A Linear Logic Modulo

Olivier Hermant

June 29, 2007

» Linear Logic has much to say about connectors.

» Deduction Modulo has much to say about (first-order)
quantifiers.

» Linear Logic has much to say about connectors.

» Deduction Modulo has much to say about (first-order)
quantifiers.

» let’'s combine them.

The language

» Usual first-order logic language.
» logical connectors

multiplicatives additives exponentials
—_—— — —
®$ 78)’ —o 9 & ’ @ ’ !’ {)

» logical constants

multiplicatives additives
— — =
1,1 , T,0

» first-order quantifiers ¥, 3

The language

» Usual first-order logic language.
» logical connectors
multiplicatives additives exponentials

—_—— — —
®$ 78)’_0 1) &’® ’ "{)

» logical constants

multiplicatives additives
— — =
1,1 , T,0
» first-order quantifiers v, 3
» the negation symbol L is not a primitive symbol
» atoms A and negated atoms A+

» we work with negation normal forms (classical LL, one sided
sequent calculus)

Dualities in Linear Logic

A= (A = A

Multiplicatives
1t =1 1t =1
(A®B)" = At ®B* (A ®B=A+teB*
A—-B=A"%®B

Additives
T-=0 0-=T
(AeB)* =A+ & B* (A& B*=A+teB*

Exponentials
(1A =2(AY) (?A*" =1(AY)

Quantifiers
(VXA)* = AxA* AxA)* = VxA*+

Deduction rules

» sequent style
» one-sided (duality): I + A is written + I', A (negation NF)
» axiom looks like - A+, A

Deduction rules

» sequent style

» one-sided (duality): I + A is written + I', A (negation NF)
» axiom looks like - A+, A

» independent groups of connectors (substructural logics)
» multiplicatives separate the context (perfect world)

» additives do not (imperfect world)

» contexts: sets (no permutation needed)

Deduction rules of Linear Logic

AT +B,A
FA®B,T,A

®-r

no 0-r
FAA +B,A
FA & B,A

& -r

FAA

m Y-r, x fresh

F?A,72A,A

F?2A, A
FA

FA2A

contraction

weakening

Identities
FALT FAA "
FIL,A cu
Multiplicatives
FA
L-r
FL,A
FA.B A »
FA ®B,A °
Additives
T-r
F T,
FAA +B,A
——— &-r1 _
FA®B,A FA®B,A
Quantifiers
F(t/x)A, A
———— 3J-r, tany term
F XA, A y
Exponentials
AR erelict
FA9A ereliction
A, A

——— promotion
FAA P

®-r2

Adding rewrite rules

» rewrite rules are of the two following forms:
> onterms

xx0 —> 0
x+0 - 0

» on propositions
P(0) — VxP(x)

» a set of rewrite rules R defines a congruence =

Adding rewrite rules

» rewrite rules are of the two following forms:
» onterms

xx0 —> 0
x+0 - 0

» on propositions
P(0) — VYxP(x)

» a set of rewrite rules R defines a congruence =
» it is taken into account in the rules (side condition):

axiom TALA tumsino TBA axiom, B = A+

Adding rewrite rules

v

rewrite rules are of the two following forms:
» onterms

xx0 —> 0
x+0 - 0

» on propositions
P(0) — VYxP(x)

v

a set of rewrite rules R defines a congruence =

v

it is taken into account in the rules (side condition):

axiom TALA tums it TB.A axiom, B = A+
» many interesting examples, e.g. Church’s simple types theory:
first-order encoding of higher-order LL by rewrite rules.

Rules of Linear Logic modulo

. _pL
7|-A,B init, A=B
——1r,A=1
FA &
AT +B,A _
FCra enC=AeB
no 0-r
FAA +FB,A _
TC.A &r1,C=A&B
FAA _
"C.A V-r, C = VXA, x fresh
FA,BA
AL Ll =B=_C=9
FC.A Acontr.,A =B=C=7D
'_
=9
CAB weak., B =?A

Identities
AT +FB,A L
‘T.A cut, A=B
Multiplicatives
FA _
. "BAA’A 1rnA=_1
FA,D, _
W »-r, C=A%®B
Additives A
A A AT B:AT
FA, _ B, i
I—C,A @‘f“],C:A@B I—C,A ®r2,|
Quantifiers
F(t/x)A, A _
S C.A J-r, C = XA, t term
Exponentials
FAA
> =9
AB derel., B =?A
FAA

=1 =9
CAB promo., B =!A, A =T

A toy example

» Rewrite system:

PO — A
P1) —» B

» Proof of H?23x(P(x)*), A ® B (two sided: VxP(x) + A ® B)

A toy example

» Rewrite system:

PO — A
P1) —» B

» Proof of H?23x(P(x)*), A ® B (two sided: VxP(x) + A ® B)

>

; F PO, A F P A
dereliction P (Pe), A F X(PC)), B dereliction
FAX(POY, A F2Ax(P(x)Y), B
F2Ax(POO™), 23Ax(P(X)*1),A® B

FAX(P(X)),A® B

contraction

Studying cut elimination

» theoretic power of DM: in some cases, no cut elimination.

Studying cut elimination

» theoretic power of DM: in some cases, no cut elimination.

» counterexample
A—- (lA) oA

can type every (untyped) A-term (especially Q = Ax.(xx))

Studying cut elimination

» theoretic power of DM: in some cases, no cut elimination.
» counterexample
A—->(lA)—oA
can type every (untyped) A-term (especially Q = Ax.(xx))
» worse: this rule admits cuts but no normalization
» we give semantic ways to prove cut elimination (admissibility)

Phase spaces

» atopological interpretation
» idea behind: sets of contexts (i.e. A* ={I"|I" + A provable })

» like Boolean algebras, Heyting algebras (pseudo-complement:
think about open sets !). “Natural” interpretation:

(AANB)"=A"NnB*

intended meaning:

I'rA I'rB
I'rAAB

Phase spaces

» atopological interpretation
» idea behind: sets of contexts (i.e. A* ={I"|I" + A provable })

» like Boolean algebras, Heyting algebras (pseudo-complement:
think about open sets !). “Natural” interpretation:

(AANB)"=A"NnB*

intended meaning:

'cA I'rB
I'rAAB
» in LL: two conjunctions ® and & : which one is the
intersection ?

Phase spaces

» atopological interpretation
» idea behind: sets of contexts (i.e. A* ={I"|I" + A provable })

» like Boolean algebras, Heyting algebras (pseudo-complement:
think about open sets !). “Natural” interpretation:

(AANB)"=A"NnB*

intended meaning:

'cA I'rB
I'rAAB
» in LL: two conjunctions ® and & : which one is the
intersection ?

» Hint: look at the previous rule. But what for the other ?

Phase spaces

» (M, .): a commutative monoid, 1: unit, L: a fixed subset of M
(intended meaning: contexts with concatenation, empty context and
some fixed subset — the pole)

Phase spaces

v

(M, .): a commutative monoid, 1: unit, L: a fixed subset of M
(intended meaning: contexts with concatenation, empty context and
some fixed subset — the pole)

» plus special treatment for exponentials (modalities): set J ...
» basic construct: orthogonal of subsets @« € M

at={ala.acl)

» consider only sets closed by bi-orthogonality (o = a**): facts.
(involutive closure operator: (1)*+)

Phase spaces

v

(M, .): a commutative monoid, 1: unit, L: a fixed subset of M
(intended meaning: contexts with concatenation, empty context and
some fixed subset — the pole)

» plus special treatment for exponentials (modalities): set J ...
» basic construct: orthogonal of subsets @« € M

at={ala.acl)

» consider only sets closed by bi-orthogonality (o = a**): facts.
(involutive closure operator: (1)*+)
semantic operators

v

»T=M
»0=Tt={a|Mac.l}
»a&fB=anpg

»a®pB=(apf)t

Phase models

» defining a model: usual business

» base interpretation for terms and predicates

» connectors as operators

» quantifiers: V infinite intersection (on domain), 3 closure of
infinite union

» specific condition on models. Rewrite rules valid:

A = B should imply A* = B*

Phase models

v

defining a model: usual business

» base interpretation for terms and predicates

» connectors as operators

» quantifiers: V infinite intersection (on domain), 3 closure of
infinite union

» specific condition on models. Rewrite rules valid:
A = B should imply A* = B*
» soundness holds (well ... confluence of rewrite rules required)

I+ AimpliesT* < A* (one sided version: T** C A*)

\4

completeness also ...

Phase models for cut elimination

» ... but we can do more !

Find a model such that I'* < A* implies ¢ A, A

» Okada’s work extended to deduction modulo settings

Context phase spaces

» monoid M: set of finite contexts, composition law . :
concatenation.

» define the
(outer value) [A]={"| r I, A}

» take [L] for (the semantical) L. Exercise: {A}*: = [A]

Context phase spaces

» monoid M: set of finite contexts, composition law . :
concatenation.

» define the
(outer value) [A]={"| r I, A}

» take [L] for (the semantical) L. Exercise: {A}*: = [A]
» interepret each atomic predicate symbol P by [P].

» this defines a phase space. (would also define Heyting or
Boolean algebra)

Context phase spaces

» monoid M: set of finite contexts, composition law . :
concatenation.

» define the
(outer value) [A]={"| r I, A}

» take [L] for (the semantical) L. Exercise: {A}*: = [A]
» interepret each atomic predicate symbol P by [P].

» this defines a phase space. (would also define Heyting or
Boolean algebra)

» aim: I € [A].

semantic cut elimination

» show I € [A] in a few steps
» Main Lemma: for any A,

Al e A* C[A]

semantic cut elimination

» show I € [A] in a few steps
» Main Lemma: for any A,

Al e A* C[A]

» consequence:
» T* C[I] = {T}*
» {[}*+ C I'** (negating the previous)
» T e {T}** (exercise)
» I'** C A* (soundness)
» A" C [A]
» QED:+4T,A

semantic cut elimination

» show I € [A] in a few steps
» Main Lemma: for any A,

Al e A* C[A]

v

consequence:

» I* C [T] = {T}*

» ([}t c I'** (negating the previous)

» T e {T}** (exercise)

» I+ C A* (soundness)

» A* C [A]

» QED:+4T,A
Stop! Additional constraint: A* = B*when A =B
dependent on =

we do that for two conditions on rewrite rules: order and
positivity. Plus a combination of both.

v

v

v

The positivity condition in short

Core ideas

» define proof nets for linear logic modulo
» study the proof normalization algorithms
» define some pseudo-Phase spaces (as Truth values algebras)

	Introduction
	Syntax
	Semantics
	Cut elimination
	further works

