
A Constraint-Based Model for High-Performane Real-Time Computing�Christophe Guettier Jean-Fran�ois HermantAXLOG, 19-21, rue du 8 mai 1945 INRIA, Projet REFLECS, B.P. 105F-94110 Arueil, Frane F-78153 Le Chesnay Cedex, FraneChristophe.Guettier�axlog.fr Jean-Franois.Hermant�inria.frAbstratThe design of ritial and real-time high-performane sys-tems has beome a omplex matter. To takle this omplexity,the whole problem formulation an be broken down into sev-eral models. We present a system modelization that addressesparallel omputation. A partial solution, based on the Earli-est Deadline First (EDF) algorithm, is emphasized. We showin this paper how a Constraint Logi Programming (CLP) lan-guage is able to onstrut models and the partial solution toeÆiently �nd solutions using a omposite searh proess. Inorder to ful�ll the CLP requirements, we present the neessaryre�nement steps of an EDF-based solution. We onlude withvarious examples provided by an eÆient CLP implementation.KeywordsParallel Proessing, Real-Time Sheduling, ComputationModels, Constraint Logi Programming, Problem Solving1 IntrodutionDe�ienies in the design or dimensioning of a rit-ial and real-time high-performane system an ausede�nitive failures. Right now, it is neessary to provethat for the whole system, real-time and arhiteturalsize requirements are met. A relevant example of or-ret system dimension is ensuring that the proessingpower is suÆient, and eÆient. This is a tremen-dous matter as the inreasing omplexity of systemsinvolves highly ombinatori design.The lak of a method for orretly and provablydesigning and dimensioning omplex and/or ritialomputer-based systems is the main reason why agrowing number of major failures are being experi-ened by the industry [6, 7℄. A proof-based sys-tem engineering method, suh as the TRDF1 method,�In the proeedings of the Intl. Conf. on Distributed andParallel Systems, Sept. 1999, Florida.1TRDF is the Frenh aronym of Real-Time DistributedFault-Tolerant Computing.

involves orretness proof obligations. The TRDFmethod allows translation of the (inomplete and/orambiguous) desription of an appliation problem intothe spei�ation of a omputer siene problem. Italso an produe the spei�ation of a omputer-basedsystem, along with proofs that all the deisions madeduring the system design and the system dimension-ing do satisfy the spei�ation of the omputer sieneproblem onsidered.Meanwhile, the omplexity of target arhitetureshas inreased too. For instane, many funtional unitsan be available on a single hip organized in di�erentlevels. Stati tehniques based on ode transforma-tions suh as tiling [14℄, loop partitioning [15℄, or �ne-grain sheduling [13℄ have been improved to takle theresoures or the lateny of a program. However, om-bining multiple resoures and lateny onstraints inorder to address the global problem formulation meanssolving NP-Hard problems with non-linear onstraints[13, 16℄.In fat, getting a proven global solution is very dif-�ult. The neessary ombination of several hard sub-problems leads to the onept of modelization. Thisstep extrats and adapts the invariants of system fun-tions, addressing the omplexity of the system fromoarse to �ne grain. So doing, solving the ompleteproblem requires ombining di�erent models. In an-other ontext, this is similar to automatially solvingdata-layout for High-Performane FORTRAN, by us-ing 0 � 1 modeling assoiated to branh-and-boundsearhes [12℄. Other relevant results have shown theeÆieny of this approah to model and solve map-ping problems in the VLSI domain [11, 18℄. In fat,to be eÆient, it is neessary to distribute the solvingover several models using the ompositionality prop-erty. Thus, it is fundamental to preserve this propertyduring the modelization.Stemming from logi programming, integer andmathematial programming, Constraint Logi Pro-gramming (CLP) languages are reognized as power-ful tools to ope with diÆult and large ombinatorial



problems [20℄. Underlying models of the approahespresented below ould easily be expressed using a CLPlanguage based on the simplex algorithm [19℄. How-ever the solving method would be restrited to a linearexistential part of the onstraint language.Reent results allow us to use less restrited lan-guages de�ned on �nite parts of N with all its lassialoperators [23℄. The power of this onstraint languagedesign enables to takle non linear onstraints. Welaim that this language an support the modelizationof omplex real-time parallel systems [11℄. A modelis reated with omplex onstraints that represent theinvariants of a sub-problem. Relations between mod-els are onjuntions of onstraints that maintain theonsisteny of the global solution. The mathematialomposition of the models is transformed into on-urrent searh proesses that an be ontrolled withpowerful logial operators [24℄.To design and dimension omplex systems, we mustsolve for ruial parameters representing loality, par-allelism, and periodiity. We present a solution basedon a blok-yli omputation distribution [15℄ us-ing on-line Earliest Deadline First (EDF) sheduling.The well-known orresponding algorithm belongs tothe lass of deadline-driven sheduling algorithms anddominates any �xed-priority sheduling algorithm [3℄.In setion x 2, we present the global problem spei�-ation, the omposite alulation is explained in x 3and we present enouraging results using a CLP im-plementation in x 4.2 The ProblemIn this setion we speify the problem under onsid-eration aording to the TRDF method [6, 7℄. First,we state the problem models (x 2.1). The system ismodeled in a fairly standard fashion, taking into a-ount the time model, the task model, the externalevent types models, the omputational model, and thearhitetural model.Seond, we state the problem properties (x 2.2):the timeliness property. Models support parallelismto speed-up task ativations and exeutions. In thatway, it is possible to meet hard real-time onstraintsthat would not be satis�ed with one proessing ele-ment.2.1 Global Relational ModelLater in this paper, demonstrations are performedwith the assumptions explained in the following se-tions. The aim is to break down the global problem

into several sub-problems of lower omplexity. A sub-problem an be represented as a model due to its ownmathematial invariants. Finding a set of feasible so-lutions to a given sub-problem requires the instantia-tion of all the variables of the assoiated model. Wedistinguish the initially instantiated models from themodels to be instantiated.A set of relations, desribed in (x 2.1.2), results fromthis deomposition, and orrelates between modelvariables. It maintains the onsisteny of the di�erentloal solutions and onsequently, of a global feasiblesolution (Fig. 1).
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Figure 1: The problem models2.1.1 Initially Instantiated ModelsTime Model Formally, we will use the ontinuoustime model, whih is more general than the disretetime model: t 2 R+ .Task Model Consider a level of spei�ation whereeah task ontains an independent loal loop that in-ludes an elementary omputation (EC). Loop itera-tions are exeuted eah time the task is ativated. Thisloop ould result from a �ne-grain parallelization suhas tiling [17℄. The set of ativations may be repre-sented as an in�nite loop; so a task an be representedby the following nested loop:DO tiDOALL ji = 0; Ui � 1ECi(ti; ji)where 8i; ti 2 N is the iterator that represents ati-vations and 8i; ji 2 N is the loal iterator. An el-ementary duration 8i; ni 2 R+ is assoiated to theelementary omputation ECi.There are no dependenies between the di�erenttasks.



2.1.2 Models to be Instantiated with Rela-tionsThese models are instantiated using an arithmeti rea-soning involving automati solving.External Event Types Models Ativation de-mands of a task are onstrained by a periodi orsporadi arrival model [10℄. Later in this paper, weassume that ativation demand dates and ativationdates of a task are the same.Periodi SporadiThe (ti + 1)th ativation date of a task i is denoted d(ti):8i; �i;0 2 N , 8i; �i;j 2 N; j 2 N; ti 2 Nd(ti) = �i;0 + tiTi; ti 2 N , d(ti) = tiXj=0 �i;j + tiTiThe periodiity or sporadiity interval of a task i isdenoted Ti 2 NThe onrete or non-onrete attributes of a task i.Conrete: �i;0 known. f�i;jgj2N known.Non-onrete: �i;0 unknown. f�i;jgj2N unknown.The sporadi model is stronger than or equal to theperiodi model [10℄.Sporadi � Periodi:We onsider in both ases the non-onrete formwhere periods may be known natural numbers or har-aterized by a lower and upper bound.Computational Model Distribution formulationshave been widely used so far to represent loop trans-formations or to express the ompilation of mappingdiretives [15, 17, 14℄. For eah task i, we use twowell-known forms of distribution in order to size thegranularity, the parallelism and the periodiity of thetask aording to the whole problem.The loal loop ji an be simply partitioned [15℄; itgives loal bloks and partially expresses the paral-lelism. Let 0 � ji < Ui, be the independent iterator,we have the onstraints:8i; 9Bi 2 N jji = Bibi + �i; 0 � �i < Bi

where Bi is the blok partitioning parameter that wemust solve. The salar �i represents the set of loaliterations and bi is a part of the proessor identi�er.When they are independent, ativations ti may beparallelized due to a yli distribution. Paralleliza-tion of ativations brings more exibility by streth-ing periods Ti. The following formulation gives theperiodiity and partially the parallelism:8i; 9Ci 2 N jti = Ci�i + i; 0 � i < Ciwhere Ci is the yli parameter that we must solve.The salar i represents the set of parallel ativations,the seond part of the proessor identi�er. The salar�i is the new ativation iterator.That way, the omputational model an be alsoharaterized as:Synhronous: Upper and lower bounds on ompu-tational delays (e.g., time taken by a proessor tomake a omputational step) exist and their values areknown. The exat omputational delays result fromthe omputation distribution onstraints and are ex-pressed with the number of loal iterations times thenumber of yles to perform an elementary omputa-tion. The amount of loal iterations is de�ned by theparameter Bi, so that the duration of the omputationan be given by:8i; 9ni 2 N jCi = niBi (1)where the onstant ni gives the elementary durationfor one iteration.Parallel: The number of proessors to map the en-tire task is given by ombining both yli distributionand partitioning parameters. For eah task i, the ou-ple (i; bi) ompletely de�nes all the ativations andloal iterations proessed on one proessor (Fig. 2),so that we must onsider the following onstraints:8i; 0 � i < Ci; 0 � bi < �UiBi � : (2)Arhitetural Model The arhitetural model isSPMD \Single Proess Multiple Data", whih meansthat the di�erent proessors an exeute only identialproesses in parallel. At oarse grain, it may be seenas a entralized arhiteture, while at �ne grain it isparallel exeution. The number of proessors Pused isupper-bounded by a onstant Pmax.9(Pused; Pmax) j Pused � Pmax (3)



2.1.3 RelationsFrom a system engineering viewpoint, the set of theresulting relations neessitates some ruial and riti-al trade-o�s. The �rst issue is the parallelism and thesize of the arhiteture (x 2.1.3). The seond issue isthe periodiity / sporadiity and the available paral-lelism (x 2.1.3). These are required to eÆiently solveglobal problems suh as the system dimensioning.Relation between Computational and Arhite-tural modelsThe distribution of the omputation for eah task ileads to the apaity resoure onstraints of the totalnumber of proessors:maxi �Ci �UiBi �� = Pused (4)Relation between Computational and Externalevent types modelsThe new period, resulting from the yli partition-ing is given by: 8i; Ti = T 0i Ci (5)where T 0i is the original period spei�ed by a user.proofThe ativation date of a sequential task i is given by thefuntion d(ti) =T 0i ti, with the parallel form the dates of the Ci ativationsare the same8i j 0 � i < Ci; Ti�i = T 0i ti � T 0i i.By using the yli partitioning formulation (2.1.2), we have:Ti�i = T 0i (Ci�i + i)� T 0i i , Ti�i = T 0i Ci�i , Ti = T 0i Ciend proof2.2 PropertiesTimeliness Tasks are assigned timeliness on-straints: latest termination deadline. For every possi-ble system run, every timeliness onstraint is met. Onone hand, the value of deadlines does not depend onthe parallelism and may be known as a natural num-ber or haraterized by a lower and an upper bound:8i; Di 2 Nsketh of the proofLet T 0i ti+ei be the end of the task exeution in the sequentialform. The deadline property states: T 0i ti + ei � T 0i ti + Di.aording to previous formulations (2.1.2,5, x 2.1.2), the parallelexeution of the tasks satis�es:T 0i ti + ei � T 0i i � T 0i ti +Di � T 0i i , Ti�i + ei � Ti�i +Diend of the sketh of the proofOn the other hand, the deadline satisfation wouldalso depend on the parallelism (x 4).
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Cycle c+1 Cycle c+2Cycle c-1For a given task with U = 8, we have B = 2 and C = 3 . Finally,as shown by the un�lled points, 12 elementary omputationswill be performed in parallel.Figure 2: Cyli ativations omposed with blok ex-eution3 Solving the ProblemOne all the invariants have been expressed throughthe modelization, it is possible to express the solutionto the problem. Following our approah, the alula-tion is done in two steps. The �rst one is based onthe Earliest Deadline First sheduling solution. Thealgorithm feasibility is expressed due to neessary andsuÆient onditions that are out of the sope of CLPapabilities. However, it is possible to extrat suÆ-ient onditions that an be diretly translated in aCLP Language. The setion x 3.1 explains how were�ne the solution in order to extrat those suÆientonditions.The seond step (x 3.2) deals with the expressionand the solving in CLP of the global problem. It takesinto aount the formulation of the EDF's invariants,in onjuntion with the expression of the system spe-i�ation. Then, a model-based tehnique an be ap-plied using CLP features.3.1 The Earliest Deadline First PartialSolutionThe Earliest Deadline First (EDF) sheduling al-gorithm belongs to the lass of on-line real-timesheduling algorithms. There are at least two sub-lasses: deadline-driven sheduling algorithms and�xed-priority sheduling algorithms. EDF belongs tothe former sublass and dominates any algorithm be-longing to the latter sublass, suh as, Highest PriorityFirst/Rate Monotoni (HPF/RM) or Highest Priority



First/Deadline Monotoni (HPF/DM) [3℄.There are two main reasons why only EDF is ov-ered in this paper. First, from a theoretial viewpoint,we have the dominane property of EDF. Seond, froma pratial viewpoint, the implementation of the suÆ-ient feasibility ondition for EDF is fairly simple (seefurther).EDF works as follows [8℄. At any time t 2 R+ , ifthere are pending tasks (i.e., tasks whih have beenpreviously ativated but whih have not been fullyompleted yet), EDF runs the task whih has the ear-liest absolute deadline. The proessor is then said tobe busy. To deide between tasks having the same ab-solute deadline, EDF makes use of a tie-breaking rule(e.g., a lexiographial order). If there are no pendingtasks, EDF runs no task. The proessor is then saidto be idle (Fig. 3).
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Figure 3: Example of a preemptive EDF sheduleThe EDF shedule of the synhronous onrete traÆ ! 2� , where � is the traÆ made up of the three periodi orsporadi non-onrete tasks �1 : (C1; T1; D1) = (2; 7; 5),�2 : (C2; T2; D2) = (3; 11; 7), and �3 : (C3; T3; D3) =(5; 13; 10).Later in this paper, we onsider a periodi or spo-radi non-onrete traÆ � , whih is a set of n periodior sporadi non-onrete tasks �j . We state feasibilityonditions for EDF with � .3.1.1 Basi ConeptsThe workload W (t; �)W (t; �) = nXj=1W (t; �j) = nXj=1 � tTj �Cj : (6)By de�nition, the workload W (t; �) is the amountof time that is needed to run all the tasks whose ati-vation times are in [0; t) [2℄. To give the expression ofW (t; �), we onsider the synhronous onrete traÆ! 2 � .

The proessor demand h(t; �)h(t; �) = nXj=1 h(t; �j) = nXj=1Max�0; 1 + � t�DjTj ��Cj :(7)By de�nition, the proessor demand h(t; �) is theamount of time that is needed to run all the taskswhose ativation times and absolute deadlines are in[0; t℄ [2℄. To give the expression of h(t; �), we onsiderthe synhronous onrete traÆ ! 2 � .3.1.2 Feasibility Conditions for EDFA neessary feasibility ondition (NC)� is feasible by EDF) nXj=1 CjTj � 1: (8)sketh of the proofWe derive the utilization fator U(�) from the workloadW (t; �): U(�) = Limt!1 �W (t; �)t � = nXj=1 CjTj :By de�nition, the utilization fator U(�) is the fration oftime that is needed to run all the tasks over [0;1), i.e., thelimit of W (t; �)=t as t tends to in�nity. If � is feasible by EDF,then U(�) � 100%.end of the sketh of the proofA neessary and suÆient feasibility ondition(NSC)� is feasible by EDF, 8t 2 R+ ; h(t; �) � t; (9)� is feasible by EDF, Supt2R+��h(t; �)t � � 1:(10)sketh of the proofBy de�nition, the proessor demand h(t; �) is the amountof time that is needed to run all the tasks whose ativationtimes and absolute deadlines are in [0; t℄. � is feasible byEDF, if and only if, 8t 2 R+; h(t; �) � t, i.e., if and onlyif, Supt2R+� fh(t; �)=tg � 100%.end of the sketh of the proof



A suÆient feasibility ondition (SC)nXj=1 CjMinfTj; Djg � 1) � is feasible by EDF: (11)sketh of the proofSine Supff + gg � Supffg+ Supfgg, we have:Supt2R+��1t nXj=1h(t; �j)� � nXj=1Supt2R+��1t h(t; �j)� ;Supt2R+��h(t; �)t � � nXj=1 CjMinfTj ;Djg :IfPnj=1 Cj=MinfTj ;Djg � 100%, then � is feasible by EDF.end of the sketh of the proofLater in this paper, we only onsider a suÆient feasi-bility ondition for EDF. Eq. 11 an be easily imple-mented sine its omplexity is in O(n).3.2 Automati Solving Using CLP Lan-guageIn our approah, the resulting problem formulation{ EDF onstraint-based suÆient onditions in on-juntion with the general system modelization { per-fetly mathes the expressiveness of CLP and its solv-ing apabilities. The distintion between the problemformulation and the solving failities allows one to �ndsolutions for various goals automatially.3.2.1 Problem FormulationA Constraint Logi Programming language an beviewed as an extension of Logi Programming whereuni�ation is replaed with onstraint satisfation.Logial prediates an be onstraints interpreted ina mathematial algebra [21, 24℄ whih is over the �-nite domains in our ontext : fP(N);+;�; >;=; �g.Suh a language enables the omposition of prediatesthrough logial operators and quanti�ers. This leadsto a more understandable, ompositional and modularproblem representation. Model based omputing is apratial way to take advantage of those CLP proper-ties [25, 22℄. Problem variables and onstrained pred-iates are developed in order to express independentlyomplex models' invariants. The onsisteny betweenmodels is also maintained due to onstrained predi-ates over model variables. Those relations propagateloal solutions between models and trigger a baktrakevent whenever a onstraint annot be satis�ed.The EDF-partial solution is also expressed suhthat its onstraints are added to those of the global

modelization. The suÆient ondition erti�es thatthe �nal solution belongs to the EDF-feasibility do-main and thus must be stated. In so doing, the ne-essary ondition beomes redundant. However, thisondition is onstraining the whole system in a di�er-ent way. Thus, stating the neessary ondition enablesone to partition the searh spae more eÆiently.3.2.2 Conurrent Solving Over ModelsWe use generi onstraint solving algorithms whihan handle onstraint propagation and arithmeti rea-soning. Eah model is assoiated with a solving pro-ess that searhes for a solution to the orrespondingsub-problem. All solving proesses are running simul-taneously in order to �nd a global solution that sat-is�es all the onstraints of the problem. To insurethe onsisteny between model solutions and to rein-fore the onurreny between the solving proesses,CLP o�ers the powerful ontrol operators Ask & Tell.The satisfation operator Tell states a onstraint tothe solver and the entailment operator Ask heks if aonstraint is already satis�ed [24℄.The Ask & Tell paradigm has been widely used toompose omplex onstraints. In our system mod-elization, we make use of the basi non linear prod-ut onstraint Y �QiXi and the maximal onstraintY = maxi(Xi).At the searh proess level, the Tell operator isutilized to exhange partial solutions between mod-els through relations. When two partial solutions arenot onsistent, the system generates a baktrak event.The Ask operator is used for the synhronization of theglobal searh. For example, assoiated to a variable ofa model, it triggers an assoiated searh proess whena given property is known. Finally, using those op-erators, global resolution strategies inluding domainheuristis are designed to ontrol and assist the om-posite global searh over all models.4 Preliminary ResultsThe implementation, based on CLP, reets exatlythe whole formulation and the resolution. Aordingto our system modelization (Fig. 1) and the EDF'sinvariants, we an use the prototype to solve for di�er-ent goals suh as optimizing the number of proessorsor �nding the appropriate set of deadlines aordingto the proessing power. Figure (4) desribes the taskmodels of an appliation, where we an note that somedeadlines are un�xed and orrespond to appliationparameters.



Task ElementaryDuration(ms) InitialPeriod(ms) Deadline(ms) ParallelItera-tionsReading 12 42 22 1Cursor 3 24 64 12SlowMotion 8 164 DSM? 32Sizing 1 42 DS? 28The task Reading performs a sequential read of a video froma ompat disk. The task Sizing adapts the video aordingto the display ontext and task Cursor sreens a pointer. Aseleted part of the image an be displayed in Slow Motion.Figure 4: Task Set Spei�ationAs an example, we exhibit in Figure (5) the op-timization of a deadline whih represents the SlowMotion uidity. The system took three steps to �ndthis optimal solution. Thanks to onstraint propaga-tion over models, the solver has deteted that the taskCursor is ritial for the optimization. Consequently,the task's period is automatially strethed from 24msto 72 ms, using parallelism in order to favor the SlowMotion deadline.Goal spei�ation : Maximal number of proessors: 128,Deadlines: DSizing � 40, Optimize the uidity of the SlowMotionResult :Task Ativationand LoalParallelism(C,�UB �) FinalPeriodT FinalDura-tionC FinalDead-lineDReading (1,1) 42 12 22Cursor (3,12) 72 3 64SlowMotion (1,32) 164 8 34Sizing (1,14) 42 2 20Total proessors: 36, Load: nXj=1 CjTj = :56Figure 5: A minimal value for the Slow Motion dead-lineUsing our implementation, other relevant optimiza-tions have been performed and give interesting e�ets.For example, in one hand the load minimization leadsobviously to the maximization of the parallelism (Fig.6-b), while on the other hand the number of proes-sors an be eÆiently minimized (Fig. 6-a). In bothases, the suÆient ondition is always satis�ed (thirdolumn) and the �nal solution is optimal.

Initial Constraints : Maximal number of proessors: 128,Deadlines: DSizing � 40, DSlowMotion � 164a - arhiteture minimizationProessors nXj=1 CjTj nXj=1 CjMinfTj ;Djg32 .50 .9824 .49 .9718 .52 116 .49 .99b - load minimizationProessors nXj=1 CjTj nXj=1 CjMinfTj ;Djg32 .50 .9836 .47 .9560 .44 .9536 .38 .9860 .35 .9836 .32 160 .29 160 .26 .9960 .25 .9984 .24 .99Figure 6: Optimization of system parameters5 Conlusions and Further WorkAs ost funtions and exeution onstraints growomplex, simple resolution shemes will no longer suf-�e [13, 14℄. To ahieve global optimizations, we haveshown on a real-time and parallel system that divid-ing the resolution from the modelization is a neessity.This an be done thanks to a methodology suh asTRDF.Under those onsiderations, Constraint Logi Pro-gramming holds the appropriate level of expressivenessto ompose models and partial solutions suh as theEDF-sheduling poliy. This way, the problem an besolved globally, using onurrent onstraint program-ming mehanisms over models. However, this requirespreserving the ompositionality property by �ndingsuÆient onditions, approximations or by re�ning themodel formulations.As an example, we have onsidered the suÆientfeasibility ondition for EDF. This is less preise thanthe neessary and suÆient feasibility ondition, butit an be implemented more easily in CLP languages.It de�nes a onvex feasibility domain. The vertiesof this polyhedron are omputable for free. In someases, it is possible to onsider the neessary and suf-�ient feasibility ondition. It also de�nes a onvexfeasibility domain. However, the verties of this poly-hedron are not omputable for free. This work will bepresented in a forthoming paper.Future works will also introdue dependenies at
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