Induction Variable Analysis with Delayed
Abstractions

Sebastian Pop ! Albert Cohen ?
Georges-André Silber !

L CRI, Mines Paris, Fontainebleau, France
2 ALCHEMY group, INRIA Futurs, Orsay, France

Abstract

This paper presents the design of an induction variable analyzer suit-
able for the analysis of typed, low-level, three address representations in
SSA form. At the heart of our analyzer is a new algorithm recognizing
scalar evolutions. We define a representation called trees of recurrences
that is able to capture different levels of abstractions: from the finer level
that is a subset of the SSA representation restricted to arithmetic oper-
ations on scalar variables, to the coarser levels such as the evolution en-
velopes that abstract sets of possible evolutions in loops. Unlike previous
work, our algorithm tracks induction variables without prior classification
of a few evolution patterns: different levels of abstraction can be obtained
on demand. The low complexity of the algorithm fits the constraints of a
production compiler as illustrated by the evaluation of our implementation
on standard benchmark programs.

1 Introduction and Motivation

Supercomputing research has produced a wealth of techniques to optimize a
program and tune code generation for a target architecture, both for unipro-
cessor and multiprocessor performance [37, 2]. But the context is different
when dealing with common retargetable compilers for general-purpose and/or
embedded architectures: the automatic exploitation of parallelism (fine-grain
or thread-level) and the tuning for dynamic hardware components become far
more challenging. Modern compilers implement some of the sophisticated opti-
mizations introduced for supercomputing applications [2]. They provide perfor-
mance models and transformations to improve fine-grain parallelism and exploit
the memory hierarchy. Most of these optimizations are loop-oriented and as-
sume a high-level code representation with rich control and data structures:
do loops with regular control, constant bounds and strides, typed arrays with
linear subscripts. Yet these compilers are architecture-specific and designed by
processor vendors, e.g., IBM, SGI, HP, Compaq and Intel. In addition, the most
advanced optimizations are limited to Fortran and C, and performance is de-
pendent on the recognition of specific patterns in the source code. Some source-



to-source compilers implement advanced loop transformations driven by archi-
tecture models and profiling [15]. However, good optimizations require manual
efforts in the syntactic presentation of loops and array subscripts (avoiding,
e.g., while loops, imperfect nests, linearized subscripts, pointers, exceptions,
intricate goto statements). Programs written for embedded systems often make
use of such low-level constructs, and this programming style is not suited to
traditional source-to-source loop nest optimizers. We see the need of either an
important investment in code rewriting, or a compiler that could optimize low-
level constructs. Several works demonstrated the interest of enriched low-level
representations [3, 17, 25]: they build on the normalization and simplicity of
three address code, adding data types, Static Single-Assignment form (SSA)
[7, 21] to ease data-flow analysis and scalar optimizations, and control and data
annotations (loop nesting, heap structure, etc.). Starting from version 4.0, GCC
uses such a representation called GIMPLE [23, 19], a three-address code derived
from SIMPLE [13]. In a three-address representation like GIMPLE, subscript
expressions, loop bounds and strides are spread across a number of instructions
and basic blocks, possibly far away from the original location in the source code.
The most popular techniques to retrieve scalar evolutions [36, 9, 29] are not well
suited to work on such loosely structured loops because they rely on classifica-
tion schemes into a set of predefined forms, often based on pattern-matching
rules. Such rules are sometimes sufficient at the source level (for numerical
codes), but too restrictive to cover the wide variability of inductive schemes
induced by scalar and control-flow optimizations on a low-level representation.

To address the challenges of induction variable recognition on a low-level
representation, we designed a general and flexible algorithm to build closed
form expressions for scalar evolutions. This algorithm can retrieve the array
subscripts, loop bounds and strides lost in the lowering process to three-address
code and optimization phases, as well as many other scalar evolution proper-
ties that did not explicitly appear in the source code. We demonstrate that
induction-variable recognition and dependence analysis can be effectively im-
plemented at such a low level. We also show that our method is more flexible
and robust than comparable solutions on high-level code, since it retrieves pre-
cise dependence information without restrictions on the complexity of the flow
of control and recursive scalar definitions. In particular, unlike [9, 34, 33], our
method captures affine and polynomial closed forms without restrictions on the
number and the intricateness of ¢ nodes. Finally, speed, robustness of the imple-
mentation and language-independence are natural benefits of using a low-level
static single assignment representation.

1.1 Introductory Examples

We recall some SSA terminology, see [7, 21] for details: the SSA graph is the
graph of def-use chains in the SSA representation; ¢ nodes occur at merge points
and restore the flow of values from the renamed variables; the ¢ arguments are
variables listed in the order of the associated control-flow edges; ¢ nodes are
split into the loop-¢ — the second argument is a back-edge in the control-flow
graph — and condition-¢ nodes. In this paper, we will use a “generic” typed
three-address code in SSA form, with a syntax close to GIMPLE: control-flow
primitives are a conditional expression if, a goto expression goto, a loop anno-
tation discovered from the control-flow graph, loop (¢)) is the annotation for loop



number k, and ¢}, denotes the implicit counter associated with this loop (loop
numbers are unique). Loop counters do not correspond to any concrete variable
in the program. The number of iterations is computed from the evolutions of
scalars involved in the loop exit conditions: this provides precise informations
lost in the translation to a low-level representation, or not explicitely exposed
at source level, as in while or goto loops.

a = 3;
b=1;
loop (£1)
c = ¢(a, £);
d = ¢(b, g);
if (d>=123) goto end;
e=d+7;
f=e+c;
g=d + 5;
end:

First example:
tions.

polynomial func-
At each step of the loop,
an integer value following the
sequence 1,6,11,...,126 is as-
signed to d, that is the affine
function 5£7 + 1; a value in the
sequence 3, 11,24, ...,1703 is as-
signed to f, that is a polynomial
of degree 2: 312 + 1leg 43

loop (£1)
a = ¢(0, d);
b = ¢(0, c);
if (a>=100) goto end;
c=a+1;
d=D>b+1;
end:

Fourth example : periodic func-
tions. Both a and b have affine
0,1,2,...,100, be-
cause they both have the same
initial value. However, if their
initial value is different, their
evolution can only be described
by a periodic affine function.

evolutions:

a = 3;
loop (€1)
c = ¢(a, x);
loop (€2)
d = ¢(c, e);
e=d+ 1;
t=d- c;

if (t>=9) goto end2;
end2:
X =e + 3;
if (x>=123) goto endl;
endl:

Second example: multivariate
functions. The successive values
of ¢ are 3,17,31,...,115,
that is the affine wunivariate
function 14£;7 4 3. The successive
values of =z in the loop are
17,31, ...,129 that is 14€7 + 17.
The evolution of variable d,
3,4,5,...,13,17,18,19,...,129

depends on the iteration number
of both loops: that is the
multivariate affine function
14£1 + Lo + 3.

loop (€1)
a=¢(1, b);
if (a>=100) goto endl;
b=a+ 4;
loop (€2)
c = ¢(a, e);
e = ¢(b, £);
if (e>=100) goto end2;
f =e+ 6;
end2:
endl:

—
wrap-around. The
taken by a is
can be written

-

Third example:
sequence of values
1,5,9,...,101 that
in a condensed form as 4£; + 1.
The values taken by variable e are
5,11,17,...,95,101,9, 15,21, ...,95, 101
and generated by the multivariate
function 6£9 + 4¢7 + 5. These
variables are used to define the variable

two

c, that will contain the successive values
1,5,11,...,89,95,5,9,15,...,89,95:
the first value of c in the loop £g is the
value coming from a, while the subsequent
values are those of variable e.

loop (€1)

(unsigned char) a = ¢(0,
(int) b = ¢(0, d);
(unsigned char) ¢ = a + 1

(int) d = b + 1
if (d >= 1000) goto end;
T[b] = Ulal;

end:

loop (€1)
c); (char) a = ¢(0, c);
(int) b = ¢(0, d);
(char) c = a + 1

(int) d = b + 1
if (d > N) goto end;
end:

Sixth example: inferring prop-

Fifth example: effects of types on the evo-
lution of scalar variables. The C program-
ming language defines modulo arithmetics
for unsigned typed variables. In this exam-
ple, the successive values of variable a are
periodic: 0,1,2,...,255,0,1,..., or in a
condensed notation £7 mod 256.

Figure 1: Examples

erties from undefined behavior.
Signed types overflow are not de-
fined in C. The behavior is only
defined for the values of a in
0,1,2,...,126, consequently d is
only defined for 1,2,3,...,127,
and the loop is defined only for
the first 127 iterations.

To illustrate the main issues and concepts, we consider the examples in
Figure 1. A closed-form for f in the first example is a second-degree polynomial.
In the second example, d has a multivariate evolution: it depends on several loop
counters. To compute the evolution of ¢, x and d in the second example, one
must know the trip count of the inner loop, here 10 iterations. Yet, to statically
evaluate the trip count of £ one must already understand the evolutions of c
and d. In the third example, c is a typical case of wrap-around variable [36].
In the fourth example a and b have linear closed forms. Unlike our algorithm,
previous works could not compute this closed form due to the intricateness of the
SSA graph. The fifth example illustrates an unusual data dependence problem:
the unsigned char type constraints the values of a to the range [0,255]: when
language standards define modulo arithmetics for a type, the compiler has to
respect effects of overflows, and otherwise, as in the sixth example, the compiler
can deduce constraints based on undefined behavior.



1.2 Overview of the Paper

In the following, we expose a set of techniques to extract and to represent evo-
lutions of scalar variables in the presence of complex control flow and intricate
inductive definitions. We focus on designing low-complexity algorithms that do
not sacrifice on the effectiveness of retrieving precise scalar evolutions, using a
typed, low-level, SSA-form representation of the program. Section 2 introduces
the algebraic structure that we use to capture a wide spectrum of scalar evolu-
tion functions. Section 3 presents the analysis algorithm to extract closed form
expressions for scalar evolutions. Section 4 integrates our method in a data de-
pendence analysis and loop transformation framework. Section 5 compares our
method to other existing approaches. Finally, section 6 concludes and sketches
future work. For space constraints, we have shortened this presentation. A
longer version of the paper is available as a technical report [28].

2 Trees of Recurrences

In this section, we introduce the notion of Tree of Recurrences (TREC), a closed-
form that captures the evolution of induction variables as a function of iteration
indices and allows an efficient computation of values at given iteration points.
This formalism is an extended version of Multivariate Chains of Recurrences
(MCR) [4, 16, 38, 34]. The expressive power is extended by symbolic references.
MCR are obtained after an instantiation pass of all the varying symbols, de-
fined as an abstraction operator: some evolutions are mapped to the “don’t
know” symbol T. TREC correspond to a compressed part of the SSA graph
uniquely dealing with scalar constants and symbols. Let F'(¢1,%s,...,4y), or
F (E), represent the evolution of a variable inside a loop of depth m as a function
of l1,05,...,0y. F can be written as a closed form ©, called TREC, that can
be statically processed by further analyzes and efficiently evaluated at compile-
time. The syntax of a TREC is derived from MCR and inductively defined as:
O ={0O, +, Op}i or © = ¢, where O, and Oy, are trees of recurrences and c is a
constant or a variable name, and subscript k indexes the dimension. As a form
of syntactic sugar, {O,, +,{Op, +, Oc}x } & is flattened into {O4, +, Op, +, O } .-

2.1 Evaluation of Trees of Recurrences
The value ©(¢1, 03, ...,4y,) of a TREC © is defined as follows: if © is a constant

—

¢ then O(¢) = ¢, otherwise, © is of the form {O,, +, O}, and
O) =Oa(l) + > Op(lr, .o L1, lyr, -, L)

The evaluation of {©,,+,0;} for a given 7 matches the inductive updates
across {j, iterations of loop k: ©, is the initial value, and ©; the increment in
loop k. This is an exponential algorithm to evaluate a TREC, but [4] gives a
linear time and space algorithm based on Newton interpolation series. Given
a univariate MCR with ¢g, ¢1, ..., ¢, constant parameters (either scalar con-
stants, or symbolic names defined outside loop k):

- n Oy
{Co7+7617+762,+,---,+,cn}k(€)—Zcp<;>. (1)
p=0



This result comes from the following observation: a sum of multiples of binomial
coeflicients — called Newton series — can represent any polynomial. The closed
form for £ in the first example of Figure 1 is the second order polynomial F'(¢;) =

%€12 + 12—1€1 + 3 which can be represented by the sum of multiples of binomial

coefficients 60(601) + ¢ (le) + ¢o (621), with ¢g = 3, ¢4 = 8 and ¢ = 5. This

corresponds to the TREC {3,+,8,4+,5};. The coefficients of a TREC derive

from a finite differentiation table: for example, the coefficients for the TREC

associated with %612 + %61 + 3 can be computed either by differencing the

successive values taken by the scalar variable in successive loop iterations, and

construct the differentiation table like Haghighat and Polychronopoulos [12]:

¢ | o 1 2 3 4

co 3 11 24 42 65

cy 8 13 18 23
5
o

c2
c3

or, avoiding the construction of this differentiation table, by directly extracting

the coefficients from the code [34]. We present our algorithm for extracting
TREC coefficients from a classic SSA representation in Section 3. Arithmetic
operations on TREC can be defined as on MCR using rewriting rules. For a
complete table of rewriting rules on MCR we refer to [34]. We give an illustration
of TREC evaluation based on the second introductory example Figure 1, where
the evolution of d can be represented by the affine equation F(¢1,fs) = 1441 +
l3+ 3. A multivariate affine TREC for d is ©(¢1, £2) = {{3, +,14}1,+, 1}2, that
can be evaluated for /1 = 10 and ¢5 = 15 as follows:

©(10,15) = {{3,+,14}1, +,1}2(10,15) = 3 + 14 - <110> + <115> =158

2.2 Instantiation of TREC and Abstract Envelopes

In order be able to use the efficient evaluation scheme presented above, symbolic
coefficients of a TREC have to be analyzed: the role of the instantiation pass
is to limit the expressive power of TREC to MCR. Difficult TREC constructs
such as exponential self referring evolutions (as the Fibonacci sequence that
defines the simplest case of the class of mixers: fib — {0,+,1,+, fib}x) are
either translated to some appropriate representation, or discarded. Optimizers
such as symbolic propagation could handle such difficult constructs, however
they lead to problems that are difficult to solve (e.g. determining the number
of iterations of a loop whose exit edge is guarded by a Fibonacci sequence).
Because a large class of optimizers and analyzers are expecting simpler cases,
TREC information is filtered using an instantiation pass. Several abstract views
can be defined by different instantiation passes, such as mapping every non
polynomial scalar evolution to T, or even more practically, mapping non affine
functions to T. In appropriate cases, it is natural to map uncertain values to
an abstract value: we have experimented instantiations of TREC with intervals,
in which case we obtain a set of possible evolutions that we call an envelope.
Allowing the coefficients of TREC to contain abstract scalar values is a more
natural extension than the use of maximum and minimum functions over MCR
as proposed by van Engelen in [33] because it is then possible to define other
kinds of envelopes using classic scalar abstract domains, such as polyhedra,
octagons [20], or congruences [11].



2.3 DPeeled Trees of Recurrences

A frequent occurring pattern consists in variables that are initialized to a value
during the first iteration of a loop, and then is replaced by the values of an
induction variable for the rest of iterations. We have chosen to represent these
variables by explicitly listing the first value that they contain, and then the
evolution function that they follow. The peeled TREC are described by the
syntax (a, b);, whose semantics is given by:

a if z =0,
b(x-1) forz>1,

(a,b)x(x) = {

where a is a TREC with no evolution in loop k, b is a TREC that can have
an evolution in loop k, and z is indexing the iterations in loop k. Most closed
forms for wrap-around variables [36] are peeled TREC. Indeed, back to the third
introductory example (see Figure 1), the closed form for ¢ can be represented
by a peeled multivariate affine TREC: ({1,+4,4}1, {{5, +,4}1,+,6}2)2. A peeled
TREC describes the first values of a closed form chain of recurrence. In some
cases it is interesting to replace it by a simpler MCR, and vice versa, to peel some
iterations out of a MCR. For example, the peeled TREC (0, {1, +,1}1)1 describes
the same function as {0,+,1};. This last form is a unique representative of a
class of TREC that can be generated by peeling one or more elements from
the beginning. Simplifying a peeled TREC amounts to the unification of its first
element with the function represented in the right-hand side of the peeled TREC.
A simple unification algorithm tries to add a new column to the differentiation
table without changing the last element in that column. Since this first column
contains the coefficients of the TREC, the transformation is possible if it does
not modify the last coefficient of the column. This is illustrated in Figure 2.
This is an important technique as illustrated by the number of occurences in
benchmarks: in the SPEC CPU2000 we have found 29 wrap around loop-¢ that
can be unified, on the GCC code itself 337, and on the JavaGrande 5 occurrences.

¢ o 1 2 3 4
co | 3 11 24 42 65 4 O 1 2 3 4 5
c1 |8 13 18 23 co | © 3 11 24 42 65
I 5 c1 |3 8 13 18 23
ez o o ca |5 5 5 5

ez o o o

Figure 2: Adding a new column to the differentiation table of the chain of
recurrence {3, +,8,+,5}; leads to the chain of recurrence {0, +,3,+,5};.

Finally, we formalize the notion of peeled TREC equivalence class: given
integers v, ai,...,a,, a TREC ¢ = {a1,+,...,+,an}1, a peeled TREC p =
(v,¢)1,and a TRECr = {b1,+,...,+,bp—1,+, an}1, with the integer coefficients
b1,...,b,_1 computed as follows: b,_1 = apn_1 — Gn, bp—2 = Gn_2 —bp_1, ...,
b1 = a1 — ba, we say that r is equivalent to p if and only if by = v.

2.4 Typed and Periodic Trees of Recurrences

Induction variable analysis in the context of typed operations is not new: all
the compilers that have loop optimizers based on typed intermediate representa-
tions have solved this problem. However there is little literature that describes
the problems and solutions [35]: these details are often considered too low level,



and language dependent. As illustrated in the fifth introductory example, in
Figure 1, the analysis of data dependences has to correctly handle the effects of
overflowing on variables that are indexing the data. One of the solutions for pre-
serving the semantics of wrapping types on TREC operations is to type the TREC
and to map the effects of types from the SSA representation to the TREC rep-
resentation. For example, the conversion from unsigned char to unsigned int of
TREC {(uchar)100, 4, (uchar)240}; is {(uint)100, +, (uint)0xf££££££0};, such
that the original sequence remains unchanged (100, 84,68, ...). The first step
of a TREC conversion proves that the sequence does not wrap. In the previous
example, if the number of iterations in loop 1 is greater than 6, the converted
TREC should also contain a wrap modulo 256, as illustrated by the first values
of the sequence: 100, 84, 68,52, 36, 20,4,244,228,.... When it is impossible to
prove that an evolution cannot wrap, it is safe to assume that it wraps, and
keep the cast: (uint)({(uchar)100,+, (uchar)240};). Another solution is to use
a periodic TREC, that lists all the values in a period: in the previous example we
would have to store 15 values. Using periodic TREC for sequences wrapping over
narrow types can seem practical, but this method is not practical for arbitrary
sequences over wider types. Periodic sequences may also be generated by flip-
flop operations, that are special cases of self referenced peeled TREC. Variables
in a flip-flop exchange their initial values over the iterations, for example:

3 if z =0 mod 2,

flip — (3,5, flip)x(z) = [3, 5]k (x) = {5 o1 mod 2.

2.5 Exponential Trees of Recurrences

The exponential MCR [4] used by [34] and then extended by [33] to handle sums
or products of polynomial and exponential evolutions are useless in compiler
technology for characterizing typed integer sequences: integer typed arithmetic
has limited domains of definition. Any operation whose result is not in the
definition domain causes an overflowing effect that either has defined modulo
wrapping semantics, or is not defined by the programming language standard.
The longer exponential integer sequence that can exist for an integer type of size
2™ is n—1, that corresponds to the left shifting of the first bit n—2 times. Storing
exponential evolutions as peeled TREC seems to be efficient, because in general
n < 64. Other integer exponential effects that might generate longer periods,
such as the combination of left shifting with addition might also happen, but
they are not enough frequent. We acknowledge that exponential MCR can have
applications in compiler technology for floating point evolutions, but we have
intentionally excluded floating point evolutions from this presentation because
floating point arithmetic has even more subtleties than typed integer arithmetic.
The next section will present our efficient algorithm that translates a part of
the SSA representation dealing with scalar variables to TREC.

3 Analysis of Scalar Evolutions

We will now present an algorithm to compute closed-form expressions for in-
ductive variables. Our algorithm translates a subset of the SSA to the TREC
representation, interprets a part of the expressions and enriches the available
information with properties that it computes, as the number of iterations, or



the value of a variable at the end of a loop. It extends the applicability of
classic optimization passes as the range propagation, and allows the extraction
of precise high level informations as array and pointer data access descriptions.
The interface to our analyzer is similar to a database that contains for a given
variable an evolution function as a TREC. For example, when an optimizer needs
the evolution function of a variable, it simply launches a query that either re-
turns a previously computed cached TREC, or triggers the analysis of all the
variables, loop counts, etc. needed to determine the evolution function. Several
constraints have led the design of our analyzer: first, our algorithm does not
assume a particular control-flow structure and makes no restriction on the re-
cursive intricate variable definitions. It however fails to detect any meaningful
induction variable on irreducible control flow graphs that cannot be analyzed
into natural loop structures [1]: for all the variables defined in an irreducible
region, the answer is T, an uncomputable evolution. Another characteristic is
that the analysis does not use the syntactic information: it makes no distinction
between the variables defined by the programmer and those introduced by the
compiler. The algorithm is also able to delay a part of the analysis until more
information is known by leaving symbolic names in the target representation.
The last constraint for inclusion in a production compiler is that the analyzer
should be linear in time and space: even if the structure of our algorithm is
complex, composed of a double recursion as sketched in Figure3, it presents
similarities with the algorithm for linear unification by Paterson and Wegman
[26], where the double recursion is hidden behind a single recursion with a stack.

2 )
[ ComputeL oopPhiEvol uti ons]% [I nstantiateEvol utiorj @\nalyze Evol utio@ BuiIdUpdateExp@
A

Figure 3: Bird’s eye view of the analyzer

3.1 Algorithm

Figures 4 and 5 present our algorithm to compute the scalar evolutions of all
variables defined by loop-¢ nodes: COMPUTELOOPPHIEVOLUTIONS is a driver
that illustrates the use of the analyzer and instantiation. In general, ANA-
LYZEEVOLUTION is called for a given loop number and a variable name. The
evolution functions are stored in a database that is visible only to ANALYZEEVO-
LUTION, and that is accessed using EVOLUTION[n], for an SSA name n. The
initial value for a not yet analyzed name is L. The cornerstone of the algo-
rithm is the search and reconstruction of the symbolic update expression on a
path of the SSA graph: BUILDUPDATEEXPR. This corresponds to a depth-first
search algorithm in the SSA graph with a pattern matching rule at each step,
halting either with a success on the starting loop-¢ node, or with a fail on any
other loop-¢ node of the same loop. Based on these results, ANALYZEEVO-
LUTION constructs either a TREC or a peeled TREC. INSTANTIATEEVOLUTION
substitutes symbolic parameters in a TREC. It computes their statically known
value, i.e., a constant, a periodic function, or an approximation with intervals,
possibly triggering other computations of TREC in the process. The call to
INSTANTIATEEVOLUTION is postponed until the end of the depth-first search,



Algorithm: COMPUTELOOPPHIEVOLUTIONS
Input: SSA representation of the procedure
Output: a TREC for every variable defined by loop-¢ nodes
For each loop [ in a depth-first traversal of the loop nest
For each loop-¢ node n in loop [
INSTANTIATEEVOLUTION (ANALYZEEVOLUTION(I, n), 1)

Algorithm: ANALYZEEVOLUTION(I, n)
Input: | the current loop, n the definition of an SSA name
Output: TREC for the variable defined by n within [
v « variable defined by n
In < loop of n
If EVOLUTION[n] # L Then res < EVOLUTION|n]
Else If n matches "v = constant” Then res < constant
Else If n matches ”v = a” Then res < ANALYZEEVOLUTION(I, a)
Else If n matches ”v = a ® b” (with ® € {+, —, *}) Then
res < ANALYZEEVOLUTION(l, a) ® ANALYZEEVOLUTION(, b)
Else If n matches "v = loop-¢(a, b)” Then
(notice a is defined outside loop In and b is defined in in)
Search in depth-first order a path from b to v:
(exist, update) < BUILDUPDATEEXPR(n, definition of b)
If not exist (if such a path does not exist) Then res < (a,b);: a peeled TREC
Else If update is T Then res « T
Else res «— {a,+, update};: a TREC
Else If n matches ”v = condition-¢(a, b)” Then
eva < INSTANTIATEEVOLUTION(ANALYZEEVOLUTION(!, a), In)
evb «— INSTANTIATEEVOLUTION(ANALYZEEVOLUTION(I, b), In)
If eva = evb Then res < eva Else res «— T
Else res «— T
EVOLUTION[n| < res
Return EvaL(res, 1)

Figure 4: COMPUTELOOPPHIEVOLUTIONS and ANALYZEEVOLUTION.

avoiding early approximations in the computation of update expressions. Com-
bined with the introduction of symbolic parameters in the TREC, postponing
the instantiation alleviates the need for a specific ordering of the computation
steps. The correctness proof and complexity of this algorithm are established
by structural induction on the SSA in the associated technical report [27].

3.2 Application of the Analyzer to an Example

We illustrate the analysis of scalar evolutions algorithm on the first introductory
example in Figure 1, with the analysis of ¢ = ¢(a, £). The SSA edge exiting
the loop, Figure 6.(1), is left symbolic. The analyzer starts a depth-first search,
illustrated in Figure 6.(2): the edge c—f is followed to the definition £ = e +
c, then following the first edge f—e, reaches the assignment e = d + 7, and
finally e—d leads to a loop-¢ node of the same loop. Since this is not the starting
loop-¢, the search continues on the other unexplored operands: back on e = d
+ 7, operand 7 is a scalar, then back on £ = e + ¢, the edge f—c is followed



Algorithm: BUILDUPDATEEXPR(h, n)
Input: h the halting loop-¢, n the definition of an SSA name
Output: (exist, update), exist is true if h has been reached,
update is the reconstructed expression for the overall effect in the loop of h
If (n is h) Then Return (true, 0)
Else If n is a statement in an outer loop Then Return (false, 1),
Else If n matches ”v = a” Then Return BUILDUPDATEEXPR(h, definition of a)
Else If n matches "v = a + b” Then
(exist, update) < BUILDUPDATEEXPR(h, a)
If exist Then Return (true, update + b),
(exist, update) < BUILDUPDATEEXPR(h, b)
If exist Then Return (true, update + a)
Else If n matches "v = loop-¢(a, b)” Then In «loop of n
(notice a is defined outside In and b is defined in In)
If a is defined outside the loop of h Then Return (false, L)
s « AppLY(In, ANALYZEEVOLUTION(In, n), NUMBEROFITERATIONS(In))
If s matches "a + t” Then (ezist, update) « BUILDUPDATEEXPR(h, a)
If exist Then Return (ezist, update + t)
Else If n matches ”v = condition-¢(a, b)” Then
(exist, update) «— BUILDUPDATEEXPR(h, a)
If exist Then Return (true, T)
(exist, update) < BUILDUPDATEEXPR(h, b)
If exist Then Return (true, T)
Else Return (false, L)

Algorithm: INSTANTIATEEVOLUTION(trec, 1)
Input: trec a symbolic TREC, [ the instantiation loop
Output: an instantiation of trec
If trec is a constant ¢ Then Return c
Else If trec is a variable v Then
If v has not been instantiated
Mark v as instantiated and Return ANALYZEEVOLUTION(!, v)
Else v is in a mixer structure, Return T
Else If trec is of the form {e1,+,e2}. Then
Return {INSTANTIATEEVOLUTION(e1, 1), 4+, INSTANTIATEEVOLUTION (€2, 1) }»
Else If trec is of the form (e1,e2), Then
Return UNIFY((INSTANTIATEEVOLUTION(e1, ), INSTANTIATEEVOLUTION (e2, 1))<)
Else Return T

Figure 5: BUILDUPDATEEXPR and INSTANTIATEEVOLUTION algorithms.

to the starting loop-¢ node, as illustrated in Figure 6.(3). Following the path
of iterative updates in execution order, as illustrated in Figure 6.(4), gives the
update expression: e. Finally, the analyzer records the TREC ¢ = {a,+,e};.
An instantiation of {a, +, e}y yields: a =3, e = {8,+,5}1, and {3,+,8,+,5}1.

3.3 Empirical Study

To show the robustness and language-independence of our implementation, and
to evaluate the accuracy of our algorithm, we determine a compact represen-
tation of all variables defined by loop-¢ nodes in the SPEC CPU2000 [32] and
JavaGrande [14] benchmarks. Figure 7 summarizes our experiments: affine uni-

10



a = 3; a = 3;

b\e 1; b=1;

loop ) loop (€1)
c = ¢Ca, £);
d = ¢, g);
if (d>=123)
| goto end;
e=d+7;
f=e+c;
g =d + 5;

end:

(1) Initial condition edge  (2) Searching for “c” (3) Found the halting phi (4) On the “return path”

Figure 6: Application to the first example
Benchmark u M C. T | Loops Trip A.

CINT2000 12986 20 13526 52656 | 10593 1809 82
CFP2000 13139 52 12051 12797 6720 4137 68
JavaGrande 334 0 455 866 481 84 0

Figure 7: Induction variables and loop trip count. Break-down of evolutions
into: “U.” affine univariate, “M.” affine multivariate, “C.” other compound ex-
pressions containing determined components, and “T” undetermined evolutions.
Last columns describe: “Loops” the number of natural loops, “Trip” the number
of single-exit loops whose trip count is successfully analyzed, “A.” the number
of loops for which an upper bound approximation of the trip count is available.

variate variables are very frequent because well structured loops are most of the
time using simple constructs, affine multivariate less common, as they are used
for indexing multi dimensional arrays. Difficult constructs such as polynomials
of degree greater to one occur very rarely: we have detected only three occur-
rences in SPEC CPU2000, and none in JavaGrande. The last four columns in
Figure 7 show the precision of the detector of the number of iterations: only
the single-exit loops are exactly analyzed, excluding a big number of loops that
contain irregular control flow (probably containing exception exits) as in the
case of java programs. In some cases an approximation of the loop count can
enable aggressive loop transformations as is the case of the swim test in SPEC
CPU2000: the size of data accessed in the loop is used to bound the number of
iterations, allowing safe refinements of the data dependence relations.

4 Applications

Based on our induction variable analysis, several scalar and high level loop
optimizations have been contributed: Zdenék Dvoidk from SuSE has contributed
strength reduction, induction variable canonicalization and elimination, and
loop invariant code motion [1]. Dorit Naishlos from IBM Haifa has contributed
a “simdization” pass [8, 22] that rewrites loops to use SIMD instructions such
as Altivec, SSE, etc. Daniel Berlin from IBM Research and Sebastian Pop have
contributed a linear loop transformation framework [6] that enables the loop
interchange transformation: on SPEC CPU2000 171.swim benchmark, for which
a critical loop is interchanged, peak obtains 1320 points compared to the base at
796 points: a 65% benefit. Finally, Diego Novillo from RedHat has contributed

11



a value range propagation pass [24]. The dependence-based transformations
use uniform dependence vectors [5], but our method for identifying conflicting
accesses between TREC can be applicable to the computation of more general
dependence abstractions, tests for periodic, polynomial, exponential or envelope
TREC. We implemented an extended Banerjee test [5], and we will integrate the
Omega test [30] in the next GCC version 4.2. In order to show the effectiveness
of the Banerjee data dependence analyzer as used in an optimizer, we have
measured the compilation time of the vectorization pass: for SPEC CPU2000
benchmarks, the vectorization pass does not exceed 1 second per compiled file,
nor 5 percent of the compilation time per file, showing that the dependence
analyzer is fast in practice. The experiments were performed on a Pentium4
2.40 GHz with 512 Kb of cache, 2 GB of RAM, on a Debian Sarge with a Linux
kernel 2.6.8. Figure 8 illustrates the scalability and accuracy of the analysis:

Benchmark # tests d i u ZIV Siv MIV
CINT2000 303235 | 73180 105264 124791 | 168942 5301 5134
CFP2000 655055 | 47903 98682 508470 | 105429 17900 60543
JavaGrande v2.0 87139 | 13357 67366 6416 76254 2641 916

Figure 8: Classification of data dependence tests in SPEC CPU2000 and Java-
Grande. Columns “d”, “i” and “u” represent the number of tests classified as
dependent, independent, and undetermined. Last columns split the dependence

tests into “ZIV”, “SIV”, “MIV”: zero, single and multiple induction variable.

we computed all dependences between pairs of references — both accessing the
same array — in every function. We have to stress that this evaluation is quite
artificial because an optimizer would focus the data dependence analysis only on
a few loop nests. The numbers of dependence tests and the MIV column witness
the stress on the analyzer: these tests involve arrays accessed in different loops,
that could be successive loops separated by an important number of statements.
Even with these extreme test conditions, our data dependence analyzer catches
an important number of dependence relations, and the worst case is 15 seconds
and 70 percent of the compilation time.

5 Comparison with Closely Related Works

Induction variable detection has been studied extensively in the past because of
its central role in loop optimizations. Our target closed form expressions is an
extension of the chains of recurrences [4, 34, 33]. The starting representation
is close to the one used in the Open64 compiler [9, 18], but our algorithm
avoids the syntactic case distinction made in [18] that has severe consequences in
terms of generality (when analyzing intricate SSA graphs) and maintainability:
as syntactic information is altered by several transformation passes, pattern
matching at a low level may lead to an explosion of the number of cases to be
recognized; e.g., if a simple recurrence is split across two variables, its evolution
would be classified as wrap around if not handled correctly in a special case;
in practice, [18] does not consider these cases. Path-sensitive approaches have
been proposed [33, 31] to increase precision in the context of conditional variable
updates. These techniques may lead to an exponential number of paths, and

12



although interesting, seem not yet suitable for a production compiler, where even
quadratic space complexity is unacceptable on benchmarks like GNU Gol[10].
Our work is based on the previous research results presented in [34]. We
have experimented with similar algorithms and dealt with several restrictions
and difficulties that remained unsolved in later papers: for example, loop se-
quences are not correctly handled, unless inserting at the end of each loop an
assignment for each variable modified in the loop and then used after the loop.
Because they are using a representation that is not in SSA form, they have to
deal with all the difficulties of building an “SSA-like” form. With some minor
changes, their algorithm can be seen as a translation from an unstructured list of
instructions to a weak SSA form restricted to operations on scalars. This weak
SSA form could be of interest for representations that cannot be translated to
classic SSA form, as the RTL representation of GCC. Another interesting result
for their algorithm would be a proof that constructing a weak SSA representa-
tion is faster than building the classic SSA representation, however they have
not presented experimental results on real codes or standard benchmarks for
showing the effectiveness of their approach. In contrast, our algorithm is ana-
lyzing a classic SSA representation, and instead of worrying about enriching the
expressiveness of the intermediate representation, we are concerned about the
opposite question: how to limit the expressiveness of the SSA representation in
order to provide the optimizers a level of abstraction that they can process. It
might well be argued that a new representation is not necessary for concepts
that can be expressed in the SSA representation: this point is well taken. We ac-
knowledge that we could have presented the current algorithm as a transformer
from SSA to an abstract SSA, containing abstract elements. However, we de-
liberately have chosen to present the analyzer producing trees of recurrences
for highlighting the sources of our inspiration and for presenting the extensions
that we proposed to the chains of recurrences. Finally, we wanted the algorithm
presented in this paper to reflect the underlying implementation in GCC.

6 Conclusion and Perspectives

We introduced trees of recurrences, a formalism based on multivariate chains of
recurrences [4, 16], with symbolic and algebraic extensions, such as the peeled
chains of recurrences. These extensions increase the expressiveness of standard
chains of recurrences and alleviate the need to resort to intractable exponential
expressions to handle wrap-around and mixer induction variables. We extended
this representation with the evolution envelopes that handle abstract elements
as approximations of runtime values. We also presented a novel algorithm for
the analysis of scalar evolutions. This algorithm is capable of traversing an
arbitrary program in Static Single-Assignment (SSA) form, without prior classi-
fication of the induction variables. The algorithm is proven by induction on the
structure of the SSA graph. Unlike prior works, our method does not attempt
to retrieve more complex closed form expressions, but focuses on generality:
starting from a low-level three-address code representation that has been seri-
ously scrambled by complex phases of data- and control-flow optimizations, the
goal is to recognize simple and tractable induction variables whose algebraic
properties allow precise static analysis, including accurate dependence testing.
We have implemented and integrated our algorithm in a production compiler,

13



the GNU Compiler Collection (4.0), showing the scalability and robustness of
an implementation that is the basis for several optimizations being developed,
including vectorization, loop transformations and modulo-scheduling. We pre-
sented experimental results on the SPEC CPU2000 and JavaGrande benchmarks,
with an application to dependence analysis. Our results show no degradations in
compilation time. Independently of the algorithmic and formal contributions to
induction variable recognition, this work is part of an effort to bring competitive
loop transformations to the free production compiler GCC.

References

[1]
2]

[3]

[4]

(10]
11]

12]

13]

[14]
(15]

[16]

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools. Addison-
Wesley, 1986.

R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan and
Kaufman, 2002.

W. Amme, N. Dalton, J. von Ronne, and M. Franz. SafeTSA: a type safe and referentially
secure mobile-code representation based on static single assignment form. In ACM Symp.
on Programming Language Design and Implementation (PLDI’01), 2001.

O. Bachmann, P. S. Wang, and E. V. Zima. Chains of recurrences a method to expedite
the evaluation of closed-form functions. In Proceedings of the international symposium
on Symbolic and algebraic computation, pages 242-249. ACM Press, 1994.

U. Banerjee. Loop Transformations for Restructuring Compilers: The Foundations.
Kluwer Academic Publishers, Boston, 1992.

D. Berlin, D. Edelsohn, and S. Pop. High-level loop optimizations for GCC. In Proceed-
ings of the 2004 GCC Developers Summit, pages 37-54, 2004. http://www.gccsummit.
org/2004.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM Trans.
on Programming Languages and Systems, 13(4):451-490, Oct. 1991.

A. E. Eichenberger, P. Wu, and K. O’Brien. Vectorization for simd architectures with
alignment constraints. In PLDI ’04: Proceedings of the ACM SIGPLAN 2004 conference
on Programming language design and implementation, pages 82-93. ACM Press, 2004.

M. P. Gerlek, E. Stoltz, and M. J. Wolfe. Beyond induction variables: detecting and
classifying sequences using a demand-driven ssa form. ACM Trans. on Programming
Languages and Systems, 17(1):85-122, Jan. 1995.

Gnu go. http://www.gnu.org/software/gnugo/gnugo.html.

P. Granger. Static analysis of linear congruence equalities among variables of a program.
In TAPSOFT ’91: Proceedings of the international joint conference on theory and prac-
tice of software development on Colloquium on trees in algebra and programming (CAAP
’91): wol 1, pages 169-192, New York, NY, USA, 1991. Springer-Verlag New York, Inc.

M. Haghighat and C. Polychronopoulos. Symbolic analysis for parallelizing compilers.
ACM Trans. on Programming Languages and Systems, 18(4):477-518, July 1996.

L. Hendren, C. Donawa, M. Emami, G. R. Gao, Justiani, and B. Sridharan. Designing
the McCAT compiler based on a family of structured intermediate representations. In
Proceedings of the 5th International Workshop on Languages and Compilers for Parallel
Computing, number 757 in LNCS, pages 406—-420. Springer-Verlag, 1993.

Java grande forum. http://www.javagrande.org.

KAP C/OpenMP for Tru64 UNIX and KAP DEC Fortran for Digital UNIX. http:
//www.hp.com/techsevers/software/kap.html.

V. Kislenkov, V. Mitrofanov, and E. Zima. Multidimensional chains of recurrences. In
Proceedings of the 1998 international symposium on symbolic and algebraic computation,
pages 199-206. ACM Press, 1998.

14



(17]

(18]

19]

[20]
[21]
22
[23]
[24]

[25]

[26]

27]

(28]

29]
(30]

(31]

(32]
(33]

(34]

(35]
(36]

(37)

(38]

C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis
& transformation. In ACM Symp. on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar. 2004.

S.-M. Liu, R. Lo, and F. Chow. Loop induction variable canonicalization in parallelizing
compilers. In Proceedings of the 1996 Conference on Parallel Architectures and Compi-
lation Techniques (PACT ’96), page 228. IEEE Computer Society, 1996.

J. Merill. GENERIC and GIMPLE: a new tree representation for entire functions. In
Proceedings of the 2003 GCC Developers Summit, pages 171-180, 2003. http://www.
gcecsummit . org/2003.

A. Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE, pages
310-319. IEEE CS Press, October 2001.

S. S. Muchnick. Advanced Compiler Design € Implementation. Morgan Kaufmann,
1997.

D. Naishlos. Autovectorization in GCC. In Proceedings of the 2004 GCC Developers
Summit, pages 105-118, 2004. http://www.gccsummit.org/2004.

D. Novillo. Tree SSA - a new optimization infrastructure for GCC. In Proceedings of the
2003 GCC Developers Summit, pages 181-193, 2003. http://www.gccsummit.org/2003.
D. Novillo. A propagation engine for gcc. In Proceedings of the 2005 GCC Developers
Summit, pages 175-184, 2005. http://www.gccsummit.org/2005.

K. O’Brien, K. M. O’Brien, M. Hopkins, A. Shepherd, and R. Unrau. Xil and yil: the
intermediate languages of tobey. In Papers from the 1995 ACM SIGPLAN workshop on
Intermediate representations, pages 71-82, New York, NY, USA, 1995. ACM Press.

M. S. Paterson and M. N. Wegman. Linear unification. In STOC ’76: Proceedings of
the eighth annual ACM symposium on Theory of computing, pages 181-186, New York,
NY, USA, 1976. ACM Press.

S. Pop, P. Clauss, A. Cohen, V. Loechner, and G.-A. Silber. Fast recognition of scalar
evolutions on three-address ssa code. Technical Report A/354/CRI, Centre de Recherche
en Informatique (CRI), Ecole des mines de Paris, 2004. http://www.cri.ensmp.fr/
classement/doc/A-354.ps.

S. Pop, A. Cohen, and G.-A. Silber. Induction variable analysis with delayed abstractions.
Technical Report A/367/CRI, Centre de Recherche en Informatique (CRI), Ecole des
mines de Paris, 2005. http://www.cri.ensmp.fr/classement/doc/A-367.ps.

B. Pottenger and R. Eigenmann. Parallelization in the presence of generalized induction
and reduction variables. In ACM Int. Conf. on Supercomputing (1CS’95), June 1995.

W. Pugh. A practical algorithm for exact array dependence analysis. Communications
of the ACM, 35(8):27-47, Aug. 1992.

S. Rus, D. Zhang, and L. Rauchwerger. The value evolution graph and its use in memory
reference analysis. In Proceedings of the 2004 Conference on Parallel Architectures and
Compilation Techniques. IEEE Computer Society, 2004.

Standard performance evaluation corporation. http://www.spec.org.

R. van Engelen, J. Birch, Y. Shou, B. Walsh, and K. Gallivan. A unified framework
for nonlinear dependence testing and symbolic analysis. In Proceedings of the ACM
International Conference on Supercomputing (ICS), pages 106-115, 2004.

R. A. van Engelen. Efficient symbolic analysis for optimizing compilers. In Proceedings
of the International Conference on Compiler Construction (ETAPS CC’01), pages 118—
132, 2001.

H. Warren. Hacker’s Delight. Addison-Wesley, 2003.

M. J. Wolfe. Beyond induction variables. In ACM Symp. on Programming Language
Design and Implementation (PLDI’92), pages 162-174, San Francisco, California, June
1992.

M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley,
1996.

E. V. Zima. On computational properties of chains of recurrences. In Proceedings of the
2001 international symposium on symbolic and algebraic computation, pages 345-352.
ACM Press, 2001.

15



