.3.2 Loal Command and ControlOne a global mission plan has been omputed andtransmitted by the leader, eah spaeraft buildsits own loal plan to manage its ations in orderto realize its part of the mission. In addition tothe mission goals given by high level planning, lo-al goals orresponding to spaeraft ommand andsafety proedures have to be realized. Like everytraditional sheduling tehniques, loal planning isbounded by a time horizon 0 � t � tmax. Plan isenlarged in time as neessary, leading to onsiderthe loal planning ativity as a task to be inludedin ation shedule. Spaeraft resoures are takeninto aount with high auray. The bound givenby global plan an be optimized suh that availableresoure are saved. Thus, eah part of the missionplan an be loally optimized by eah agent, savingtime and resoures.3.2.1 Disrete ontrol using onstraint-based timed automataSpaeraft ommand and ontrol is haraterizedby di�erent omponents to manage, inluding pay-loads, ommuniations and platform devies. Eahomponent is onstrained by ontinuous physiallaws (eletri power supply, temperature, enginethrust level, . . . ). Already in use in the avioni do-main, disrete state/transition automata an rep-resent omponent modes as well as deision makingwith respet to ontinuous laws. In fat, a state �kis assimilated to a ontinuous behavior of the kthomponent, while a transition Æ(�ki ; �kj ) models anabrupt hange of behavior between states �ki and�kj .In our approah, a transition Æt+1 is triggered atthe time t+1 when an and-omposition of a set ofsignals S beomes true in the interval [t; t+ 1[:S(t) = ? ^ S(t+ 1) = > ) Æt+1(�ki ; �kj )A signal an be a ommand seleted by the agentor a ontingent event raised by the agent environ-ment. The �rst lass of signal represents the agentommanding over the omponents, while the se-ond one de�nes the environment stimuli on theagent. Traditional tehniques adopted by engineers

are based on deterministi reative automata. Inany given state, the automata an reah exatlyone state. Those automata an not be adapted dy-namially to environment hanges and we proposeto widen this approah by raising the determinis-ti assumption (suh that multiple states an bereahed from a given state):8�ki ; �j ;Æt+1(�ki ; �kj ) ^ Ck(t) = �ki ) Ck(t+ 1) = �kjwhere Ck(t) is the omponent state. During theexeution, the seletion of a unique transition isdeided by instaniating ommands that optimizethe path of future states aording to the status ofontingent events.3.2.2 Feasibility onditionsIn our model, a omponent state orresponds to aset of real-time tasks to perform R(�). As severalomponents may share a unique proessor, the to-tal workload assigned to a unique proessor mustremain shedulable. Eah real-time task r that be-longs to a state exeution, (eg. r 2 R(�)) is repre-sented by an ativation period Tr and a worst aseduration time r. In addition to the previous on-straints, we apply the Liu and Layland feasibilityonditions to guarantee the shedulability of all thetasks at any time:8t; feasible(t),Xk Xr2R(Ck(t)) rTr � 1Other feasibility onstraints, involved by on-board umulative resoures (ergol, power sup-ply. . . ) may also be spei�ed. We assume thatin a given state, a omponent onsumes a resourein a regular way, suh that the overall resoure on-sumption statement is given among the time hori-zon. The amount A(t) of available resoures anbe de�ned as follows:A(t) = A(t� 1) +Xk a(Ck(t� 1))where eah a(�) is a worst ase onsumption ofthe resoure in the state �.3.2.3 Generating determisti automataThose onstraints di�er from traditional resouresheduling onstraints beause the umulatedamount depends on the urrent state of the wholesystem. Therefore, searh methods like task inter-val or edge �nder an not eÆiently be used to im-prove the solving. However, the problem remains



traktable beause the number of states and tran-sitions is limited. The problem onsists in solvingthe ommand signals and their assoiated time linein order to reah the state spei�ed by higher levelgoals. Two kinds of searh approahes an be on-duted:� Complete searh with ertain external events:onsists in solving ompletely the ommandsto be raised and their assoiated timing byassuming a perfet knowledge (boolean valu-ation in time) of ontingent events raised bythe environment.� Non-omplete searh with unertain externalevents: onsists in solving partially the om-mands to be raised, keeping open-disjuntionswhen unertainty remain on the boolean valu-ation of ontingent events among the time line.4 Preliminary ResultsThe layered planning for spaeraft formation hasbeen experimented in a simulation approah. Themission planning has been tested for formations ofone to six spaeraft, for earth orbiting and deepspae like missions, on a Sun Ultra 5 workstation.No advaned searh strategy nor heuristis havebeen developed, the searh has been led with thedefault global solving mehanism. For orbiting mis-sions, a plan sheduling 150 mission goals (inlud-ing periodi ones) is generated in 105 seonds. Fordeep spae missions, planning is omplexi�ed bytrajetory model but up to 40 goals (inluding on-ditional and periodi ones) are sheduled in 80 se-onds onto a 20 verties graph.The loal planning omponent has been lesstested. For a thruster example made of two au-tomata with a tenth of states for eah one, an op-timal solution inluding synhronization point isfound in less than 4 seonds.5 Conlusion, Further WorksWe have demonstrated how relevant are layeredonstraint model-based planning to the suessof missions that involve autonomous spaeraft.Combined to MAS arhiteture, this enables thesolving of omplex distributed planning problemsand provides a more adaptive and exible behaviorto the group of spaeraft. Nevertheless, the way ofmodeling does depend on the level of planning andinvolves many assumptions, either on the planning
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