
Graphite: Towards a Declarative Polyhedral Representation

Sebastian Pop

Centre de recherche en informatique - Ecole des mines de Paris

sebastian.pop@cri.ensmp.fr

Abstract

Classical polyhedral representations of imperative lan-
guages entangle untranslated scalar imperative opera-
tions to the declarative descriptions of the polyhedral
model. This representation can handle high level array
operations, but is more difficult to work on programs
that split the array computations in smaller chunks in-
volving scalar temporary variables.

The aim of the current paper is to provide an overview
of the algorithms implemented inGraphite, and to con-
vey the intuitive ideas behind the changes needed to the
classical polyhedral representations to accommodate
to anSSA three address representation. These changes
tend to shift the polyhedral representation to a purely
declarative language.

Categories and Subject Descriptors D.3.4 [Program-
ming Languages]: Processors—compilers

General Terms Languages

Keywords polyhedral model, static single assign-
ment,SSA

1. Introduction

In [3] we proposed to implementGraphite, a classi-
cal framework for polyhedral representations inGCC

based onGIMPLE. In this effort, we adapted the exist-
ing algorithms to the low level representations ofGCC.
Indeed, it is the first time that a polyhedral represen-
tation is built on a three addressSSA form. This work
also raises several questions that remain unanswered:

[Copyright notice will appear here once ’preprint’ option is removed.]

what is the relation between the polyhedral model and
theSSA, why is it so hard to deal with scalar operations
and scalar dependences in the polyhedral model?

We present an adaptation of the classical polyhedral
model toGIMPLE in Section 2, then we present a set
of changes to integrate theSSA representation in the
polyhedral model in Section 3.

2. Classical Polyhedral Model on GIMPLE

In the classical polyhedral model [4, 2], imperative lan-
guage constructs are translated to a stand alone rep-
resentation based on matrices. After this translation,
the original representation of the program can be dis-
carded. The matrix representation can then be trans-
formed without having to impact the transformations
on the original code, until the last phase of the poly-
hedral framework, that generates imperative language
constructs that can then be passed to the reminder of
the compiler.

In this section we summarize the different aspects
collected in the polyhedral representation: theSCoP,
a basic contiguous set of operations representable with
polyhedra, the iteration domains, the memory accesses,
data dependence relations, and statement scheduling
functions.

2.1 SCoP: Static Control Part

The largest part of code that can be represented in the
polyhedral model is a region of code that does not con-
tain irregular memory accesses, irregular control flow,
statements with side effects, non pure function calls,
etc. These regions of code are called Static Control
Parts, orSCoPs.

In the previous publications defining the notion of
Static Control Parts, theSCoPs are detected on aFOR-

TRAN like syntax tree [1]. As this definition cannot
be used on lower level representations that do not con-
tain loops as syntactic constructs, we propose another

1 2007/8/8



definition ofSCoPs based on the properties of the Con-
trol Flow Graph (CFG). The notion of loops appears in
theCFG as strongly connected components, i.e. regions
of theCFG where the control might return following a
back-edge of theCFG.

The construction ofSCoPs rely on the following
properties: aSCoP stops before a statement that cannot
be represented in the polyhedral model, and theSCoP

starts on a basic block that dominates the block that
ends theSCoP.

The SCoP construction algorithm walks the domi-
nator tree until a basic block containing a difficult con-
struct is found, in which case that basic block delimits
the end of aSCoP. The starting basic block of this new
SCoP is then determined as either the basic block that
ends the previousSCoP, or the basic block that starts
the body of the loop in which theSCoP end block be-
longs. This algorithm is illustrated on an example in
Figure 1.

SCoP 1

SCoP 1

SCoP 2

SCoP 3

SCoP 4

a. b.

Figure 1. Example ofSCoP construction. In Figure a,
the whole program can be represented in the polyhedral
model, and a singleSCoP is created. In Figure b, the
basic block marked with an X marks the end of aSCoP,
and theCFG is partitioned in severalSCoPs.

2.2 Parameters of a SCoP

A parameter of aSCoP is a variable whose value is not
known at compile time, and whose value does not vary
during the execution of theSCoP. Thus, are considered
parameters all the non volatile variables defined outside

the bounds of theSCoP, or defined in a non strongly
connected component of theSCoP. The set of parame-
ters and the relations between the parameters is called
the context of theSCoP. The context is set up as a lin-
ear constraint system before the construction of the rest
of the polyhedral representation of theSCoP. The con-
text is used to simplify the linear constraint systems by
reducing their dimension.

A correspondence table between the name of the
variable and the number of the column representing the
variable is kept on the side of the representation. This
correspondence table is used in particular during the
construction of the polyhedral representation, and dur-
ing the code generation back to the imperative repre-
sentation, as parameters can appear in the linear con-
straints of loop bounds, memory access functions, etc.

2.3 Iteration Domains

The low level representation of theCFG and of the nat-
ural loops is translated to a higher level representation
containing synthesized informations such as the num-
ber of iterations, or approximations of the number of it-
erations. These informations are stored under the form
of a linear constraint system: the iterations of each loop
are represented by a variable whose values index the it-
eration of the loop, i.e. start at zero and bounded by the
number of iterations in the loop. The number of iter-
ations of an inner loop can be represented by a linear
function of scalar variables whose evolutions are either
linear functions of the outer loops indexes, or parame-
ter variables.

2.4 Memory Access Functions and Dependence
Relations

Regular accesses to memory either by arrays or by
pointers are translated to a matrix form that represents
the linear memory accesses as functions of the loop
indexes andSCoP parameters. However, an important
part of the source imperative language is missing: the
order in which the memory accesses are executed is not
captured by this representation.

The partial order of the memory accesses is added
on the side under the form of dependence relations be-
tween the memory accesses [4, 5, 6]. For each pair of
memory accesses, a constraint system represents the el-
ements accessed twice by both accesses for different
iterations or in the sequence. This is illustrated in Fig-
ure 2.

2 2007/8/8



DO I = 30, 100, 1

A[3 * I + 5] = ...

... = A[6 * I]
→



















30 ≤ x ≤ 100

30 ≤ y ≤ 100

3x + 5 = 6y

Figure 2. Example of a dependence relation equation
for an imperative program.

One of the reasons to not include the scalar depen-
dences in the data dependence relations is that the exact
same information is contained in theSSA representa-
tion. However, because of this separation, classical al-
gorithms, such as the loop distribution, that work on
a single representation of data dependences have to be
adapted, or alternatively, the two representations have
to be mixed again as in the reduced dependence graph
used in the loop distribution.

2.5 Statement Scheduling Functions

Scheduling functions describe the moment at which a
statement has to be executed. There are two compo-
nents to a schedule, a static time corresponding to the
place in the sequence of statements where the statement
has to be executed, and the dynamic time correspond-
ing to one of the loops iteration time.

Several schedules can be valid with respect to the
dependence relations. As we have mentioned, the de-
pendence relations provide a partial order on the execu-
tion time of the memory operations. So, among all the
schedules some are feasible if they respect the initial
order of computations, others schedules are not valid.

The schedule representation tries to decouple the se-
quence and iteration space from the sequence and loop
constructs. The resulting representation is closer to a
declarative language, than to the source imperative lan-
guage. However we outline several inconsistencies that
have to be addressed in order to obtain a purely declar-
ative language that would integrate the informations
available in theSSA.

3. Towards a Declarative Polyhedral
Representation

It is possible to remark that most of the definitions of
the classical polyhedral model can be adapted to a three
address code form after the higher level informations
were synthesized from the low level information. The
main exception is theSSA representation, that is dif-
ficult to integrate in the polyhedral representation, due

to the fact that the informations of theSSA are in part
contained in the data dependence information and an-
other part in the byte-code that is handled as is by the
code generator.

We propose three different approaches to deal with
theSSA form in the polyhedral representation: the first
approach consists in removing as muchSSA constructs
as possible by removing scalar dependences due to
temporary variables used in the three address code, the
second approach proposes an update of the code gen-
eration pass (out of polyhedral model) to handle state-
ments containingSSA constructs, and finally the last
proposition intends to move the polyhedral represen-
tation towards a purely declarative language, avoiding
the need of a representation of statements on the side.

3.1 Reconstruction of computations on arrays

The first temporary solution is to aggregate computa-
tions in larger chunks, and avoid as much as possible
the operations on temporary scalar variables. These op-
erations are not handled in a flexible way by the poly-
hedral representation. This is a temporary fix that is in-
tended to transform theGIMPLE-SSA representation to
a moreFORTRAN-like language on which the polyhe-
dral model was proposed.

A further improvement in the same direction would
be to propagate high level constructs from theFOR-

TRAN front-end down to theGIMPLE level without
having to pass through the scalarGIMPLE representa-
tion.

3.2 SSA aware code generation

Another temporary solution is to improve the code gen-
eration pass out of the polyhedral model, to generate
correctSSA constructs. This also intends to make the
underlying polyhedral representation aware of theSSA

constructs contained in the statements.

3.3 Translation of array operations in a
dependence declarative language

Finally a more elegant solution would be to avoid the
notion of statement in the polyhedral representation,
and to introduce it only in the code generation part. In
this case, the notion of statement schedule is also intro-
duced only by the code generation pass that becomes
a translator from a declarative language back to an im-
perative language.

3 2007/8/8



4. Conclusion

We looked at the construction of the polyhedral model
from a different perspective than what is generally de-
scribed in the literature: instead of starting from a high
level FORTRAN-like representation, the information
is synthesized from the basic bricks of the three ad-
dressGIMPLE-SSA representation. We have seen sev-
eral adaptations toGIMPLE-SSA of the classical algo-
rithms used for building the polyhedral representation,
and we proposed a slight change in the polyhedral rep-
resentation for also capturing the informations handled
by theSSA.

References
[1] A. Cohen, S. Girbal, and O. Temam. A polyhedral

approach to ease the composition of program transfor-
mations. InEuro-Par’04, number 3149 in LNCS, pages
292–303, Pisa, Italy, Aug. 2004. Springer-Verlag.

[2] P. Feautrier. Some efficient solutions to the affine
scheduling problem, part II, multidimensional time.Intl.
J. of Parallel Programming, 21(6):389–420, Dec. 1992.
See also Part I, one dimensional time, 21(5):315–348.

[3] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.-A. Silber,
and N. Vasilache. GRAPHITE: Polyhedral Analyses
and Optimizations for GCC. InProceedings of the
2006 GCC Developers Summit, 2006. http://www.
gccsummit.org/2006.

[4] W. Pugh. Uniform techniques for loop optimization. In
ICS ’91: Proceedings of the 5th international conference
on Supercomputing, pages 341–352, New York, NY,
USA, 1991. ACM Press.

[5] W. Pugh. A practical algorithm for exact array
dependence analysis.Communications of the ACM,
35(8):27–47, Aug. 1992.

[6] D. Wonnacott and W. Pugh. Nonlinear array dependence
analysis. InProc. Third Workshop on Languages, Com-
pilers and Run-Time Systems for Scalable Computers,
1995. Troy, New York.

4 2007/8/8


