
A Linear Logic Modulo

Olivier Hermant

June 29, 2007

I Linear Logic has much to say about connectors.
I Deduction Modulo has much to say about (first-order)

quantifiers.

I let’s combine them.

I Linear Logic has much to say about connectors.
I Deduction Modulo has much to say about (first-order)

quantifiers.
I let’s combine them.

The language

I Usual first-order logic language.
I logical connectors

multiplicatives︷ ︸︸ ︷
⊗, M,(,

additives︷︸︸︷
& ,⊕ ,

exponentials︷︸︸︷
!, ?

I logical constants

multiplicatives︷︸︸︷
1,⊥ ,

additives︷︸︸︷
>, 0

I first-order quantifiers ∀,∃

I the negation symbol ⊥ is not a primitive symbol
I atoms A and negated atoms A⊥

I we work with negation normal forms (classical LL, one sided
sequent calculus)

The language

I Usual first-order logic language.
I logical connectors

multiplicatives︷ ︸︸ ︷
⊗, M,(,

additives︷︸︸︷
& ,⊕ ,

exponentials︷︸︸︷
!, ?

I logical constants

multiplicatives︷︸︸︷
1,⊥ ,

additives︷︸︸︷
>, 0

I first-order quantifiers ∀,∃
I the negation symbol ⊥ is not a primitive symbol
I atoms A and negated atoms A⊥

I we work with negation normal forms (classical LL, one sided
sequent calculus)

Dualities in Linear Logic

A⊥⊥ = (A⊥)⊥ = A

Multiplicatives
⊥⊥ = 1 1⊥ = ⊥

(A ⊗ B)⊥ = A⊥ M B⊥ (A M B)⊥ = A⊥ ⊗ B⊥

A (B = A⊥ M B

Additives
>⊥ = 0 0⊥ = >

(A ⊕ B)⊥ = A⊥ & B⊥ (A & B)⊥ = A⊥ ⊕ B⊥

Exponentials
(!A)⊥ =?(A⊥) (?A)⊥ =!(A⊥)

Quantifiers
(∀xA)⊥ = ∃xA⊥ (∃xA)⊥ = ∀xA⊥

Deduction rules

I sequent style
I one-sided (duality): Γ ` ∆ is written ` Γ⊥,∆ (negation NF)
I axiom looks like ` A⊥,A

I independent groups of connectors (substructural logics)
I multiplicatives separate the context (perfect world)
I additives do not (imperfect world)
I contexts: sets (no permutation needed)

Deduction rules

I sequent style
I one-sided (duality): Γ ` ∆ is written ` Γ⊥,∆ (negation NF)
I axiom looks like ` A⊥,A
I independent groups of connectors (substructural logics)
I multiplicatives separate the context (perfect world)
I additives do not (imperfect world)
I contexts: sets (no permutation needed)

Deduction rules of Linear Logic

Identities
init

` A⊥,A
` A⊥,Γ ` A ,∆

cut
` Γ,∆

Multiplicatives
1-r

` 1
` ∆

⊥-r
` ⊥,∆

` A ,Γ ` B ,∆
⊗-r

` A ⊗ B ,Γ,∆
` A ,B ,∆

M-r
` A M B ,∆

Additives
no 0-r >-r

` >,Γ
` A ,∆ ` B ,∆

& -r
` A & B ,∆

` A ,∆
⊕-r1

` A ⊕ B ,∆
` B ,∆

⊕-r2
` A ⊕ B ,∆

Quantifiers
` A ,∆

∀-r, x fresh
` ∀xA ,∆

` (t/x)A ,∆
∃-r, t any term

` ∃xA ,∆
Exponentials

`?A , ?A ,∆
contraction

`?A ,∆
` ∆,A

dereliction
` ∆, ?A

` ∆ weakening
` ∆, ?A

`?∆,A
promotion

`?∆, !A

Adding rewrite rules

I rewrite rules are of the two following forms:
I on terms

x ∗ 0 → 0

x + 0 → 0

I on propositions
P(0)→ ∀xP(x)

I a set of rewrite rules R defines a congruence ≡

I it is taken into account in the rules (side condition):

axiom
` A⊥,A turns into axiom, B ≡ A⊥

` B ,A
I many interesting examples, e.g. Church’s simple types theory:

first-order encoding of higher-order LL by rewrite rules.

Adding rewrite rules

I rewrite rules are of the two following forms:
I on terms

x ∗ 0 → 0

x + 0 → 0

I on propositions
P(0)→ ∀xP(x)

I a set of rewrite rules R defines a congruence ≡
I it is taken into account in the rules (side condition):

axiom
` A⊥,A turns into axiom, B ≡ A⊥

` B ,A

I many interesting examples, e.g. Church’s simple types theory:
first-order encoding of higher-order LL by rewrite rules.

Adding rewrite rules

I rewrite rules are of the two following forms:
I on terms

x ∗ 0 → 0

x + 0 → 0

I on propositions
P(0)→ ∀xP(x)

I a set of rewrite rules R defines a congruence ≡
I it is taken into account in the rules (side condition):

axiom
` A⊥,A turns into axiom, B ≡ A⊥

` B ,A
I many interesting examples, e.g. Church’s simple types theory:

first-order encoding of higher-order LL by rewrite rules.

Rules of Linear Logic modulo

Identities
init, A ≡ B⊥

` A ,B
` A ,Γ ` B ,∆

cut, A ≡ B⊥
` Γ,∆

Multiplicatives
1-r, A ≡ 1

` A
` ∆

⊥-r, A ≡ ⊥
` A ,∆

` A ,Γ ` B ,∆
⊗-r, C ≡ A ⊗ B

` C ,Γ,∆
` A ,B ,∆

M-r, C ≡ A M B
` C ,∆

Additives
no 0-r >-r, A ≡ >

` A ,Γ
` A ,∆ ` B ,∆

&-r, C ≡ A & B
` C ,∆

` A ,∆
⊕-r1, C ≡ A ⊕ B

` C ,∆
` B ,∆

⊕-r2, C ≡ A ⊕ B
` C ,∆

Quantifiers
` A ,∆

∀-r, C ≡ ∀xA , x fresh
` C ,∆

` (t/x)A ,∆
∃-r, C ≡ ∃xA , t term

` C ,∆
Exponentials

` A ,B ,∆
contr., A ≡ B ≡ C ≡?D

` C ,∆
` ∆,A

derel., B ≡?A
` ∆,B

` ∆ weak., B ≡?A
` ∆,B

` ∆,A
promo., B ≡!A , ∆ ≡?Γ

` ∆,B

A toy example

I Rewrite system:

P(0) → A

P(1) → B

I Proof of `?∃x(P(x)⊥),A ⊗ B (two sided: !∀xP(x) ` A ⊗ B)

I

` P(0)⊥,A
∃-r
` ∃x(P(x)⊥),A

dereliction
`?∃x(P(x)⊥),A

` P(1)⊥,A
∃-r

` ∃x(P(x)⊥),B
dereliction

`?∃x(P(x)⊥),B
⊗-r

`?∃x(P(x)⊥), ?∃x(P(x)⊥),A ⊗ B
contraction

`?∃x(P(x)⊥),A ⊗ B

A toy example

I Rewrite system:

P(0) → A

P(1) → B

I Proof of `?∃x(P(x)⊥),A ⊗ B (two sided: !∀xP(x) ` A ⊗ B)
I

` P(0)⊥,A
∃-r
` ∃x(P(x)⊥),A

dereliction
`?∃x(P(x)⊥),A

` P(1)⊥,A
∃-r

` ∃x(P(x)⊥),B
dereliction

`?∃x(P(x)⊥),B
⊗-r

`?∃x(P(x)⊥), ?∃x(P(x)⊥),A ⊗ B
contraction

`?∃x(P(x)⊥),A ⊗ B

Studying cut elimination

I theoretic power of DM: in some cases, no cut elimination.

I counterexample
A → (!A)(A

can type every (untyped) λ-term (especially Ω = λx.(xx))
I worse: this rule admits cuts but no normalization
I we give semantic ways to prove cut elimination (admissibility)

Studying cut elimination

I theoretic power of DM: in some cases, no cut elimination.
I counterexample

A → (!A)(A

can type every (untyped) λ-term (especially Ω = λx.(xx))

I worse: this rule admits cuts but no normalization
I we give semantic ways to prove cut elimination (admissibility)

Studying cut elimination

I theoretic power of DM: in some cases, no cut elimination.
I counterexample

A → (!A)(A

can type every (untyped) λ-term (especially Ω = λx.(xx))
I worse: this rule admits cuts but no normalization
I we give semantic ways to prove cut elimination (admissibility)

Phase spaces

I a topological interpretation
I idea behind: sets of contexts (i.e. A∗ = {Γ | Γ ` A provable })
I like Boolean algebras, Heyting algebras (pseudo-complement:

think about open sets !). “Natural” interpretation:

(A ∧ B)∗ = A∗ ∩ B∗

intended meaning:

Γ ` A Γ ` B
Γ ` A ∧ B

I in LL: two conjunctions ⊗ and & : which one is the
intersection ?

I Hint: look at the previous rule. But what for the other ?

Phase spaces

I a topological interpretation
I idea behind: sets of contexts (i.e. A∗ = {Γ | Γ ` A provable })
I like Boolean algebras, Heyting algebras (pseudo-complement:

think about open sets !). “Natural” interpretation:

(A ∧ B)∗ = A∗ ∩ B∗

intended meaning:

Γ ` A Γ ` B
Γ ` A ∧ B

I in LL: two conjunctions ⊗ and & : which one is the
intersection ?

I Hint: look at the previous rule. But what for the other ?

Phase spaces

I a topological interpretation
I idea behind: sets of contexts (i.e. A∗ = {Γ | Γ ` A provable })
I like Boolean algebras, Heyting algebras (pseudo-complement:

think about open sets !). “Natural” interpretation:

(A ∧ B)∗ = A∗ ∩ B∗

intended meaning:

Γ ` A Γ ` B
Γ ` A ∧ B

I in LL: two conjunctions ⊗ and & : which one is the
intersection ?

I Hint: look at the previous rule. But what for the other ?

Phase spaces

I (M, .): a commutative monoid, 1: unit, ⊥: a fixed subset of M
(intended meaning: contexts with concatenation, empty context and
some fixed subset – the pole)

I plus special treatment for exponentials (modalities): set J ...
I basic construct: orthogonal of subsets α ⊆ M

α⊥ = {a | α.a ⊆ ⊥}

I consider only sets closed by bi-orthogonality (α = α⊥⊥): facts.
(involutive closure operator: ()⊥⊥)

I semantic operators
I > = M
I 0 = >⊥ = {a | M.a ⊆ ⊥}
I α & β = α ∩ β
I α ⊗ β = (α.β)⊥⊥

Phase spaces

I (M, .): a commutative monoid, 1: unit, ⊥: a fixed subset of M
(intended meaning: contexts with concatenation, empty context and
some fixed subset – the pole)

I plus special treatment for exponentials (modalities): set J ...
I basic construct: orthogonal of subsets α ⊆ M

α⊥ = {a | α.a ⊆ ⊥}

I consider only sets closed by bi-orthogonality (α = α⊥⊥): facts.
(involutive closure operator: ()⊥⊥)

I semantic operators
I > = M
I 0 = >⊥ = {a | M.a ⊆ ⊥}
I α & β = α ∩ β
I α ⊗ β = (α.β)⊥⊥

Phase spaces

I (M, .): a commutative monoid, 1: unit, ⊥: a fixed subset of M
(intended meaning: contexts with concatenation, empty context and
some fixed subset – the pole)

I plus special treatment for exponentials (modalities): set J ...
I basic construct: orthogonal of subsets α ⊆ M

α⊥ = {a | α.a ⊆ ⊥}

I consider only sets closed by bi-orthogonality (α = α⊥⊥): facts.
(involutive closure operator: ()⊥⊥)

I semantic operators
I > = M
I 0 = >⊥ = {a | M.a ⊆ ⊥}
I α & β = α ∩ β
I α ⊗ β = (α.β)⊥⊥

Phase models

I defining a model: usual business
I base interpretation for terms and predicates
I connectors as operators
I quantifiers: ∀ infinite intersection (on domain), ∃ closure of

infinite union

I specific condition on models. Rewrite rules valid:

A ≡ B should imply A∗ = B∗

I soundness holds (well ... confluence of rewrite rules required)

Γ ` A implies Γ∗ ≤ A∗ (one sided version: Γ∗⊥ ⊆ A∗)

I completeness also ...

Phase models

I defining a model: usual business
I base interpretation for terms and predicates
I connectors as operators
I quantifiers: ∀ infinite intersection (on domain), ∃ closure of

infinite union

I specific condition on models. Rewrite rules valid:

A ≡ B should imply A∗ = B∗

I soundness holds (well ... confluence of rewrite rules required)

Γ ` A implies Γ∗ ≤ A∗ (one sided version: Γ∗⊥ ⊆ A∗)

I completeness also ...

Phase models for cut elimination

I ... but we can do more !

Find a model such that Γ∗ ≤ A∗ implies `cf A ,∆

I Okada’s work extended to deduction modulo settings

Context phase spaces

I monoid M: set of finite contexts, composition law . :
concatenation.

I define the

(outer value) ~A� = {Γ | `cf Γ,A }

I take ~⊥� for (the semantical) ⊥. Exercise: {A }⊥ = ~A�

I interepret each atomic predicate symbol P by ~P�.
I this defines a phase space. (would also define Heyting or

Boolean algebra)
I aim: Γ ∈ ~A�.

Context phase spaces

I monoid M: set of finite contexts, composition law . :
concatenation.

I define the

(outer value) ~A� = {Γ | `cf Γ,A }

I take ~⊥� for (the semantical) ⊥. Exercise: {A }⊥ = ~A�
I interepret each atomic predicate symbol P by ~P�.
I this defines a phase space. (would also define Heyting or

Boolean algebra)

I aim: Γ ∈ ~A�.

Context phase spaces

I monoid M: set of finite contexts, composition law . :
concatenation.

I define the

(outer value) ~A� = {Γ | `cf Γ,A }

I take ~⊥� for (the semantical) ⊥. Exercise: {A }⊥ = ~A�
I interepret each atomic predicate symbol P by ~P�.
I this defines a phase space. (would also define Heyting or

Boolean algebra)
I aim: Γ ∈ ~A�.

semantic cut elimination

I show Γ ∈ ~A� in a few steps
I Main Lemma: for any A ,

A⊥ ∈ A∗ ⊆ ~A�

I consequence:
I Γ∗ ⊆ ~Γ� = {Γ}⊥

I {Γ}⊥⊥ ⊆ Γ∗⊥ (negating the previous)
I Γ ∈ {Γ}⊥⊥ (exercise)
I Γ∗⊥ ⊆ A ∗ (soundness)
I A ∗ ⊆ ~A�
I Q.E.D: `cf Γ,A

I Stop! Additional constraint: A∗ = B∗ when A ≡ B
I dependent on ≡
I we do that for two conditions on rewrite rules: order and

positivity. Plus a combination of both.

semantic cut elimination

I show Γ ∈ ~A� in a few steps
I Main Lemma: for any A ,

A⊥ ∈ A∗ ⊆ ~A�

I consequence:
I Γ∗ ⊆ ~Γ� = {Γ}⊥

I {Γ}⊥⊥ ⊆ Γ∗⊥ (negating the previous)
I Γ ∈ {Γ}⊥⊥ (exercise)
I Γ∗⊥ ⊆ A ∗ (soundness)
I A ∗ ⊆ ~A�
I Q.E.D: `cf Γ,A

I Stop! Additional constraint: A∗ = B∗ when A ≡ B
I dependent on ≡
I we do that for two conditions on rewrite rules: order and

positivity. Plus a combination of both.

semantic cut elimination

I show Γ ∈ ~A� in a few steps
I Main Lemma: for any A ,

A⊥ ∈ A∗ ⊆ ~A�

I consequence:
I Γ∗ ⊆ ~Γ� = {Γ}⊥

I {Γ}⊥⊥ ⊆ Γ∗⊥ (negating the previous)
I Γ ∈ {Γ}⊥⊥ (exercise)
I Γ∗⊥ ⊆ A ∗ (soundness)
I A ∗ ⊆ ~A�
I Q.E.D: `cf Γ,A

I Stop! Additional constraint: A∗ = B∗ when A ≡ B
I dependent on ≡
I we do that for two conditions on rewrite rules: order and

positivity. Plus a combination of both.

The positivity condition in short

Core ideas

I define proof nets for linear logic modulo
I study the proof normalization algorithms
I define some pseudo-Phase spaces (as Truth values algebras)

	Introduction
	Syntax
	Semantics
	Cut elimination
	further works

